
The hardness of Witness puzzles∗

Irina Kostitsyna1, Maarten Löffler2, Max Sondag1, Willem Sonke1,
and Jules Wulms1

1 Dept. of Mathematics and Computer Science, TU Eindhoven, The Netherlands
[i.kostitsyna | m.f.m.sondag | w.m.sonke | j.j.h.m.wulms]@tue.nl

2 Dept. of Information and Computing Sciences, Utrecht University, The
Netherlands
m.loffler@uu.nl

1 Introduction

The Witness is a puzzle video game that was produced by Thekla [1]. Since its release in
2016 the game has been critically acclaimed, and has been praised for its intelligence and
astonishing visuals. The Witness contains 9 principal types of puzzles, and a number of
hidden “environmental” puzzles, totaling to an amount of 664 puzzles spread over the open
world of the game. A player is invited to explore the world and to deduce the rules of various
puzzles they encounter.

Most of the puzzles in the game are based on a square grid, requiring the player to
connect a starting point to an end point with a simple grid path while satisfying certain
constraints, such as splitting the grid cells of different colors, passing through a set of given
points, and drawing polyomino shapes comprising of a set of tetris blocks, among others. For
example, the puzzle depicted in Figure 1 asks to connect the bottom-left corner of the grid
to the top-right corner with a grid path separating the white square from the black squares.

Figure 1 An example of a Black and White
Squares puzzle from the Witness. (Image
from [1].)

ts

Figure 2 An example of a solved colored
squares puzzle. All red squares are separated
from the blue squares by the path.

In this short paper we resolve the complexity of two out of the nine types of puzzles in
the game, namely the Black and White Squares and the Multicolor Squares puzzles. We show
that in a restricted setting these types of puzzles can be solved in polynomial running time,
but that in general they are NP-complete.

To formalize the setting, consider a rectangular grid of size w×h, which we interpret as a
graph G = (V, E), where V = [0, 1, . . . , w]× [0, 1, . . . , h] and two vertices (a, b) and (c, d) are
connected by an edge in E if and only if a = c and |b− d| = 1, or |a− c| = 1 and b = d. G is
a planar graph whose natural embedding decomposes the plane into (w − 1)(h− 1) square
faces that we call cells, and one unbounded outer face. Cells are colored by a color c from a

∗ Research on the topic of this paper was initiated at the 2nd Workshop on Applied Geometric Algorithms
(AGA 2016) in Vierhouten, The Netherlands, supported by the Netherlands Organisation for Scientific
Research (NWO) under project no. 639.023.208. M.L., M.S. and W.S. are supported by the Netherlands
Organisation for Scientific Research (NWO) under project no. 614.001.504 (M.L.) and 639.023.208
(M.S. and W.S.). J.W. is supported by the Netherlands eScience Center (NLeSC) under grant number
027.015.G02.

34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



67:2 The hardness of Witness puzzles

set C ∪ {�}. Cells colored by � are called empty. Furthermore, two vertices s and t from V

lying on the outer face are selected as the start and end point respectively. The decision
version of the puzzle asks whether there exists a simple path P from s to t in the graph G,
whose embedding on the grid splits the grid into several connected components of cells, that
each contain cells of only one color from C and possibly some empty cells. We call such a
path P a color-separating path. An example of a puzzle and its solution is given in Figure 2.

Related work. The Witness puzzle is closely related to Sheep and Wolves, a puzzle where
one has to build a fence that separates sheep from wolves on a grid introduced by Dave
Tuller.1 In his version, however, some cells contain additional clues describing the number
of fences directly incident to the cell. This puzzle type is known, among other names, as
Slither Link, which was proven to be NP-hard by Yato [9]. The study of the computational
complexity of puzzle games is as old as the notion of NP-completeness itself [8], and has a
rich history, which is beyond the scope of this short note to discuss; instead, we refer the
interested reader to the excellent surveys by Demaine and Hearn [3] and by Kendall et al. [4].

