* Electronic Address: sebrus@mat.umk.pl

¹ Nicolaus Copernicus University, Torun, Poland

Ważewski type theorem for non-autonomous systems of equations

Sebastian Ruszkowski^{1*}

I will present Ważewski type theorem for non-autonomous systems of equations with a disconnected set of egress points. During the talk I will study solutions of nonlinear dynamic systems on time scales of the form $y^{\Delta}(t) = f(t, y(t))$, where $f: \mathbb{T} \times \mathbb{R}^n \to \mathbb{R}^n$, and \mathbb{T} is the time scale. For a given set $\Omega \subset \mathbb{T} \times \mathbb{R}^n$, I will formulate conditions for functions f which guarantee that at least one solution yof the above system stays in Ω . It is worth noting that the results are new also for non-autonomous systems of difference equations $\Delta y(n) = f(n, y(n))$ and impulsive differential equations. The talk is based on paper [1].

References

 G. Gabor, S. Ruszkowski, J. Vitovec, Ważewski type theorem for nonautonomous systems of equations with a disconnected set of egress points, Appl. Math. Comput., Vol. 265 (2015), 358–369