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Abstract
For a given graph, we want to find crossing-free straight-line drawings of low visual complexity.
A measure for the visual complexity of a drawing that has been considered before is the minimum
number of lines needed to cover all vertices. In 3D, this number, the 3D weak line cover number,
is denoted by π1

3(G) for a given graph G. In 2D, for any planar graph G, the 2D weak line cover
number is denoted by π1

2(G).
We inductively construct an infinite family of polyhedral graphs with maximum degree 6,

treewidth 3, and unbounded π1
2-value. We also determine the π1

2- and π1
3-values of the Platonic

graphs. We pose a number of open questions about the 2D and 3D weak line cover numbers.

1 Introduction

Recently, there has been considerable interest in representing graphs with as few objects as
possible. The idea behind this objective is to keep the visual complexity of a drawing low for
the observer. The types of objects that have been used are straight-line segments [4–7] and
circular arcs [6, 10].

Chaplick et al. [1] considered covering straight-line drawings of graphs by unbounded
objects (lines, planes) and defined the following new graph parameters. Let 1 ≤ l < d, and
let G be a graph. The l-dimensional affine cover number of G in Rd, denoted by ρl

d(G), is
defined as the minimum number of l-dimensional planes in Rd such that G has a crossing-free
straight-line drawing that is contained in the union of these planes. The weak l-dimensional
affine cover number of G in Rd, denoted by πl

d(G), is defined similarly to ρl
d(G), but under

the weaker restriction that the vertices (and not necessarily the edges) of G are contained in
the union of the planes.

Clearly, for any suitable combination of l and d, it holds that πl
d(G) ≤ ρl

d(G). For any
graph G, if l′ ≤ l and d′ ≤ d then πl

d(G) ≤ πl′

d′(G) and ρl
d(G) ≤ ρl′

d′(G). Chaplick et al.
showed that it suffices to study the parameters ρ1

2, ρ1
3, ρ2

3, and π1
2 , π1

3 , π2
3 :

I Theorem 1 (Collapse of the Affine Hierarchy [1]). For any integers 1 ≤ l < 3 ≤ d and for
any graph G, it holds that πl

d(G) = πl
3(G) and ρl

d(G) = ρl
3(G).

We call π1
2(G) and π1

2(G) also the 2D and 3D weak line cover number of G, respectively.
For a given graph G, π1

2(G) is at most as large as ρ1
2(G) but it can be much smaller. For

instance, Chaplick et al. showed that for the nested-triangles graph Tk = C3 × Pk (shown in
Fig. 2 for k = 4) with n = 3k vertices it holds that ρ1

2(Tk) ≥ n/2, whereas clearly π1
2(Tk) ≤ 3.

Chaplick et al. [2] also investigated the complexity of computing the (weak) affine cover
numbers. Among others, they showed that in 3D, for l ∈ {1, 2}, it is NP-complete to decide
whether πl

3(G) ≤ 2 for a given graph G. In 2D, the question is still open.

I Open Problem 1. Is it NP-hard to compute, for a given planar graph G, its weak line
cover number π1

2(G)?
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Independently of this complexity issue, Chaplick et al. also asked the following question:

I Open Problem 2. Does the class of planar graphs admit a sublinear upper bound for π1
2?

Even for restricted graph classes, the problem remains open. So far only two graph
families with unbounded π1

2-value are known [1,9]. The first graph family, by Ravsky and
Verbitsky [9], has treewidth 8 (which we define below). As Da Lozzo et al. [3] noted, the
construction can be modified so that the treewidth of the graphs in the family becomes 5. In
the second graph family, by Chaplick et al. [1], the maximum degree is bounded by 12 and
π1

2(G) ≥ n0.01. This yields a new type of open question:

I Open Problem 3. How small can we make the maximum degree in a family of planar
graphs such that their π1

2-value is still unbounded?

