
A Polynomial Algorithm for Balanced Clustering
via Graph Partitioning∗

Luis Evaristo Caraballo†1, José-Miguel Díaz-Báñez1, and Nadine
Kroher1

1 Department of Applied Mathematics II, University of Seville
{lcaraballo,dbanez,nkroher}@us.es

Abstract
The objective of clustering is to discover natural groups in datasets and to identify geometrical
structures which might reside there, without assuming any prior knowledge on the characteristics
of the data.The problem can be seen as detecting the inherent separations between groups of a
given point set in a metric space governed by a similarity function. The pairwise similarities
between all data objects form a weighted graph adjacency matrix which contains all necessary
information for the clustering process, which can consequently be formulated as a graph partition-
ing problem. In this context, we propose a new cluster quality measure which uses the maximum
spanning tree and allows to compute the optimal clustering under the min-max principle in
polynomial time. Our algorithm can be applied when a load-balanced clustering is required.

1 Introduction

The objective of clustering is to divide a given dataset into groups of similar objects in
an unsupervised manner. Clustering techniques find frequent application in various areas,
including computational biology, computer vision, data mining, gene expression analysis,
text mining, social network analysis, VLSI design, and web indexing, to name just a few.
Commonly, a metric is used to compute pair-wise similarities between all items and the
clustering task is formulated as a graph partitioning problem, where a complete graph is
generated from the similarity matrix. In fact, many graph-theoretical methods have been
developed in the context of detecting and describing inherent cluster structures in arbitrary
point sets using a distance function [2].

Here, we propose a novel clustering algorithm based on a quality measure that uses the
maximum spanning tree of the underlying weighted graph and addresses a balanced grouping
with the min-max principle. More specifically, we aim to detect clusters which are balanced
with respect to their ratio of intra-cluster variance to their distance to other data instances.
In other words, we allow clusters with weaker inner edges to be formed, if they are located
at large distance of other clusters (Figure 1). We prove that an optimal clustering under this
measure can be computed in polynomial time using dynamic programming.

Such cluster properties are typically desired when grouping sensors in Wireless Sensor
Networks [1] and multi-robot task allocation in Cooperative Robotics where the goal is to
allocate tasks to cooperative robots while minimizing costs [5]. Another application area
arises from the field of Music Information Retrieval, where several applications rely on the

∗ This research has received funding from the projects COFLA2 (Junta de Andalucía, P12-TIC-1362) and
GALGO (Spanish Ministry of Economy and Competitiveness and MTM2016-76272-R AEI/FEDER,UE)
and from the European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 734922. The problems studied here were introduced and partially
solved during a visit to Havana University, Cuba in October 2016.

† L.E. Caraballo is supported by the Spanish Government under the FPU grant agreement FPU14/04705.

34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

58:2 A Polynomial Algorithm for Balanced Clustering via Graph Partitioning

C1 C2

C3

C4
C5

Figure 1 Illustration of the desired cluster properties: The ratios of inner variance to distance to
other clusters is balanced among groups. Clusters C1 and C5 exhibit a higher variance but are also
further apart from the other clusters.

unsupervised discovery of similar (but not identical) melodies or melodic fragments. In this
context, clustering methods can be used to explore large music collections with respect to
melodic similarity, or to detect repeated melodic patterns within a composition [4].

2 Problem statement

Let V = {v1, v2, . . . , vn} be a set of points or nodes in a metric space and suppose that there
exists a function to estimate the similarity between two nodes. Let A be the matrix holding
similarity values computed for every pair of elements in V . The value A[i, j] is the similarity
between the nodes vi and vj . If A[i, j] > A[i, l] then the node vi is more similar to vj than
to vl. Our goal is to create groups such that similar nodes are located in the same cluster
and dissimilar nodes are in separate clusters.

Let G = (V,E,w) be a weighted and undirected graph induced by A. In this paper, such
graphs are simply referred to as “graph”. E is the set of edges and contains an edge for every
unordered pair of nodes, and w is a weight function w : E −→ (0, 1) such that w(e) is the
similarity between the nodes connected by e (i.e. if e = {vi, vj}, then w(e) = A[i, j]).

Let C ⊆ V be a cluster. The outgoing edge set of C, denoted by Out(C), is the set of
edges connecting C with V \ C. Let MST (C) be the maximum spanning tree of C. Let
max(Out(C)) and min(MST (C)) be the weights of the heaviest and lightest edges of Out(C)
and MST (C), respectively. We define the following function Φ(C) as the quality measure of
a cluster C:

Φ(C) =


0 if C = V,

max(Out(C)) if |C| = 1,
max(Out(C))
min(MST (C)) otherwise

Note that higher values of Φ(·) correspond to worse clusters. Let Π = {C1 . . . , Ck}
be a k-clustering (clustering formed by k clusters) of G. To evaluate the quality of Π we
use the quality of the worst cluster, Φ(Π) = kmax

i=1
{Φ(Ci)}. Denoting the set of all possible

k-clusterings on G by P(k,G), we state the following optimization problems:

I Problem 2.1.
min Φ(Π) subject to: Π ∈ P(k,G).

