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Abstract
For many algorithms dealing with sets of points in the plane, the only relevant information
carried by the input is the combinatorial configuration of the points: the orientation of each
triple of points in the set (clockwise, counterclockwise, or collinear). This information is called
the order type of the point set. In the dual, realizable order types and abstract order types
are combinatorial analogues of line arrangements and pseudoline arrangements. Too often in
the literature we analyze algorithms in the real-RAM model for simplicity, putting aside the
fact that computers as we know them cannot handle arbitrary real numbers without some sort
of encoding. Encoding an order type by the integer coordinates of some realizing point set is
known to yield doubly exponential coordinates in some cases. Other known encodings can achieve
quadratic space or fast orientation queries, but not both. In this contribution, we give a compact
encoding for abstract order types that allows efficient query of the orientation of any triple:
the encoding uses O(n2) bits and an orientation query takes O(logn) time in the word-RAM
model. This encoding is space-optimal for abstract order types. We show how to shorten the
encoding to O(n2(log logn)2

/ logn) bits for realizable order types, giving the first subquadratic
encoding for those order types with fast orientation queries. We further refine our encoding to
attain O(logn/ log logn) query time at the expense of a negligibly larger space requirement. In
the realizable case, we show that all those encodings can be computed efficiently. Finally, we
generalize our results to the encoding of point configurations in higher dimension.

1 Introduction

At SoCG’86, Chazelle asked [16]:

“How many bits does it take to know an order type?”

This question is of importance in Computational Geometry for the following two reasons:
First, in many algorithms dealing with sets of points in the plane, the only relevant information
carried by the input is the combinatorial configuration of the points given by the orientation
of each triple of points in the set (clockwise, counterclockwise, or collinear) [7]. Second,
computers as we know them can only handle numbers with finite description and we cannot
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(a) Realizable order type. (b) Abstract order type which is not realizable.

Figure 1 Pappus’s configuration.

assume that they can handle arbitrary real numbers without some sort of encoding. The
study of robust algorithms is focused on ensuring the correct solution of problems on finite
precision machines. Chapter 41 of The Handbook of Discrete and Computational Geometry
is dedicated to this issue [23].

The (counterclockwise) orientation ∇(p, q, r) of a triple of points p, q, and r with coordi-
nates (xp, yp), (xq, yq), and (xr, yr) is the sign of the determinant∣∣∣∣∣∣

1 xp yp

1 xq yq

1 xr yr

∣∣∣∣∣∣ .
Given a set of n labeled points P = { p1, p2, . . . , pn }, we define the order type of P to

be the function χ : [n]3 → {−, 0,+ } : (a, b, c) 7→ ∇(pa, pb, pc) that maps each triple of point
labels to the orientation of the corresponding points, up to isomorphism. The order type
of a point set has been further abstracted into combinatorial objects known as (rank-three)
oriented matroids [10]. The chirotope axioms define consistent systems of signs of triples [3].
From the topological representation theorem [4], all such abstract order types correspond to
pseudoline arrangements, while, from the standard projective duality, order types of point
sets correspond to straight line arrangements. See Chapter 6 of The Handbook for more
details [21].

When the order type of a pseudoline arrangement can be realized by an arrangement of
straight lines, we call the pseudoline arrangement stretchable. As an example of a nonstretch-
able arrangement, Levi gives Pappus’s configuration where eight triples of concurrent straight
lines force a ninth, whereas the ninth triple cannot be enforced by pseudolines [19] (see Fig-
ure 1). Ringel shows how to convert the so-called “non-Pappus” arrangement of Figure 1 (b)
to a simple arrangement while preserving nonstretchability [22]. All arrangements of eight or
fewer pseudolines are stretchable [13], and the only nonstretchable simple arrangement of nine
pseudolines is the one given by Ringel [20]. More information on pseudoline arrangements is
available in Chapter 5 of The Handbook [11].

Figure 1 shows that not all pseudoline arrangements are stretchable. Indeed, most are not:
there are 2Θ(n2) abstract order types [8] and only 2Θ(n log n) realizable order types [1, 15].