The object of the puzzles in The Witness, to find a curve separating white from black
cells on a grid, is also closely related to the problem of finding a grid-aligned approximation
of a shape: given a region overlaid by a grid, we wish to find a curve that has all cells that lie
completely inside the shape inside, and all cells that lie completely outside the shape outside,
with applications ranging from early computer graphics (casting characters to low-resolution
screens) [7] to geographical information systems. Often, one has additional objectives, such
as minimizing the symmetric difference or another distance measure of the two shapes. This
area remains an active domain of research [2, 6].

2 Algorithms

First we consider the problem every cell is colored either red or blue. We will give an
algorithm to solve this problem in time linear in the size of the grid O(wh).

Observations. We can make a couple of basic observations about the path that will help us in
understanding the problem. We let a border be defined as a maximal set of connected edges
between an area of red cells and blue cells. Furthermore we let p1 and p2 be the paths from
s to t along the edges of the outer face (see Figure 3). We observe that if a color-separating
path P exists, then it must go through all the edges of all borders to separate the colors.
Moreover as soon as the path P encounters a vertex on some border, it cannot deviate from
the border. If it could deviate then only one endpoint of an edge e would be on P as P must
be simple, and thus the colors adjacent to e would not be separated. It follows that the path
through a border must start at either p1 or p2, as that is where the endpoints of the borders
are. Large parts of any potential path P are thus fixed.

We categorize the borders into two types: crossings (that start on p1 and end on p2, or
vice versa) and bumps (that both start and end on either p1 or p2). These are depicted in
Figure 4. As a special case, borders that start or end in s or t, respectively, are considered
bumps. A third possible type would be an island (that does not have any vertices on p1 or
p2). These however cannot exist if a simple color-separating path P exists, as P would need
to contain all edges around the island, which results in a cycle. Furthermore, bumps cannot
be nested if there is to be a solution, as any color-separating path needs to traverse all of
those bumps, which requires the path to be non-simple.

1 https://www.amazon.com/Challenge-Brain-Logic-Puzzles-Mensa/dp/1402714491

https://www.amazon.com/Challenge-Brain-Logic-Puzzles-Mensa/dp/1402714491


I. Kostitsyna et al. 67:3

ts

p1

p2

Figure 3 Paths p1 and p2 go from s to t

along the outer face.

ts

crossing

bump

Figure 4 An example of a crossing and a
bump are shown in black.

Witty algorithm. The idea of the algorithm is to construct a directed graph G′ that admits
an st-path if and only if there is a simple color-separating path in our input grid. It works as
follows. We cut the grid along all crossings, producing a sequence of pieces G = [g1, g2, . . . , gk],
ordered such that s is in g1, t is in gk, and for all 1 < i < k, gi shares a border with gi−1
and gi+1. For each piece we remove all vertices (and adjacent edges) that are part of its
adjacent crossings, except for the endpoints on p1 and p2. As we have subdivided G along
all crossings, the only borders left within the pieces are bumps.

For each grid g ∈ G, we now create a small directed graph g′. Let s1, s2 be the vertices
on p1 and p2, respectively, that are closest to s, and similarly let t1, t2 be the vertices on p1
and p2 that are closest to t. For g1 it holds that s = s1 = s2, and in gk, t = t1 = t2. For
each grid g we put vertices representing s1, s2, t1, t2 into g′.

Grids gi and gi+1 used to be connected to each other by a crossing in the original grid.
We know that any separating path P must use this crossing and thus we connect t1 of g′i to
s2 of g′i+1 and s1 of g′i to t2 of g′i+1 to form G′. It then remains to determine how P can
route within the grids g ∈ G.

As each border must be followed from start to end by P , the path in a grid gi must
always start at s1,2 and end at t1,2. We add an edge between sx and ty in g′ if there exists
a color-separating path in gi starting at sx and ending at ty. The existence of such paths
can be determined by checking two conditions on gi. Firstly, if there are bumps on both p1
and p2, then there must be at least two grid cells between the bumps on p1 and p2 such that
the path can pass between them. Secondly, there must be enough vertices between bumps
on p1 and p2 such that we can exit/enter p1 and p2 to go to the other side (and back again
if needed). We need to enter/exit each path at most once. Figure 5a shows an example of
such a path: Graph g2 has an extra vertex after the bump on p2, and enough space between
the bumps on p1 and p2. A path starting at the bottom left can separate all bumps at the
bottom, route back to the top left and separate all bumps at the top to end in the top right.

