
Generalized Visibility Kernel
Eyüp Serdar Ayaz1 and Alper Üngör1

1 CISE Department, University of Florida, Gainesville
[ayaz,ungor]@cise.ufl.edu

Abstract
We propose a generalization of the concept visibility kernel which finds use in art gallery problems.
For a point p in a simple polygon P and a subset X of P , we refer the set of points visible by
every point in X that is seen by p as the generalized visibility kernel of p with respect to X. We
present an O(n + m log m) time algorithm for computing the generalized visibility kernel, where
n, m are the complexities of P and X respectively. As essential components of our approach, we
also propose two efficient algorithms for computing the relative convex hull and the complete
visibility polygon of a set of points.

1 Introduction

We consider a generalized version of the well known Art Gallery Problem. For a polygon P ,
and two subsets of it, X, Y ⊆ P , AGP(X, Y ) asks to find the minimum subset of X as guard
locations, such that all the points of Y are guarded [4]. A recent approach for solving art
gallery problems involves use of witness sets [2–4]. A witness set W of a polygon P is defined
as a set such that any set G that guards W also guards P . In [1], we extended the notion of
witness sets for the parametrized version AGP(X, Y ) and outlined an iterative refinement
scheme for the art gallery problem. Formulation and computation of visibility kernels turns
out to be an essential step of this refinement scheme. For a point p ∈ P , the set of points
visible by every point in P that is seen by p is called the visibility kernel of p [3], denoted
as VK(p). We present a generalization of this concept. For a point p ∈ P and X ⊆ P , the
set of points visible by every point in X that is seen by p is called the generalized visibility
kernel of p with respect to X, denoted as GVK(p, X). Note that VK(p) = GVK(p, P ). While
this generalization is seemingly simple, several algorithmic challenges arise.

Contribution. In Section 3, we present a O(n+m log m) time algorithm for computing
generalized visibility kernel, where n, m are the complexities of P and X, respectively. Our
algorithm for computing generalized visibility kernel involves computation of relative convex
hulls. Relative convex hull of a set of points S is defined as the region with minimum
circumference that includes S within a polygon P [10]. In Section 3.2, we present an efficient
algorithm for computing the relative convex hull of a set of points in a visibility polygon of
a point. Our algorithm works in O(n + m) time when the result of Section 3.1 is given in
O(n+m log m) time cumulatively. Previously, an algorithm is given to find a single viewpoint
that sees a given relative convex hull in O(n + m) time [6]. We present an algorithm that
calculates the set of all viewpoints of a set of points in the same time complexity.

2 Preliminaries and definitions

The input for AGP (X, Y ) is a simple (non-convex) polygon P with n vertices and two sets
X, Y ⊆ P . We assume that X is given as a union of non-intersecting sets of points, line
segments, and convex polygonal regions within P . Let m denote the complexity of X. For
any polygon Q, ∂Q denotes the boundary of Q and ref(Q) denotes the reflex vertices of Q.
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



75:2 Generalized Visibility Kernel

Two points p, q ∈ P see each other if the whole line segment pq is in P . The set of points
in P that can be seen from a point p ∈ P is called the visibility polygon of p, denoted as
V(p) (See Figure 1). The set of points that can see every point in V(p) is called the visibility
kernel of p, denoted as VK(p). For a set of points S ⊆ P , the set of points that are visible
from all points in S is called its complete visibility polygon [7]. It is denoted as CV(S) and
can be formulated as

∩
p∈S V(p).

p

q

b

p

Figure 1 (Left) Visibility polygon V(p) (shaded area) and visibility kernel VK(p) (dark shaded
area) of a point p. (Right) For a given set X (dark shaded area), GVK(p, X) is the shaded area.

The counter-clockwise (CCW ) angle defined by ordered three points x, p, y is denoted
as x̂py. The shortest path within a polygon P between two points p, q ∈ P is denoted
as SP (P, p, q). A chain is an ordered list of j line segments s1...sj between j + 1 points
p1...pj+1 such that si = pipi+1 for 1 ≤ i ≤ j. A chain on a boundary of a polygon P

between two points q1, q2 ∈ ∂P , is defined as the CCW chain on ∂P from q1 to q2, denoted
as chain(P, q1, q2). The half plane on the left of the ray −→pq is denoted as HP (−→pq). The closure
of the half plane is denoted as CHP (−→pq). A wedge is determined by three points l, p, r ∈ P

and denoted as wedge(l, p, r). If l̂pr ≤ π, then wedge(l, p, r) = V(p) ∩ HP (
−→
lp) ∩ HP (−→pr).

Otherwise, wedge(l, p, r) = V(p) ∩ (HP (
−→
lp) ∪ HP (−→pr)).

