
Approximate stabbing queries with
sub-logarithmic local replacement
Ivor Hoog v.d.1 and Maarten Löffler1

1 Dept. of Inform. and Computing Sciences, Utrecht University, the Netherlands
[i.d.vanderhoog|m.loffler]@uu.nl

Abstract
In this work we present the key ingredients to construct a linear-size data structure that stores a
set of spheres or axis-parallel hypercubes in Rd and supports what we define as 2m-approximate
stabbing queries in logarithmic time and local replacement in sub-logarithmic time, if the regions
not overlap “too much”. This work uses known techniques such as quadtrees and marked-ancestor
trees and introduces a new concept: key facets in a d-dimensional quadtree. We show the intuition
behind how this new concept can help us perform fast (approximate) stabbing queries with sub-
logarithmic local replacement if the dimension d and the approximation variable m are constant.
For a detailed description of the query algorithm and for proofs of correctness we refer to our full
version.

1 Introduction

An important and well-studied problem in Computational Geometry is the problem where
one is given a set B of n regions in Rd and needs to find the regions in that set that contain
a given query point q. Queries of this form are called stabbing queries and in this work we
focus on the reporting variant where we have to return the regions that contain q. In a static
environment, it is common to make a subdivision of the space based on the regions. Given
q, we then quickly find the cell in the subdivision that contains q. Well-known subdivision
methods are R-trees, quadtrees and (after applying a duality transformation) k-d trees [4].
Most current research on this topic focuses on the dynamic version of the problem where
one wants to maintain a set of regions subject to stabbing queries and adding, removing
or translating regions. These dynamic stabbing queries appear as a sub-problem in many
day-to-day applications such as GPS tracking, handling data imprecision and data analysis.
In certain applications a special kind of update called local replacement (Definition ??) [5] is
frequently performed. Intuitively, a local replacement replaces a region by another region
similar to it. For example: the ever-increasing uncertainty radius between GPS updates or
the moving action radius of an ambulance could both be modeled using local replacement.
We assume that the unit itself has a finger to its location in the data structure and we want
to use the finger to update the data structure and any auxiliary data structures.

In this paper regions in R1 will be defined as compact intervals. Regions in Rd will be
spheres and axis-parallel hypercubes. A local replacement does not “change too much” in the
set of regions and because of this, it is conjectured [5] that it should be possible to perform
such a replacement strictly faster than the traditional logarithmic time required for deleting
and inserting a region. Löffler et al. in [4] present a data structure that supports stabbing
queries in logarithmic time and local replacement in sub-logarithmic time for disjoint regions
in R1 and R2. In [3] Khramtcova and Löffler extend this approach by allowing regions in
R1 to overlap. In this work, we improve the data structure in [3, 4] to work for overlapping
regions in Rd if regions are spheres or axis-aligned hypercubes and if queries are not exact,
but what we call 2m-approximate for constant m. The question of whether exact logarithmic
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

59:2 Approximate stabbing queries with sub-logarithmic local replacement

stabbing queries can be performed in logarithmic time with sub-logarithmic replacement
remains open.

1.1 Problem definition
In this paper we are given a set B of n spheres or axis-aligned hypercubes in Rd. We measure
the size of any region B ∈ B as its diameter. We assume that all regions are contained within
an axis-aligned bounding hypercube K. In [4] Löffler et al. demanded that the regions in B
are disjoint. In [3] Khramtcova and Löffler relaxed this constraint by introducing limited ply:
the ply of a set B of regions in Rd is the maximum over all points q ∈ Rd of the number
of B ∈ B that contain q. With this restriction from [3] on the set of regions B we want to
perform stabbing queries subject to sub-logarithmic local replacement. Local replacement is
defined as replacing a region B1 with a region B2 such that the two regions are ρ-similar for
constant ρ:

I Definition 1. Given two regions B1, B2 ∈ B and a ρ ≥ 1, we call B1 and B2 ρ-similar if
there exists a region A ⊂ Rd with |A| ≤ ρmin{|B1|, |B2|} such that B1, B2 ⊂ A.

I Definition 2. We call replacing a B1 ∈ B with B2 a local replacement if B1 and B2 are
ρ-similar for a constant ρ.

Figure 1 Three examples of a region B1 and a 2-similar region B2.