The graph G′ now exactly represents all possible paths P can take. The answer to our
original problem is thus reduced to whether there exists a path from s to t in G′.

I Lemma 1. There exists a simple color-separating path P from s to t in a fully 2-colored
grid G iff there exists a simple path from s to t in G′.

More colors. In Lemma 1 we assumed that the grid contained only two colors. The same
algorithm works using any number of colors, if we make some small adjustments. We
construct graph g′ to characterize P , and we use the fact that P should always follow the
borders. However, if we have more than two colors, borders no longer have to be paths.
Three/four faces with distinct colors can share a vertex v. Whenever this happens we know
that there is no color-separating path, because the path would need to visit v more than
once. We thus know that all borders are paths, and these borders can only be crossings or

EuroCG’18



67:4 The hardness of Witness puzzles

g1
g2

g3

s t

(a)

s t

t1 s1 t1 s1

s2t2s2t2

g′1 g′2 g′3

(b)

Figure 5 (a) Sequence of graphs created by removing crossings. (b) The graph that is created to
decide whether there is a simple path that separates squares of different colors.

(a) (b) (c) (d)

Figure 6 An egg. (a) The input. (b) One possible internal state of a path traversing the egg. (c)
The other possible state. (d) The fixed edges and sockets of the egg. The egg outline is drawn in
black, for easy recognition when used in later constructions.

bumps. We can therefore recolor the grid using only colors from {r, b}, such that on both
sides of each crossing we get a different color. Assume that r is used to color cells between
two crossings (or between s or t and a crossing) then b can be used to color the bumps (or
vice versa). We can now apply Lemma 1 to find out whether there is a color separating path.

Running time. We can find the at most O(wh) crossing borders in O(wh) time by walking
over p1 and following the outline of every color to check if it hits p2. As the total size of all
pieces combined is bounded by O(wh), we can thus create the graph G′ in O(wh). Finally
we can determine if a path from s to t exists in the graph G′ in O(wh) with a simple DFS.

I Theorem 2. Deciding whether there exists a simple color-separating path P from s to t in
a fully-colored grid G can be done in O(wh) time.

3 Hardness

In this section we show that deciding whether there exists a simple color-separating path P

from s to t in a grid G with 2 colors is NP-hard if the grid contains empty squares. To prove
this we provide a reduction from planar rectilinear 3-SAT [5].

Eggs. Our reduction is built from several gadgets. Our most basic gadget consists of a 5× 4
grid with 12 colored squares, which we call an egg. The gadget is illustrated in Figure 6a.
Note that five edges of G inside the egg must be on P , because the adjacent cells are of
different colors. There are then only two possible ways how P can traverse the egg (note
that it is not possible to connect the edges to the boundary of the gadget using multiple
paths), depicted in Figures 6b and 6c. Two pair vertices of G are used by only one of the
two paths, we refer to those vertices as the sockets of the egg (see Figure 6d).

Variables. Variables are built by connecting many eggs together at their sockets: if one egg
uses a socket, the adjacent egg cannot use the same socket. We define an egg snake of length



I. Kostitsyna et al. 67:5

Figure 7 An egg snake of length 3.

Figure 8 A clause comb. There are 6 sets of adjacent empty cells; one at the handle, two
ornaments and three teeth.

k to be an arrangement of 12k − 2 eggs, as depicted in Figure 7.
If xi is true, then all top left and bottom right sockets (in the orientation shown in

Figure 6d) of every egg are used, otherwise all bottom left and top right sockets of every egg
are used. Note that, by the nature of their arrangement, all eggs in a snake must be in the
same state. We globally place all variable egg snakes in a horizontal line; see Figure 9.