When the value of k is unknown, the problem can be stated as follows:

I Problem 2.2.

min Φ(Π) subject to: Π ∈
n⋃
k=2
P(k,G).

L. E. Caraballo, J.-M. Díaz-Báñez and N. Kroher 58:3

3 Properties of the optimal clustering

Note that the problems stated above can be generalized to connected (not necessarily
complete) graphs, by simply setting P(k,G) as the set of all the possible partitions of G in
k connected components. In this extended abstract most of the proofs are omitted. A full
version of the paper can be found in [3].

I Lemma 3.1. Let G be a graph and let Π∗ be an optimal clustering of G for Problem 2.1
in P(k,G). Then, Φ(Π∗) ≤ 1.

I Lemma 3.2. Let G be a graph and let Π∗ be an optimal clustering of G for Problem 2.1.
Let C be a cluster in Π∗. If |C| > 1, then every bipartition of C has a crossing edge in a
maximum spanning tree of G.

I Theorem 3.3. Let G be a graph and let Π∗ ∈ P(k,G) be an optimal clustering of G for
Problem 2.1. For every cluster C ∈ Π∗, the maximum spanning tree of C is a subtree of a
maximum spanning tree of G and the heaviest outgoing edge of C is in a maximum spanning
tree of G.

Proof. (Sketch) Let C be a cluster of Π∗. If |C| = 1 then, obviously, MST (C) ⊂MST (G).
If |C| > 1 then MST (C) ⊆ MST (G) by Lemma 3.2. The second part of the theorem,
claiming that the heaviest edge in Out(C) is in MST (G), is deduced from the properties of
the MST. J

I Corollary 3.4. Let G be a graph and let Π∗ ∈
⋃n
k=2 P(k,G) be an optimal clustering of G

for Problem 2.2. For every cluster C ∈ Π∗, the maximum spanning tree of C is a subtree of
a maximum spanning tree of G and the heaviest outgoing edge of C is in a MST (G).

We introduce the following notion: Let T be a spanning tree of a graph G. Let Π ∈ P(k,T)
be a clustering of T . The evaluation function ΦT (Π) operates as usual, but it is restricted
to the set of edges forming T . Therefore, the optimal solution for Problem 2.1 on T is
Π† ∈ P(k,T) such that ΦT (Π†) ≤ ΦT (Π) for every other clustering Π ∈ P(k,T).

I Theorem 3.5. Let G be a graph and let T be a maximum spanning tree of G. If
Π∗ ∈ P(k,G) and Π† ∈ P(k,T) are the optimal clusterings for Problem 2.1 on G and
T , respectively; then Φ(Π∗) = ΦT (Π†).

I Corollary 3.6. Let G be a graph and let T be a maximum spanning tree of G. If Π∗ ∈⋃n
k=2 P(k,G) and Π† ∈

⋃n
k=2 P(k,T) are the optimal clusterings for Problem 2.2 on G and

T , respectively; then Φ(Π∗) = ΦT (Π†).

4 The algorithm

First, recall that Theorem 3.5 and Corollary 3.6 provide a nice property, which allows us
to reduce Problems 2.1 and 2.2 from a graph to its maximum spanning tree. Consequently,
given a similarity graph, we can operate on its maximum spanning tree T = (V,E,w). From
now on, we will use E to denote the set of edges in the maximum spanning tree. Observe
that every cluster C in T determines only one subtree of T . Then, using MST (C) to denote
the maximum spanning tree in C, may be confusing or redundant. Therefore, instead of
using MST (C) we will use E(C) (set of edges connecting nodes in C).

The proposed algorithm is based on dynamic programming. We show that the stated
problems have an optimal substructure which allows us to build the optimal solution in T

EuroCG’18

58:4 A Polynomial Algorithm for Balanced Clustering via Graph Partitioning

v

S ′

v′

v′′

(a)

v

S

(b)

v

S

g →

(c)

Figure 2 (a) A subtree S′ which is not considered. (b) A considered subtree S. (c) Representation
of a clustering Π of S. The head cluster is above the curve g. The edges of OutS(h(Π)) are the edges
in S stabbed by g. The clusters of Π that are below g constitute the headless clustering Π \ {h(Π)}.

from local solutions for subtrees of T . From here on, we consider that the tree T is rooted at
r ∈ V . Let p(v) be the parent of v and c(v) be the set of children of v. Given a tree T , let S
be a subtree of T and let v be the node with minimum depth in S. Then we say that S is
rooted at v. In the rest of this paper, we only consider subtrees S rooted at v that contain
all the descendants of vertices v′ ∈ S \ {v} (see Figures 2a and 2b). We say S = Tv if S
contains all the descendants of v.