To perform this local replacement we use what we later define as a level query. In the
full version of this paper we show that level queries cannot be solved in sub-logarithmic time
in Rd, so we decided to relax the requirements for stabbing queries and replace exact stabbing
queries with approximate queries. Intuitively, we approximate each region B with a smaller
inner region. Approximate stabbing queries return all regions B whose inner region I(B)
contains q and possibly regions B whose outer region B\I(B) contains q, whilst ply is still
defined on the outer region B. The area between the outer and inner region could be seen as
a “buffer” that safeguards the inner region. We define our 2m-approximate stabbing queries
using this concept of inner and outer region, the time bounds of our operations depend on
the approximation constant m.

I Definition 3. For any convex region B, we define the inner region with respect to m
as a map Im which takes a region and produces its 2m-approximate inner region. Given
a region B, Im(B) is the scaled down version of B with |B| = (1 + 2−m)|Im(B)| with the
center of Im(B) on the center of B.

I Definition 4. A 2m-approximate query on a set of regions B is a query that given a point
q ∈ Rd returns all B ∈ B for which q is contained in Im(B) and might return other regions
which contain q but does not return regions which not contain q.

Our main result is the following theorem:

I Theorem 5. Given a set B of either spheres or axis-aligned hypercubes in Rd with ply k
and fixed m we can construct a data structure that

I. Hoog v.d., M. Löffler 59:3

takes O(dn) space,
supports regular insertion and deletion of elements and a 2m-approximation of the stabbing
queries in O(3dk log(n)

log(log(n)) + log(n) +m) time,
supports local replacement in O(2(d−1)mk log(n)

log(log(n))) time.

2 Preliminaries

Quadtrees. We always work within an axis-aligned bounding hypercube K with finite size.
A quadtree T on K is a hierarchical partition of K into smaller axis-aligned cells. Given B
we build a dynamic compressed quadtree T that stores B with the following storing condition:
A cell C stores a region B if C is the largest (possible) cell in T such that B contains C and
C contains the center point of B. In this extended abstract we assume for any set B we can
compute quadtree T storing B with the following three properties (see [2] for details):

The tree takes O(dn) space.
If for any two cells C1, C2 ∈ T their corresponding hypercubes are ρ-similar for constant
ρ, we can walk from C1 to C2 in constant time using pointers.
For each point q we can locate the smallest cell in T that contains q in logarithmic time.

Marked-ancestor trees. Suppose we are given a tree T with nodes (cells in our case)
and a fixed simple directed path π over T (this path does not have to follow pre-existing
edges in the tree, it is just an arbitrary simple path through the cells in T) where some cell
in the path can be marked. In this model we want to support the following query for any
cell C: Which is the first marked cell which comes after cell C in the path?. We also want to
support updates where cells can be marked or unmarked and inserted into or deleted from
the path. This is known as the marked successor problem. This problem is solved in [1] with
the use of marked-ancestor trees. These trees support the marking and unmarking of cells
in the path in O(log(n)

log(log(n))) time. Each marked-ancestor tree with a path π in T allows for
what they call the firstmarked query:

I Definition 6. Given a connected path π in T , we can construct a marked-ancestor tree
over T such that for each cell C ∈ π, firstmarked(C, π, T) gives the first marked cell in π
starting from C.

The firstmarked query can be solved in O(log(n)
log(log(n))) time [1]. This paper will make

extensive use of the firstmarked query. The marked successor problem is a more generic
version of the marked-ancestor problem: “Given a cell C in a tree T , which is the first marked
node that is an ancestor of C in T?”. Observe that the marked-ancestor problem can be
solved with a firstmarked query, we call this a marked-ancestor query.

3 Intuition and key facets

Let B be a set of closed and bounded intervals in R1. The goal of this section is twofold:
we introduce a new concept called key facets and we use this new concept to introduce
a data structure that supports exact stabbing queries in B in logarithmic time and local
updates in sub-logarithmic time. The results in the remainder of this paper are already
known: this abstract is an adaption of the data structure and methods used in [3] so that it
works with key facets. However, this work contains the basic data structure that we use for
2m-approximate stabbing queries in Rd in the full version [2].

Assume that we have a quadtree T that stores B and that for any query point q we can
find the quadtree cell C ∈ T which contains q in logarithmic time. Then any region B that

EuroCG’18

59:4 Approximate stabbing queries with sub-logarithmic local replacement

contains q either covers C, or intersects C from the left or the right. Let R be the set of
all regions that have their center point to the right of C. Let B1 ∈ R be the region with
the left-most left endpoint of the regions in R. If any region in R contains q then B1 must
also contain q. We can symmetrically construct the set L. Because the ply is limited by k,
we only have to find the k left-most/right-most regions in R and L respectively to find all
regions that can contain q. As in [3] we find these regions in O(k log(n)

log(log(n))) time using two
marked-ancestor trees TL and TR and 2k marked-ancestor queries.