2.1 Generalized visibility kernel and its properties

From the definitions, we simply have GVK(p, X) = CV(V(p) ∩ X). Also note that if a
guard g ∈ X sees p, then g is guaranteed to see all points in GVK(p, X). Indeed this very
observation has been the motivation for us to propose a generalization of visibility kernels.
Below, we list some more properties.

▶ Lemma 2.1. Given two sets X1, X2 ⊆ P such that X1 ⊆ X2. For any point p ∈ P we
have GVK(p, X2) ⊆ GVK(p, X1).

▶ Lemma 2.2. For p ∈ P and X ⊆ P , we have VK(p) ⊆ GVK(p, X).

▶ Lemma 2.3. For p ∈ P and X ⊆ P , we have p ∈ GVK(p, X).

▶ Lemma 2.4. The following statements are equivalent for p, q ∈ P and X ⊆ P : (i) Any
point r ∈ X that sees p also sees q; (ii) q ∈ GVK(p, X); (iii) GVK(q, X) ⊆ GVK(p, X).

▶ Theorem 2.5. A point set W ⊆ P is a witness set for Y with respect to X if and only if
Y ⊆

∪
p∈W GVK(p, X).



E. S. Ayaz and A. Üngör 75:3

3 Algorithms

Our algorithm for computing GVK(p, X) = CV(V(p) ∩ X) consists of four steps. Due to the
space limitations, we present the summary of the algorithms in this extended abstract. The
details of the algorithms can be found in the full version of the paper.

1. First, we use the linear-time algorithm by Joe and Simpson [8] to compute V(p).
2. Second, we present a angular plane sweep algorithm to find V(p) ∩ X in Section 3.1.
3. Third, we calculate the relative convex hull of V(p) ∩ X in Section 3.2.
4. Finally, we compute the complete visibility polygon of V(p) ∩ X in Section 3.3 relying

on the relative convex hull computed in Step 3.

3.1 Calculating V(p) ∩ X

After computing V(p), we divide V(p) into wedges Wi = wedge(ri, p, ri+1), where ri is the
ith reflex vertex of V(p) in CCW order. Assume that r1 = rj+1 where j is the number of
reflex vertices. Without loss of generality, we assume that r̂jpr1 ≥ r̂ipri+1 for 1 ≤ i < j.
Note that each wedge, except Wj in some cases, is convex. (See Figure 2).

W1
W2

W3

W4
W5

r1

r2r3

r4 r5

p p

Figure 2 (Left) V(p) is partitioned into wedges with apices of p. (Right) For a given X (pink
and orange shaded areas), V(p) ∩ X is the orange shaded area. Yellow and orange shaded areas
together shows RCH(V(p) ∩ X)

.

Our sweepline is a ray anchored at p. We record the geometric objects in X that intersects
the sweepline in a balanced binary search tree (BBST ) in the order of the distance from
p to the object. Since the objects in X are convex, the order of the nodes do not change.
A node is active if p is closer to the corresponding object than ∂P in the direction of the
sweepline. A node of the BBST records the geometric object in X, whether the object is
active, and the event points where the node is activated and deactivated.

The event points in our angular plane sweep algorithm are the vertices of X and reflex
vertices of V(p) in the angular order from p. For this, we sort the elements of X in CCW
order with respect to the viewpoint p. The node corresponding to an object x ∈ X is
inserted to (deleted from) the BBST at the rightmost (leftmost) vertex of x with respect
to p. The object x can be activated or deactivated at a reflex vertex r ∈ ref(V(p)). We
prune x through the sweepline when it is activated or deactivated. The output V(p) ∩ X is
recorded as a sequence of nodes sorted in the angular order of the appearance from p.

Each element of x ∈ X is added to and removed from BBST once, and activated and/or
inactivated at most once. Add, remove operates in O(log m) time, activation and inactiva-
tion takes O(1) time per element. Calculating the cutting points of x takes an amortized

EuroCG’18



75:4 Generalized Visibility Kernel

O(1) time. Data structure operations in total takes O(n + m log m) time and sorting takes
O(m log m). Therefore the total complexity of calculating V(p) ∩ Y is O(n + m log m).

3.2 Calculating the relative convex hull of V(p) ∩ X

To calculate CV(V(p) ∩ X), we use the relative convex hull for a set of points S in a polygon
P , denoted as RCH(S) [10]. RCH(S) is defined as the polygon that has the minimum
circumference such that S ⊆ RCH(S) ⊆ P . Note that RCH(S) can be a degenerate polygon
(See Figure 3).

