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Abstract
In this paper we study the problem of L(2, 1)-labeling of intersection graphs of disks. An L(2, 1)-
labeling is a mapping from the vertex set of the graph to non-negative integers, in which labels
assigned to adjacent vertices differ by at least 2, and labels assigned to vertices at distance 2
are different. The span of an L(2, 1)-labeling is the difference between the maximum and the
minimum label used, and the span λ(G) of a graph G is the minimum span of an L(2, 1)-labeling
of G. We show that if G is an intersection graph of disks, then λ(G) ≤ 4

5 ∆(G)2 + 25∆(G) + 22,
where ∆(G) denotes the maximum degree in graph G.

1 Introduction

Problems arising in frequency assignment in radio networks gave raise to many interesting
graph-theoretical questions, especially concerning various variants of graph coloring. Notable
and well-studied members of a big family of such problems are channel assignment prob-
lem [14], T -coloring [19], distance-constrained labeling [9, 14, 19], and L(p, q)-labeling [8, 2].
They are interesting for their potential applications [23], and purely theoretical properties.

In this paper, we consider one of such problems, i.e. the L(2, 1)-labeling problem. It
asks for a vertex labeling with non-negative integers, in which adjacent vertices get labels
that differ by at least two, and vertices at distance two get different labels. The chromatic
parameter related to this problem is the L(2, 1)-span of a graph G, denoted by λ(G), which
is the minimum possible difference between the largest and the smallest label used by an
L(2, 1)-labeling of G. Griggs and Yeh [8] showed that for every G it holds that λ(G) ≤
∆(G)2 + 2∆(G), where ∆(G) denotes the maximum vertex degree in G. Moreover, they
conjectured that λ(G) ≤ ∆(G)2 for every graph G with ∆(G) ≥ 2. This conjecture attracted
a considerable attention and upper bounds were successfully improved, e.g. Gonçalves [6]
showed an algorithm finding and L(2, 1)-labeling of any graph with ∆(G) ≥ 3, whose span
is at most ∆(G)2 + ∆(G) − 2. Using a non-constructive method, Havet et al. [10] settled
the “delta-square conjecture” in affirmative for graphs with ∆(G) ≥ 1069. For graphs with
smaller maximum degree the problem remains open. Another open direction is finding a
constructive proof of the conjecture.

What makes the delta-square conjecture even more interesting is the fact that we know
only two graphs G, which satisfy the equality λ(G) = ∆(G)2: they are the Petersen graph
and the Singleton-Hoffman graph. Recently Lu [15] presented an infinite family of graphs
G with λ(G) = ∆(G)2 −∆(G) + 1, which is the largest value for any known infinite family.

Besides the results for general graphs, also restricted graph classes received a considerable
attention. For example it is known that λ(G) ≤ ∆(G)+2 if G is a tree [8], λ(G) ≤ 2∆(G)+23
if G is planar [22], and λ(G) ≤ d−2

d−1 ∆(G)2 +2∆(G), if G is K1,d-free [20]. We refer the reader
to the survey by Calamoneri [2] for more information about L(2, 1)-labeling and related
problems.
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In this paper we focus on the class of intersection graphs of disks in the Euclidean plane
called disk graphs or DG in short. This class with its subclass where all disks are required
to have equal diameter (shortly denoted as UDG) are among the most extensively studied
classes of geometric intersection graphs, both from the combinatorial and the algorithmic
point of view [3, 5, 7, 18]. They are also especially interesting and natural in the context of
L(2, 1)-labeling, since they are the simplest class used for modeling radio networks [16, 17,
23]. Since unit disk graphs areK1,6-free (see Fig.1), the bound by Shao et al. [20] implies that

Figure 1 A maximal independent
set in the neighborhood of a vertex of
UDG. (Points represent the centers of
the disks. Disks with centers in each re-
gion form a clique. For any point we
can rotate the partition so that it is on
the boundary of two regions, and then
we can only add 4 other points to the
independent set.)

λ(G) ≤ 4
5 ∆(G)2 + 2∆(G). Fiala et al. [4] consid-

ered offline and online algorithms for L(2, 1)-labeling
of disk and unit disk graphs. Among other re-
sults, they have shown that λ(G) ≤ 18ω(G) for
G ∈ UDG, where ω(G) denotes the cardinality of
the largest clique in G. This clearly implies that
λ(G) ≤ 18∆(G) + 18 for such graphs.

In this paper we continue the line of research
started by Fiala et al. [4], Shao et al. [20] and
Junosza-Szaniawski et al. [12]. We solve the delta-
square conjecture for disk graphs with maximum de-
gree at least 126, by proving the following theorem.

I Theorem 1.1. For any disk graph G with max-
imum degree ∆(G) we have λ(G) ≤ 4

5 ∆(G)2 +
25∆(G) + 22.

To the best of our knowledge, this is the first non-
trivial upper bound for λ(G) ifG is a disk intersection graph, without any further assumption
on the radii of the disk in a geometric representation.