In [3] the authors obtained the marked-ancestor trees TL and TR by looking at which
cells contained the left-most and right-most endpoints of the regions B and by marking those
cells in TR and TL respectively. If we want to extend these results to Rd we must ask what
an equivalent structure would look like in higher dimensions: given q we need to identify a
constant number of directions and somehow find the k closest regions to q per direction. To
do this we introduce key facets.

If T is a quadtree in Rd then its cells are hypercubes in Rd. Each of these cells C have
3d − 1 d′-dimensional facets with d′ < d. Given T we intuitively define the key facet set Ξ
as the abstract notion of all these facets. For example: in R2 the set Ξ contains the abstract
notion of four vertices and four edges.

I Definition 7. Let K be a d-dimensional bounding box and P(K) be the infinite set of all
potential quadtree cells in K. We then define the key facet set Ξ as a set of maps (key
facets) χ :: P(K) → Rd where χ projects each cell C to the same d′-dimensional facet of
that cell. By the key facets of a cell C we mean the set Ξ(C) := {χ(C) | χ ∈ Ξ}.

Figure 2 A quadtree in R2, We can choose χ as
the general concept of the "top right vertex". This
Figure then contains a rotated quadtree T , and
the projection χ(T) as red dots.

Let χ ∈ Ξ be any key facet and let C ∈ T
be an arbitrary quadtree cell. Let p be the
center of C. If χ(C) is a point then the
half-line l through p and χ(C) is unique.
Otherwise let l be a half-line through p and
χ(C) perpendicular to χ(C). Observe that
for any cell C ∈ T , l has the same direction
and observe that we can therefore rotate
Rd such that l aligns with the x-axis. This
rotation allows us to create a partial order
on the cells in T for each χ ∈ Ξ by ordering
the cells on their lowest x-coordinate after
the rotation. Figure 2 shows this rotation
where the cells in the partial order are A <χ
B =χ C <χ D <χ E.

I Definition 8. Let T be an arbitrary
quadtree in Rd and χ ∈ Ξ be a key facet. We
then define a facet path πχ as any simple
path through T with two properties: the linear order of this path is an extension of the
partial ordering given by χ and if C1 =χ C2 but C2 ⊂ C1 then C1 is in the path before C2.

I Observation 1. In Rd there exists a facet path for each key facet. In R1 the facet path is
unique and it is the pre-order traversal of the quadtree in both directions.

I. Hoog v.d., M. Löffler 59:5

4 The solution in R1

Marked-ancestor trees together with key facets provide the tools we need to perform approx-
imate stabbing queries in Rd with sub-logarithmic local replacement. However the algorithm
and construction in Rd is beyond the scope of this paper. We instead introduce the data
structure for Rd and show that with this data structure we can perform exact stabbing
queries in R1 with the same time bounds as in [3] with sub-logarithmic local replacement.

Let the ply of B be bounded by k. In our data structure we maintain a quadtree T
that stores B as specified in the Preliminaries. Together with T we maintain k|Ξ| + 1
marked-ancestor trees over T as follows: for each χ ∈ Ξ we maintain k marked-ancestor trees
or levels denoted as a family of trees {T iχ}i≤k. In this family of trees each tree T iχ will get
the same facet path πχ. Apart from these k|Ξ| trees we maintain another marked-ancestor
tree denoted by T ∗. For each region B ∈ B, we mark all the cells C that B intersects in one
of the marked-ancestor trees. If B is stored in C, it marks C in T ∗. Else it marks C based
on the following condition:

I Condition 1. For any family of marked-ancestor trees {T iχ} apart from T ∗, a cell C is
marked by a region B in T iχ if:
1. χ(C) is the highest-dimensional key facet of C that B intersects and
2. i is the largest i such that there is a descendant Cd of C which is marked in T i−1

χ and B
intersects χ(Cd).

Stabbing queries in R1: With this marking condition we can use our marked-ancestor
trees to solve any exact stabbing query in logarithmic time. Given a point q, we find the
smallest cell C in T that contains q in logarithmic time. We then query each marked-ancestor
tree T iχ with the firstmarked query from C with the path πχ, this takes O(log(n)+k log(n)

log(log(n)))
time. In the remainder of this section we prove that the returned regions are the only regions
that can contain q ∈ R1.

I Lemma 9. Let C and Ca both be marked in T iχ in the same level i by a region B and Ba
respectively. Let χ be the map to rightmost point of each cell. If Ca is an ancestor of C then
the leftmost point of the region Ba must lie to the right of the leftmost point of the region B.
A symmetric property holds if χ is the rightmost point.