Information theory implies that we need quadratic space for abstract order types whereas
we only need linearithmic space for realizable order types. Hence, storing all

(
n
3
)
orientations

in a lookup table seems wasteful. Another obvious idea for storing the order type of a point
set is to store the coordinates of the points, and answer orientation queries by computing the
corresponding determinant. While this should work in many practical settings, it cannot work
for all point sets. Perles’s configuration shows that some configuration of points, containing
collinear triples, forces at least one coordinate to be irrational [18]. Order types of points in
general position can always be represented by rational coordinates. It is well known, however,
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that some configurations require doubly exponential coordinates, hence coordinates with
exponential bitsizes if represented in the normal way [17].

Goodman and Pollack defined λ-matrices which can encode abstract order types using
O(n2 logn) bits [14]. They asked if the space requirements could be moved closer to the
information-theoretic lower bounds. Felsner and Valtr showed how to encode abstract
order types optimally in O(n2) bits via the wiring diagram of their corresponding allowable
sequence [8, 9] (as defined in [12]). Aloupis et al. gave an encoding of size O(n2) that can be
computed in O(n2) time and that can be used to test for the isomorphism of two distinct
point sets in the same amount of time [2]. However, it is not known how to decode the
orientation of one triple from any of those encodings in, say, sublinear time. Moreover, since
the information-theoretic lower bound for realizable order types is only Ω(n logn), we must
ask if this space bound is approachable for those order types while keeping orientation queries
reasonably efficient.

Our Results
In this contribution, we are interested in compact encodings for order types: we wish to
design data structures using as few bits as possible that can be used to quickly answer
orientation queries of a given abstract or realizable order type.

I Definition 1.1. For fixed k and given a function f : [n]k → [O(1)], we define a (S(n), Q(n))-
encoding of f to be a string of S(n) bits such that, given this string and any t ∈ [n]k, we can
compute f(t) in Q(n) query time in the word-RAM model.

We give the first optimal encoding for abstract order types that allows efficient query of the
orientation of any triple: the encoding is a data structure that uses O(n2) bits of space with
queries taking O(logn) time in the word-RAM model.

I Theorem 1.2. All abstract order types have an (O(n2), O(logn))-encoding.

Our encoding is far from being space-optimal for realizable order types. We show that its
construction can be easily tuned to only require O(n2(log logn)2

/ logn) bits in this case.

I Theorem 1.3. All realizable order types have an (O( n2(log log n)2

log n ), O(logn))-encoding.

We further refine our encoding to reduce the query time to O(logn/ log logn).

I Theorem 1.4. All abstract order types have an (O(n2), O( log n
log log n ))-encoding.

I Theorem 1.5. All realizable order types have a (O( n2 logε n
log n ), O( log n

log log n ))-encoding.

In the realizable case, we give quadratic upper bounds on the preprocessing time required to
compute an encoding in the real-RAM model.

I Theorem 1.6. In the real-RAM model and the constant-degree algebraic decision tree
model, given n real-coordinate input points in R2 we can compute the encoding of their order
type as in Theorems 1.4 and 1.5 in O(n2) time.

We generalize our encodings for chirotopes of point sets in higher dimension.

I Theorem 1.7. All realizable chirotopes of rank k ≥ 4 have a (O( nk−1(log log n)2

log n ), O( log n
log log n ))-

encoding.
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I Theorem 1.8. In the real-RAM model and the constant-degree algebraic decision tree
model, given n real-coordinate input points in Rd we can compute the encoding of their
chirotope as in Theorem 1.7 in O(nd) time.

Our data structure is the first subquadratic encoding for realizable order types that
allows efficient query of the orientation of any triple. It is not known whether a subquadratic
constant-degree algebraic decision tree exists for the related problem of deciding whether a
point set contains a collinear triple. Any such decision tree would yield another subquadratic
encoding for realizable order types. We see the design of compact encodings for realizable
order types as a subgoal towards subquadratic nonuniform algorithms for this related problem,
a major open problem in Computational Geometry. Note that pushing the preprocessing
time below quadratic would yield such an algorithm.

