Schrodinger equation (@ particle in a bounded domain):
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Hermitian operator (the energy)
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Time-dependent Schrodinger equation:
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frozen energy eigenstates

Adiabatic Theorem: |Cn(t)|2% const for t>g

Proof: ¢ i\ e o 1B rE) T
dt (Cncn) ~ &€ B

[f the system 1s close to a frozen energy eigenstate, 1t
remains close to a frozen energy eigenstate for a long time

(1f the energy levels do not cross)



for a typical one-parameter family of

Avoided Crossing theorem: E /\
Hermitian operators H(0) all eigenvalues

are simple for all 0
_ E O
Proof: ( E* E) ~ ( 0 E) j a=C=L, b=0 _;7) 9

— 1-parameter family is not enough

For a typical periodic H(0), the system described by
Y =-1 H(et) ¥ starting at an energy eigenstate

returns close to 1ts 1nitial state for a large number of periods



Schrodinger equation in a periodically separated domain:
LY, =-V, VOV

W:O at X e 509
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Typically, perfectly adiabatic

evolution does not return the system ).
to the 1nitial state after each period.

Instead, the energy, typically,grows exponentially with time



Ei1genfunctions between the separation and reconnection moments

BV =-¥_+V(x,0)¥ 1.< 0 <1,

W= atxe/aaand X e dD, T

Y=0forall xelD, orall xeD,

2 groups of eigenfunctions and eigenvalues:
V" E': particle in D,

n, N

V. Em : particle in D

m



Generic level crossing

T, T T, +T

oj(k) =1 1f the eigenstate Y belongs to group I at 7 =71;
oi(k) = —1 if Yy belongs to group 1l at 7 =71;

S,(/\ ith)+---+0jk)



T, T, T, +T

- Gi(k)=] Group I state Wiy O, (R) =1

Energy level / S5,(k)=m - (k-m) _\ new level number
number k c,(k)S(k)+k= o,(k)S(k)+k i



The system from the energy level k at the separation
occurs at the energy level k after the reconnection

The map k—k 1s 1-to-1 and is completely determined
by the rule:

Y =]

6. (k)= 6,(k) 6,(k)S(k)+k= 0,(k)S(k)+k

The orbits of such maps are either periodic or tend to
infinity in both directions

A generic orbit 1s unbounded and tends to infinity

exponentially



Exponential acceleration

Model assumptions: o1 (k)and o2(k) are sequences

- of independent random variables

Pr( o1(k) = 1= B Pr( o2(k) = 1)= y -
: 7 ._(_ = PZ£Y
Si(k) ~ (2B — D)k and S2(k) ~ 2y — 1)k

<«— \k 4+ 01(k) S2(k) = k + o1(k)S, (k)

| g )ﬁ/k with probability S

. -8, with probability I — f

K ~ 1—}//\ | l |
E(lnk —Ink) ~ B In é + (I — B)In —F > ()

1% | — ¥



Exactly solvable models: Quantum graphs with
periodically broken links



[f, for a part of the adiabatic oscillation period,
the frozen system has an additional quantum
integral, which gets destroyed for the other part
of the period, then the operator of the adiabatic
evolution over the period 1s non-trivial.

Generically, it has an infinite Jordan block.

Generically, the energy 1n such systems grows
exponentially with time



1. Other quanum integrals?
2. Other equations with periodically divided domains?

3. Optics?

_iAZ — AXX_I_ Ay,V_l_ n(X,Z) A

— OO =C0=




	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