Proof. We prove this by contradiction: assume that the leftmost point of Ba lies to the left
of B. Then clearly all C ′ where B intersects χ(C ′) are also intersected by Ba and thus also
χ(C). If i < k then because χ(C) is intersected by Ba, Ba should have been stored in T i+1

χ

and not T iχ. If i = k then per definition, B intersects the key facet χ(Cd) of a descendant Cd
of C. Cd is therefore per definition marked in T iχ by a region Bd. By our earlier observation,
Ba must also intersect Bd in χ(Cd). We continue this argument all the way down to T 1

χ and
see that we violate a ply of k. J

I Lemma 10. Given a point q ∈ R1 contained in a cell C, if C has a lowest-marked ancestor
C1 marked in T iχ for any i, χ by an interval B1 then B1 is the only region marking an
ancestor of C in T iχ that can contain q.

Proof. Let T iχ be an arbitrary marked-ancestor tree in R1. Then χ is either the left-most or
right-most vertex of a cell. Assume that we have found the lowest marked ancestor of the
cell C in the marked-ancestor tree T iχ, the cell C1 marked by a region B1. Then B1 either
contains the query point q or does not. If B1 does not contain q then Lemma 9 demands
that any ancestor of C1 marked in T iχ is marked by a region that reaches less far than B1

EuroCG’18

59:6 Approximate stabbing queries with sub-logarithmic local replacement

does and so any other region marking an ancestor of C1 cannot reach q. If B1 does contain
q then any region marking a higher ancestor of C in T iχ that reaches q must also intersect
χ(C1) and should therefore have marked the ancestor in T i+1

χ or violate the ply of k. J

The result of this lemma is that in R1 with constant ply we can solve stabbing queries in
logarithmic time with a marked-ancestor query in each marked-ancestor tree (the lowest-
marked ancestor in T ∗ always contains q).

The level query in R1: Assume we want to replace a region B1 with a region B2
such that B1 and B2 are ρ-similar and that we have a finger to the cell C1 that stores B1.
Because B1 and B2 are ρ-similar we can use at most O(ρ) pointers to reach the cell C2 that
should store B2 (See preliminaries). What remains is to update the marked-ancestor trees in
sub-logarithmic time. For that we define the level query.

I Definition 11. A level query checks for a given region B, cell C that B intersects and a
family of marked-ancestor trees {T iχ} in which level i the region B marks C (if any).

In R1 the level query can be solved for each {T iχ} by just incrementally performing at most
k firstmarked queries with the unique facet path πχ. One can show that the result of that
query gives the unique region that could “force” B to mark C in a higher level.

The solution in Rd. We show in the full version [2] that in Rd the abstract level
query has a lower bound of logarithmic time. This version also contains a more elaborate
description of the data structure required to store and approximately query regions in Rd.
Specifically we introduce an extension of the marking Condition 1 and show how to perform
2m-approximate stabbing queries and local replacements with the query times as specified in
Theorem 5.

In this version and the full version we have demonstrated how the concept of key facets
can give information about the closest regions that lie in a certain direction from a query
point q. Given the cell that contains the query point, we can even provide this information
in sub-logarithmic time. A future research direction could be to see if we can use key facets
and marked-ancestor queries for sub-logarithmic visibility queries.

Acknowledgements. The authors would like to thank Elena Khramtcova for inspiring
discussion of the problem. I.H. and M.L. were partially supported by the Netherlands
Organisation for Scientific Research (NWO) through project no 614.001.504.

References
1 Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked ancestor problems. In Found-

ations of Computer Science, 1998. Proceedings. 39th Annual Symposium on, pages 534–543.
IEEE, 1998.

2 Ivor Hoog v.d. and Maarten Löffler. Approximate stabbing queries with sub-logarithmic
local replacement (full version). arXiv to appear.

3 Elena Khramtcova and Maarten Löffler. Dynamic stabbing queries with sub-logarithmic
local updates for overlapping intervals: Proc. 12th international computer science sym-
posium in russia. Computer Science–Theory and Applications, 10304, 2017.

4 Maarten Löffler, Joseph A. Simons, and Darren Strash. Dynamic planar point location
with sub-logarithmic local updates. In 13th Int. Symp. Algorithms and Data Structures
(WADS), pages 499–511. Springer Berlin Heidelberg, 2013. full version: arXiv preprint
arXiv:1204.4714.

5 Yakov Nekrich. Data structures with local update operations. Algorithm Theory–SWAT
2008, pages 138–147, 2008.

	Introduction
	Problem definition

	Preliminaries
	Intuition and key facets
	The solution in R1