The main idea of our algorithm is to operate on (local) clusterings of a subtree and
perform a bottom-up dynamic programming strategy with two basic operations:

UpToParent: knowing an optimal clustering of a subtree S = Tv such that Tv 6= T ,
compute an optimal clustering of the subtree S formed by adding p(v) to S.
AddChildTree: knowing an optimal clustering of a subtree S rooted at p(v), v /∈ S; and
knowing the optimal clustering of Q = Tv; compute an optimal clustering of the subtree
resultant of joining S and Q.

Now, we elaborate on a (local) clustering Π of a subtree S rooted at v. We call the cluster
containing the node v (root of the subtree) the head cluster of Π and we denote it h(Π) (see
Figure 2c). Let OutS(C) be the set of outgoing edges of C in S. In Figure 2c, OutS(h(Π))
is formed by the edges stabbed by the curve g.

Given a clustering Π of a subtree S, let M denote the weight of the heaviest edge in
OutS(h(Π)), that is, M = max(OutS(h(Π))). If h(Π) contains all the nodes in S then we
set M = 0. On the other hand, let µ denote the weight of the lightest edge in E(h(Π)), that
is µ = min(E(h(Π))). If h(Π) is formed by single node we set µ = 1. For convenience we
introduce the functions ΦS(·) and ΦS(·) as restricted quality measures of a cluster and a
clustering, respectively. They work as defined above, but are restricted to the edges of the
subtree S, thus:

ΦS(h(Π)) = M

µ
. (1)

Note that, if S = T , then ΦS(h(Π)) = Φ(h(Π)). If S = Tv 6= T , then: Φ(h(Π)) =
max{M,w({v,p(v)})}

µ . For every other cluster C ∈ Π, such that C is not the head cluster, the
usual evaluation and the restricted one have the same value, Φ(C) = ΦS(C). Consequently,
the restricted evaluation of the “headless” clustering Π \ {h(Π)} is:

ΦS(Π \ {h(Π)}) = Φ(Π \ {h(Π)}) = max { Φ(C) | C ∈ Π \ {h(Π)} } , (2)

and the restricted evaluation of the clustering Π is:

ΦS(Π) = max {ΦS(h(Π)), Φ(Π \ {h(Π)})} . (3)

L. E. Caraballo, J.-M. Díaz-Báñez and N. Kroher 58:5

Let S be a subtree of T , and let H(l,S , µ) denote the set of l-clustering of S in which µ
is the weight of the lightest edge in the head cluster. That is:

H(l,S , µ) = { Π | Π ∈ P(l,S) and µ = min(E(h(Π))) } .

Now we are ready to state an encoding of a local solution and the invariant that allows
us to apply dynamic programming:
I Notation 4.1. Suppose H(l,S , µ) is not empty, then a clustering Π in H(l,S , µ) is encoded
by the ordered pair OS(l, µ) = (M, b) if the following properties are fulfilled:

1. b = ΦS(Π) = min { ΦS(Π′) | Π′ ∈ H(l,S , µ)}, and

2. M = max(OutS(h(Π))) = min
{

max(OutS(h(Π′)))
∣∣∣∣ Π′ ∈ H(l,S , µ) and

ΦS(Π′) = b

}
.

If H(l,S , µ) is empty, then OS(l, µ) = (∞,∞), where ∞ indicates the “infinity” value.
We set OS(l, µ) as (∞,∞) if 1 < min { ΦS(Π) | Π ∈ H(l,S , µ) }. Then, given a subtree

S, OS(·, ·) is a function whose domain is N[1,k]× (w(E)∪{1}) and image {(∞,∞)}∪ (w(E)∪
{0})×R[0,1] where w(E) = { w(e) | e ∈ E }. If OS(l, µ) = (M, b) 6= (∞,∞), then, by using
equations (1), (2) and (3), we obtain that OS(l, µ) encodes a clustering Π (not necessarily
unique) where:

ΦS(Π) = b = max
{
M

µ
,Φ(Π \ {h(Π)})

}
. (4)

For the sake of simplicity, we use the following notation for OS(l, µ) = (M, b): OS(l, µ)[1] =
M and OS(l, µ)[2] = b. Note that if we have the function OT then the evaluation of the
optimal clusterings for Problems 2.1 and 2.2 are min { OT (k, µ)[2] | µ ∈ w(E) ∪ {1} } , and
min

{
OT (k, µ)[2] | k ∈ N[2,n] and µ ∈ w(E) ∪ {1}

}
, respectively.