In this paper, we’ll improve upon the result of Chaplick et al. in this respect.
We can also ask the opposite question – if we restrict the maximum degree of a graph

family, how large can we make its π1
2-value?

I Open Problem 4. Does the class of planar graphs with constant maximum degree admit
a sublinear upper bound on π1

2? In particular, is there a constant upper bound on π1
2 for the

class of planar graphs of maximum degree 3?

Another thread of research concerns the (un)boundedness of π1
2 in the class of graphs of

bounded treewidth. A graph has treewidth at most k if it is a subgraph of a k-tree. The
class of k-trees (consisting of not necessarily planar graphs) is defined recursively as follows.
The complete graph Kk+1 is a k-tree; if G is a k-tree and H is obtained from G by adding a
new vertex and connecting it to a k-clique of G then H is also a k-tree. Observe that the
1-trees are exactly the usual trees.

It is well known that the treewidth of any outerplanar graph is at most 2, and all graphs
of treewidth 2 are planar. Chaplick et al. [1] proved that π1

2(G) ≤ 2 for any outerplanar
graph G and asked the following question, which is still open.

I Open Problem 5. Does the class of treewidth-2 graphs have constant π1
2-value?

Our contribution. As a warm-up, we compute the weak line cover numbers π1
2 and π1

3
of the Platonic graphs (1-skeletons of the Platonic solids) in 2D and 3D, respectively; see
Section 2. Our main result is the construction of an infinite family of polyhedral graphs with
maximum degree 6, treewidth 3, and unbounded π1

2-value; see Section 3.

2 Optimal Weak Line Covers of the Platonic Graphs

The Platonic solids are convex polyhedra; hence, the Platonic graphs are planar. Kryven et
al. [8] computed various parameters of visual complexity for these graphs. We compute the
weak line cover numbers of the Platonic graphs in 2D and 3D. Interestingly, two graphs in
this family behave differently in 2D and 3D.

Recall that a linear forest is a forest whose connected components are paths.

I Proposition 1. Let G be a Platonic graph. Then

(a) π1
2(G) = 2 if G is the graph of the tetrahedron, the cube, or the dodecahedron;

(b) π1
2(G) = 3 if G is the graph of the octahedron or the icosahedron.
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(a) tetrahedron (b) cube (c) dodecahedron (d) octahedron (e) icosahedron

Figure 1 π1
2-optimal drawings of the Platonic graphs.

Figure 2 The nested-tri-
angles graph T4 = C3 × P4.

Figure 3 For any Platonic graph, its vertex set can be
partitioned into two subsets that each induces a linear forest.

Proof. (a) See Figs. 1a, 1b, and 1c and note that only linear forests have π1
2-value 1.

(b) Let G be the graph of the octahedron or the icosahedron. Then π1
2(G) ≤ 3; see

Figs. 1d and 1e. On the other hand, π1
2(G) ≥ 3. Indeed, assume that there exists a plane

drawing of G such that all vertices of G are covered by two straight lines `1 and `2. Since
the outer face of G is a triangle, one of these straight lines, say `1, contains two vertices of
the outer face. Thus `1 contains no other vertices of G; all of them are placed on `2. But
this is impossible since the subgraph induced by these vertices is not a linear forest (in fact,
it even contains a triangle), a contradiction. Hence, π1

2(G) = 3. J

Chaplick et al. [1] related the affine cover numbers to standard combinatorial characteristics
of graphs. The linear vertex arboricity lva(G) of a graph G is the smallest size r of a partition
V (G) = V1 ∪ · · · ∪ Vr such that every Vi induces a linear forest. Chaplick et al. showed that
the combinatorial parameter lva(G) actually coincides with the geometric parameter π1

3(G).

I Theorem 2 ([1]). For any graph G, it holds that π1
3(G) = lva(G).

We exploit this to compute the π1
3-values of the Platonic graphs.

I Proposition 2. For any Platonic graph G, it holds that π1
3(G) = 2.