2 Encoding Order Types via Hierarchical Cuttings

We assume that we can access some arrangement of lines or pseudolines that realizes the
order type we want to encode. We thus exclusively focus on the problem of encoding the
order type of a given arrangement. This does not pose a threat against the existence of an
encoding. In this extended abstract, we sketch the general idea for a simple subquadratic
encoding. For full details, proofs, and improvements, we refer to the arXiv version [5].

Hierarchical Cuttings

We encode the order type of an arrangement via hierarchical cuttings as defined in [6].
A cutting in Rd is a set of (possibly unbounded and/or non-full dimensional) constant-
complexity cells that together partition Rd. A 1

r -cutting of a set of n hyperplanes is a cutting
with the constraint that each of its cells is intersected by at most n

r hyperplanes. There exist
various ways of constructing 1

r -cuttings of size O(rd). In the plane, hierarchical cuttings can
be constructed for arrangement of pseudolines with the same properties.

Idea

We want to preprocess n pseudolines { `1, `2, . . . , `n } in the plane so that, given three indices
a, b, and c, we can compute their orientation, that is, whether the intersection `a ∩ `b lies
above, below or on `c. Our data structure builds on cuttings as follows: Given a cutting Ξ
and the three indices, we can locate the intersection of `a and `b inside Ξ. The location of
this intersection is a cell of Ξ. The next step is to decide whether `c lies above, lies below,
contains or intersects that cell. In the first three cases, we are done. Otherwise, we can
answer the query by recursing on the subset of pseudolines intersecting the cell containing
the intersection. We build on hierarchical cuttings to solve all subproblems efficiently.

Intersection Location

When the `a are straight lines, locating the intersection `a ∩ `b in Ξ is trivial if we know
the real parameters of `a and `b and of the descriptions of the subcells of Ξ. However, in
our model we are not allowed to store real numbers. To circumvent this annoyance, and to
handle arrangements of pseudolines, we make a simple observation illustrated by Figure 2.
I Observation 1. Two pseudolines `a and `b intersect in the interior of a full-dimensional cell
C if and only if each pseudoline properly intersects the boundary of C exactly twice and their
intersections with its boundary alternate.
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`2

`1

C

π

(a) `a ∩ `b ∩ C = ∅.

C

`2`1

π

(b) `a ∩ `b ∩ C 6= ∅.

Figure 2 Cyclic permutations (π).

This gives us a way to encode the location of the intersection of `a and `b in Ξ using only bits.
We define the cyclic permutation of a full-dimensional cell C and a finite set of pseudolines
L to be the finite sequence of properly intersecting pseudolines from L encountered when
walking along the boundary of C in clockwise or counterclockwise order, up to rotation and
reversal. Location in a non-full-dimensional cell can be encoded similarily.

Encoding

Given n pseudolines in the plane and some fixed parameter r, compute a hierarchical 1
r -

cutting of those pseudolines. This hierarchical cutting consists of ` levels labeled 0, 1, . . . , `−1.
Level i has O(r2i) cells. Each of those cells is further partitioned into O(r2) subcells. The
O(r2(i+1)) subcells of level i are the cells of level i+ 1. Each cell of level i is intersected by
at most n

ri pseudolines, and hence each subcell is intersected by at most n
ri+1 pseudolines.

We compute and store a combinatorial representation of the hierarchical cutting as follows:
For each level of the hierarchy, for each cell in that level, for each pseudoline intersecting that
cell, for each subcell of that cell, we store two bits to indicate the location of the pseudoline
with respect to that subcell. When a pseudoline intersects the interior of a 2-dimensional
subcell, we also store the two indices of the intersections of that pseudoline with the subcell
in the cyclic permutation associated with that subcell, beginning at an arbitrary location in,
say, clockwise order. Location in a non-full-dimensional subcell can be encoded similarily.

The hierarchy is such that each subcell of the last level is intersected by no more than
t = n

r` pseudolines. For those subcells, we answer the queries by table lookup. The use of
hierarchical cuttings essentially guarantees we get quadratic preprocessing time, quadratic
space, and logarithmic query time in the abstract case. In the realizable case, we know there
can only be 2O(t log t) distinct lookup tables. Choosing the right superconstant t leads to
subquadratic space in that case.
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