I Lemma 4.2. Let S be a subtree rooted at v. Let Π and Π′ be two different cluster-
ings of S such that min(E(h(Π))) = min(E(h(Π′))) = µ. If ΦS(Π) < ΦS(Π′) ≤ 1 then
max(OutS(h(Π))) ≤ max(OutS(h(Π′))).

I Corollary 4.3. Let S be a subtree. For a given value OS(l, µ) = (M, b) 6= (∞,∞), every
l-clustering Π ∈ H(l,S , µ) fulfills that: ΦS(Π) ≥ b, and max(OutS(h(Π))) ≥M .

The following lemma is the key of the proposed dynamic programming:

I Lemma 4.4. Let S be a subtree rooted at v. Let OS(l, µ) = (M, b) 6= (∞,∞) and let Π be an
l-clustering of S encoded by OS(l, µ). Let Q be a subtree of S rooted at v′ ∈ c(v). By removing
the edge e = {v′, v} from S, an l′-clustering A of Q is induced. Let µ′ = min(E(h(A))).
By replacing A with a clustering B encoded by OQ(l′, µ′) and restoring the edge e, a new
clustering Π′ of S is obtained, which is also encoded as OS(l, µ) = (M, b) (Figure 3 depicts
the case when e connects nodes in different clusters).

Using above properties, the recurrence formulas for dynamic programming can be estab-
lished. Let us mention here one of them, which corresponds to one case in the proof of the
Theorem 4.5 (UpToParent operation). Let ω = w({v, p(v)}). For µ = 1 we can prove that:

OS(l, 1) =
(
ω,min

µ′

{
max

{
ω,OS(l − 1, µ′)[2], max{ω,OS(l − 1, µ′)[1]}

µ′

}})
.

I Theorem 4.5 (UpToParent operation). Let S = Tv such that Tv 6= T , and let S be the
subtree formed by adding p(v) to S. If we know the function OS, then the function OS can
be computed in O(kn).

EuroCG’18

58:6 A Polynomial Algorithm for Balanced Clustering via Graph Partitioning

v Π

v′

(a)

v

A
v′

(b)

v

B
v′

(c)

v Π′

v′

(d)

Figure 3 Removing the edge e = {v, v′} when e connects nodes in different clusters. (a) Initial
situation. (b) Induced clustering A when e is removed. (c) Replacing A with another clustering B.
(d) Restoring the edge e and obtaining a new clustering Π′.

Finally, for the second operation we have:

I Theorem 4.6 (AddChildTree operation). Let Q = Tv such that Tv 6= T , and let S be a
subtree rooted at p(v) such that v is not in S. Let P denote the subtree formed by joining
S and Q. If we know the functions OS and OQ, then the function OP can be computed in
O(k2n2).

4.1 Complexity of the algorithm
Given a tree T and a value k we can calculate OT by computing OTv for every node v in
T in a bottom-up (from the leaves to the root) procedure using the mentioned operations.
Note that, if v is leaf, then OTv

(1, 1) = (0, 0) and OTv
(l, µ) = (∞,∞) if l > 1 or µ < 1.

To compute the function OTv of an inner node v, we proceed as follows: Let {v1, . . . , vm}
be the set of children of v. First, considering S = Tv1 , compute OS from OS using the
UpToParent operation. Subsequently, we proceed with joining the subtrees Tvi one by one
using the AddChildTree operation. When all the children have been added, the resultant
subtree corresponds to Tv. Note that we apply a single operation per edge. Consequently,
this algorithm takes O(k2n3) time. Note, that with this algorithm, we obtain the evaluation
of the optimal clustering; the clusters of an optimal solution can be computed “navigating
backwards” through the computed functions.

Problem 2.2 can be solved using the same idea with a slightly more complex approach.
We can use a similar algorithm based on functions OS(µ), saving the parameter l, (which
corresponds to the number of clusters) and then the spent time is O

(
n3) time.

References
1 I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks:

a survey. Computer networks, 38(4):393–422, 2002.
2 T. Asano, B. Bhattacharya, M. Keil, and F. Yao. Clustering algorithms based on mini-

mum and maximum spanning trees. In Proceedings of the fourth annual symposium on
Computational geometry, 1988.

3 L. E. Caraballo, J. M. Díaz-Báñez, and N. Kroher. A Polynomial Algorithm for Balanced
Clustering via Graph Partitioning. arXiv:1801.03347, 2018.

4 N. Kroher, J.-M. Díaz-Báñez, and A. Pikrakis. Discovery of repeated melodic phrases in
folk singing recordings. IEEE Transactions on Multimedia, 2017.

5 A. Ollero and I. Maza. Multiple heterogeneous unmanned aerial vehicles. Springer Publish-
ing Company, Incorporated, 2007.

	Introduction
	Problem statement
	Properties of the optimal clustering
	The algorithm
	Complexity of the algorithm