Proof. If G is the graph of the tetrahedron, the cube or the dodecahedron, the claim follows
from the fact that π1

3(G) ≤ π1
2(G). If G is the graph of the octahedron or the icosahedron,

we use Theorem 2 and note that lva(G) = 2; see Fig. 3. J

3 A Family of Graphs with Unbounded Weak Line Cover Number

We say that two plane graphs are strongly equivalent (have the same combinatorial embedding)
if they are obtainable from one another by a plane homeomorphism, and are equivalent if
they are obtainable from one another by a plane homeomorphism, up to the choice of the
outer face.

EuroCG’18



63:4 On the Weak Line Cover Numbers

Figure 4 The graph G1

from the proof of Proposi-
tion 3. The graph H1 is ob-
tained from G1 by removing
the vertices of the outer face.

Figure 5 The plane graph H2 is constructed by replacing each
of the special faces of H1 by another copy of H1.

1

2 3

Figure 6 The prism
(solid edges) has tree-
width 3 since it has mini-
mum degree 3 and is a sub-
graph of a 3-tree (numbers
indicate insertion order).

I Proposition 3. There is an infinite family of polyhedral graphs with maximum degree 6,
treewidth 3, and unbounded (logarithmic) π1

2-value.

Proof. The base of our inductive construction is the graph G1 depicted in Fig. 4. It has
four special gray faces (the three triangles and the outer face); they are disjoint from the
unique K4-subgraph (red in Fig. 4), which we imagine to be a tetrahedron with four equal
faces. Let H1 be the plane graph obtained by removing from G1 the vertices of its outer face.
Assume that, at the induction step i ≥ 1, we are given a graph Gi and a plane graph Hi

with 4 · 3i−1 and 3i special faces, respectively. We construct a graph Gi+1 from Gi and a
plane graph Hi+1 from Hi by replacing each of their special faces by a copy of the graph H1;
see Fig. 5. Then Gi+1 and Hi+1 have 4 · 3i and 3i+1 special faces, respectively. Note that Gi

can be naturally interpreted as a 1-skeleton of a convex polyhedron, and the construction
of Gi+1 preserves this property. Thus, the graph Gi+1 is polyhedral.

Using the fact that the special faces of Gi+1 are disjoint from Gi, it is easy to see
that ∆(Gi+1) = 6. Since Gi is polyhedral, by a well-known result of Whitney [11], all its
plane embeddings are equivalent. But, independently of the choice of the outer face in this
equivalence, each plane embedding of Gi contains a subgraph strongly equivalent to Hi.

It is easy to check that we can build a 1-skeleton of a triangular prism from a triangle
keeping treewidth 3; see Fig. 6. So during both actions, (a) attaching to a tetrahedron gray
triangles in order to construct G1 and (b) replacing each of the special faces of the graph Gi

by a copy of H1, the treewidth of the resulting graph remains at most 3. On the other hand,
the treewidth of Gi is lowerbounded by the minimum degree of Gi, which is 3.

We need at least two straight lines to cover all vertices of a graph strongly equivalent
to H1. For i ≥ 1, let the central vertex of Hi be the unique vertex that is incident to all
vertices on the outer face. If i ≥ 1, it is not difficult to check that, for each straight line `
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containing the central vertex of a graph strongly equivalent to Hi, there exists a subgraph
strongly equivalent to Hi−1 drawn inside a special face of Hi disjoint from `. Taking into
account this subgraph, we need at least one more line to cover the central vertex of the graph
strongly equivalent to Hi. By induction we see that we need at least i+ 1 straight lines to
cover all vertices of a graph strongly equivalent to Hi. Since any drawing of Gi contains
such a graph, we have π1

2(Gi) ≥ i + 1. The graph Gi has ni = 20 · 3i−1 − 4 vertices, thus
π1

2(Gi) ∈ Ω(logni). J
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