Ghosh [6] states that if a point p in a simple polygon P sees a set of points S ⊆ P if and
only if p sees RCH(S). Based on this, we can conclude that CV(V(p)∩X) = CV(RCH(V(p)∩
X)). Let us call RCH(V(p) ∩ X) as Q for the rest of the paper for brevity.

p

Q
gl gr

α p

Figure 3 (Left) Q is the relative convex hull of V(p) ∩ X for a given X. The near chain is
chain(Q, gl, gr), the far chain is chain(Q, gr, gl), and α is the outer angle between the tangents
from p to Q. (Right) A degenerate relative convex hull.

▶ Lemma 3.1. For a point p ∈ P and a set X ⊆ P , we have RCH(V(p) ∩ X) ⊆ V(p).

Let gl, gr ∈ Q be the points that make the angle α = ĝlpgr maximal such that wedge(gl, p, gr)∩
X = ∅. (See Figure 3). In other words, if p /∈ Q, then gl and gr are the tangent points from
p to Q. We decide whether p is in Q based on α.

▶ Lemma 3.2. The point p is in RCH(V(p) ∩ X), if and only if α ≤ π or p ∈ X.

To calculate Q, we define two chains based on whether p is in Q or not. If p /∈ Q, then
chain(Q, gr, gl) is the near chain and chain(Q, gl, gr) is the far chain. If p ∈ Q, then ∂Q is
the far chain. Based on Lemma 3.2, if α > π and p /∈ X, we calculate both the near chain
and the far chain. Otherwise, we calculate only the far chain.

For each wedge Wi, we calculate the convex hull of X ∩ Wi by calculating the far and (if
necessary) the near chains. From the previous calculation, we have V(p) ∩ X in CCW order
from the viewpoint of p. We traverse the points in the wedge by updating the far chain in
CCW from p. While traversing, if the current point creates a right turn in the far chain,
then the previous points are popped from the far chain until there is no right turn in the
chain. The process is similar for the near chain.

After calculating the the far and (if necessary) the near chains for each wedge, we merge
each of them to calculate Q. The merge is also done in CCW order from p, using the reflex
vertices of V(p) as pivot points and draw tangents to the near and the far chains of the
wedges. If α > π and p ∈ X, then we concatenate line segments glp and grp to the far chain
to yield Q. If α > π and p /∈ X, we concatenate the near chain and the far chain. If α ≤ π,
only the far chain gives us Q.



E. S. Ayaz and A. Üngör 75:5

The time complexity of calculating Q is O(n + m), since there are O(n + m) points to
be considered in the convex hull and each vertex in V(p) ∪ X and ref(P ) is traversed once
and inserted to and/or removed from a chain at most once.

3.3 Calculating the complete visibility polygon of RCH(V(p) ∩ X)
Here, we present an algorithm to calculate the complete visibility polygon of Q as a sub-
method of calculating the GVK(p, X). However, p is not particularly relevant in our algo-
rithm other than the assumption of the existence of at least one viewpoint for the relative
convex hull.

Let k be the number of reflex vertices of Q. Let us define ri ∈ ref(Q) as the reflex
vertices of Q in the CCW order, where 1 ≤ i ≤ k. Without loss of generality, let us assume
that r1 is the reflex vertex that maximizes the angle r̂kpr1 and i is an integer such that
1 ≤ i ≤ k. We also assume that rk+1 = r1. Now, we calculate CV(Q) by handling different
cases depending on some properties of Q.

Case 1: k = 0, or k = 1. Ghosh [7] gave an algorithm to find the complete visibility
polygon of a given convex chain within a simple polygon in linear time. When k = 0 i.e.,
Q is convex, CV(Q) can be calculated directly using his algorithm. If Q has only one reflex
vertex, then we can represent ∂Q as a chain starting and ending at r1 that has only left
turns. This allows us to use the same algorithm to calculate CV(Q).

Case 2: k ≥ 2. We have the following property:

▶ Lemma 3.3. If r̂ipri+1 ≤ π, then ri and ri+1, see each other.

From Lemma 3.3, we yield that there can be at most one consecutive reflex vertex pair
in Q that cannot see each other. Then, we have the following sub-cases:

Case 2.1: r1 and rk see each other. For each pair of consecutive reflex vertices
ri, ri+1 ∈ ref(Q), we denote the polygon bounded by chain(Q, ri, ri+1) and riri+1 as Qi.
We call the rest of Q after removing all Qi’s as Qcore (See Figure 4).