Clauses. We represent each clause of the SAT instance by a comb gadget, consisting of long
strips of adjacent blue and red squares; see Figure 8. The exact shape of the comb is flexible:
horizontal and vertical stretches can be made longer as required. The outside of the comb is
covered by red squares, except for a single blue square in the top left which we refer to as
the handle of the comb. Any color-separating path P must enter through the handle, collect
(surround) all blue squares, and then leave again through the same gap.

There are five places in a comb where a choice can be made: three teeth and two ornaments,
each can be found in Figure 8 as a set of adjacent empty cells. We can think of the choice
to make as filling each tooth and ornament with either red or blue squares; this then fully
determines the course of P . However, not all choices lead to valid paths: the two ornaments
cannot both be set to blue because they would cause P to touch itself, and the left ornament
and left tooth or the right ornament and right tooth cannot both be set to blue because this
would create a red island. Similarly, we argue that exactly two out of the five teeth/ornaments
must be blue and three must be red, otherwise there will be either a red or a blue island. It
follows that at least one of the teeth must be blue.

Now, we observe that when a tooth is blue, it causes the path to run lower than when a
tooth is red. We have a left and a right socket on each tooth of the comb, which we will let
overlap with sockets of eggs. We connect a variable to the left socket for positive variables as
the top right socket is not used in the case, and the right socket for negative variables for
the same reason. Figure 9 shows a small example of an instance, leaving out most of the
puzzle details, but showing how a color-separating path can be routed. The remaining space
between variable and clause gadgets is filled by a grid of empty cells.

Satisfiability. We now show that we can efficiently find a solution to a planar 3-SAT formula

EuroCG’18



67:6 The hardness of Witness puzzles

Figure 9 An example of a small satisfiable instance. The left egg snake represent the variable x

and the right egg snake represent the variable y. The clause represent the statement x ∨ ¬x ∨ ¬y.
The color-separating path shows us that setting x to true and y to false satisfies the clause.

if we can efficiently find a color-separating path in the constructed instance for such a formula.
To find a color-separating path, we thread six horizontal paths through all variables. The

ends of the topmost and bottommost of these paths will be routed through the clause gadgets
above and below the variable line respectively. Finally, we connect the six paths through the
variables into a single path to create a color-separating path.

I Theorem 3. Deciding whether there exists a simple color-separating path P from s to t in
a grid G with two colors is NP-hard if the grid contains empty squares.

References
1 The Witness. http://the-witness.net/, 2010. Accessed on 2018-01-07.
2 Quirijn W. Bouts, Irina Kostitsyna, Marc van Kreveld, Wouter Meulemans, Willem Sonke,

and Kevin Verbeek. Mapping polygons to the grid with small Hausdorff and Fréchet
distance. In Proc. 24th Annual European Symposium on Algorithms (ESA), pages 22:1–
22:16, 2016.

3 Erik D. Demaine and Robert A. Hearn. Playing games with algorithms: Algorithmic
combinatorial game theory. In Michael H. Albert and Richard J. Nowakowski, editors,
Games of No Chance 3, volume 56 ofMathematical Sciences Research Institute Publications,
pages 3–56. Cambridge University Press, 2009.

4 Graham Kendall, Andrew J. Parkes, and Kristian Spoerer. A survey of NP-complete
puzzles. ICGA Journal, 31(1):13–34, 2008.

5 Donald E Knuth and Arvind Raghunathan. The problem of compatible representatives.
SIAM Journal on Discrete Mathematics, 5(3):422–427, 1992.

6 Maarten Löffler and Wouter Meulemans. Discretized approaches to schematization. In Proc.
29th Canadian Conference on Computational Geometry (CCCG), pages 220–225, 2017.

7 Nadia Magnenat-Thalmann and Daniel Thalmann. New Trends in Computer Graphics.
Springer, 1st edition, 1988.

8 Edward Robertson and Ian Munro. NP-completeness, puzzles and games. Utilitas Mathe-
matica, 13:99–116, 1978.

9 Takayuki Yato. On the NP-completeness of the Slither Link puzzle. IPSJ SIGNotes ALgo-
rithms, 84(2000-AL-074):25–31, 2000. In Japanese.

http://the-witness.net/

	Introduction
	Algorithms
	Hardness