Case 2.1.1: Qk is convex. For each Qi, we define a superset Pi, which is bounded
by riri+1 and chain(P, ri, ri+1). We calculate the complete visibility polygon of Qi inside
Pi using [7] and call it Ci. Then, we create a polygon that is bounded by chain(Ci, ri, ri+1)
for all i and call it as G. For each reflex vertex ri, two incident vertices to ri on ∂Q are
denoted as ti and ui, such that ti, ri, ui is the CCW order of these vertices on ∂Q. Then we
have CV(Q) = G ∩

∩k
i=1(CHP (−→

tiri) ∩ CHP (−−→riui)).
We use a similar approach as Lee and Preparata’s algorithm [9] to calculate the half

plane intersections. Our algorithm starts with initializing a partially bounded intersection
region K as CHP (−−→t1r1)∩CHP (−−→r1u1). We initially assign the left and right tangents from r1
to K as −−→

t1r1 and −−→u1r1 respectively. Then, we traverse the reflex vertices of Q in CCW order
starting from r1. In the ith step, we trim K with the rays −−→riui,

−−−−−→
ti+1ri+1 and chain(G, ri, ri+1)

using [5] and update the tangents from ri to K. After k steps, K yields us CV(Q).
Case 2.1.2: Qk is not convex. In this case G will not be a simple polygon. However,

we have GVK(Q) ⊆ Ck ⊆ CHP (−−→r1t1) assuming that r1 is a reflex vertex of Qk without loss
of generality. We initialize Ck to K and iteratively trim K through the reflex vertices of Q

using the half plane intersections.
Case 2.2: r1 and rk do not see each other. This case is similar to Case 2.1.2,

except in this case, Qk is defined as the polygon bounded by chain(Q, rk, r1) and SP (r1, rk).
Similarly, Pk is bounded by chain(P, rk, r1) and SP (r1, rk). We calculate Ck as the inter-
section of the complete visibility polygon of chain(Q, rk, r1) and Pk. Then, we use the same
algorithm initializing Ck ∩ CHP (−−→t1r1) ∩ CHP (−−→r1u1) to K using [5].

EuroCG’18



75:6 Generalized Visibility Kernel

p

Q1
Q2

Q3

Q4

Qcore

Qcore

p

Q1
Q2Q3

Q4

Q5

p

Q5

r1r5

Figure 4 Partition of Q for Cases (Upper Left) 2.1.1, (Upper Right) 2.1.2, (Lower) 2.2.

These cases cover all the possible situations assuming that there exists at least one point
in P that sees every point in Q. We can also spot whether CV(Q) is empty if there are more
than one ri, ri+1 pairs that do not see each other or K becomes empty at some step in the
half plane intersections. All the submethods can be calculated in linear time with respect
to the number of vertices in P , Q, Qcore and G all of which are in O(n + m).

References

1 E. S. Ayaz and A. Üngör. An iterative refinement scheme of dominating guards and wit-
nesses for art gallery problems. In Canadian Conf. on Comp. Geom., pages 168–174, 2016.

2 E. S. Ayaz and A. Üngör. Minimal witness sets for art gallery problems. In European
Workshop on Computational Geometry (EuroCG), pages 195–198, 2016.

3 K. Chwa, B. Jo, C. Knauer, E. Moet, R. van Oostrum, and C. Shin. Guarding art galleries
by guarding witnesses. Int. J. Comput. Geometry Appl., 16(2-3):205–226, 2006.

4 P. J. de Rezende, C. C. de Souza, S. Friedrichs, M. Hemmer, A. Kröller, and D. C. Tozoni.
Engineering art galleries. CoRR, abs/1410.8720, 2014.

5 S. K. Ghosh. A linear-time algorithm for determining the intersection type of two star
polygons. In Foundations of Software Technology and Theoretical Computer Science, pages
317–330. Springer, 1984.

6 S. K. Ghosh. Computing a viewpoint of a set of points inside a polygon. In Foundations
of Software Technology and Theoretical Computer Science, pages 18–29. Springer, 1988.

7 S. K. Ghosh. Computing the visibility polygon from a convex set and related problems.
Journal of Algorithms, 12(1):75 – 95, 1991.

8 B. Joe and R. B. Simpson. Corrections to Lee’s visibility polygon algorithm. BIT Numerical
Mathematics, 27(4):458–473, 1987.

9 D. T. Lee and F. P. Preparata. An optimal algorithm for finding the kernel of a polygon.
J. ACM, 26(3):415–421, July 1979.

10 G. T. Toussaint. An optimal algorithm for computing the relative convex hull of a set of
points in a polygon. In Signal Processing: Theories and Applications. North-Holland, 1986.


	Introduction
	Preliminaries and definitions
	Generalized visibility kernel and its properties

	Algorithms
	Calculating V(p) X
	Calculating the relative convex hull of V(p) X
	Calculating the complete visibility polygon of RCH(V(p) X)