Throughout the paper, we assume that the input disk intersection graph is given along
with its geometric representation. Note that this assumption is important, as the problems
of recognizing unit disk graphs [1] and disk graphs [11] are NP-hard. Actually, the problem
of recognizing unit disk graphs is known to be ∃R-complete [13], which is a strong evidence
that it may not even be in NP.

2 Preliminaries

For a graph G = (V,E), by ∆(G) and ω(G) we denote, respectively, the maximum degree
and the size of the maximum clique in G. By Ḡ we denote the complement of G, i.e. a
graph with the vertex set V and the edge set

(
V
2
)
\ E. For vertices u, v of G, by dG(u, v)

we denote the number of edges on the shortest u-v–path in G (i.e., the distance between u
and v in the graph G). By N(v) we denote the neighborhood of the vertex v, i.e. the set of
vertices u with dG(u, v) = 1. By N2(v) we denote the set of vertices u with dG(u, v) = 2.

A function c : V → N0 is called an L(2, 1)-labeling of G = (V,E), if
1. |c(v)− c(w)| ≥ 1 for all v, w ∈ V such that dG(u,w) = 2,
2. |c(v)− c(w)| ≥ 2 for all v, w ∈ V such that dG(v, w) = 1.
A span of an L(2, 1)-labeling c of G is the difference between the maximum and the minimum
label used by c (note that some labels may not be used at all). An L(2, 1)-span of G, denoted
by λ(G), is the minimum possible span in an L(2, 1)-labeling of G. Note that the number
of labels that might be used in an L(2, 1)-labeling with the minimum span is λ(G) + 1.

For u, v ∈ R2 , by dist(v, u) we denote the euclidean distance between u and v. For r ∈ R
and v ∈ R2 by D(v, r) we denote the set {p ∈ R2 : dist(v, p) ≤ r}, i.e., the disk with a center
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in v and the radius r. For a set D = {D1, D2, . . . , Dn} of disks in the plane, we define their
intersection graph G = (V,E), whose vertex set is {v1, v2, . . . , vn}, and the vertices vivj are
adjacent if and only if Di ∩Dj 6= ∅. We will often identify the vertices of G with the centers
of the disks in D. Notice that vivj ∈ E if and only if dist(vi, vj) is at most the sum of the
radii of Di and Dj .

For such a graph G, the set D is called geometric representation by intersection disks,
or a representation in short. A graph G is called a disk intersection graph, or a disk graph
in short, if it has a geometric representation by intersecting disks. If a graph G admits a
geometric representation, where all disks have the same radius, we say that G is a unit disk
intersection graph, or unit disk graph. The classes of disks intersection graphs and unit disks
intersection graphs are denoted by DG and UDG, respectively.

We will also use the celebrated Turán Theorem.

I Theorem 2.1 (Turán [21]). For integers d ≥ p, every Kp-free graph with d vertices has at
most p−2

p−1
d2

2 edges.

3 General disk intersection graphs

In this section we prove Theorem 1.1. Consider a disk graph G = (V,E) along with its
geometric representation by the collection of intersecting disks D = {D1, D2, . . . , Dn}. Let
vi be the center and ri be the radius of Di. We will identify points v1, v2, . . . , vn with the
corresponding vertices of G. Moreover, we assume that disks are ordered by non-increasing
radius, i.e. r1 ≥ r2 ≥ . . . ≥ rn.

Consider any vertex vi ∈ V . We start with defining two special types of vertices inN2(vi).
We say that vj is an LL-neighbor of vi, or, equivalently, vj ∈ N2

LL(vi), if vj ∈ N2(vi), rj ≥ ri

and there exists a disk Dk intersecting both Di and Dj such that rk ≥ ri (“LL” stands for
Large-Large, as both Dj and Dk are larger than Di). Analogously, we say that vj is an
SL-neighbor of vi, or vj ∈ N2

SL(vi), if vj ∈ N2(vi), vj is not an LL-neighbor of vi, rj ≥ ri,
and there exists a disk Dk intersecting both Di and Dj such that rk < ri (here “SL” stands
for Small-Large, as Dk is smaller than Di and Dj is larger than Di).

Now we want to bound the cardinalities of N2
SL(vi) (in Lemma 3.1) and N2

LL(vi) (in
Lemma 3.2) of each vertex vi of G.

I Lemma 3.1. |N2
SL(vi)| ≤ 22ω(G), for any vertex vi in a disk graph G.

Proof. Let vj ∈ N2
SL(vi). Since Di and Dj do not intersect, we have dist(vi, vj) > ri + rj ≥

2ri. On the other hand there exists a disk Dk intersecting both Di and Dj , such that rk ≤ ri.
Thus we obtain

dist(vi, vj) ≤dist(vi, vk) + dist(vk, vj) ≤ (ri + rk) + (rk + rj)
≤ri + 2rk + rj ≤ 3ri + rj . (?)

We partition R2−D(vi, 2ri) into 22 regions, which will form cliques, in the following manner.
First we divide R2 − D(vi, 2ri) by a circle with the center in vi and radius 2t · ri, where
t = 1√

2−
√

2
≈ 1.3. Then we partition the ring D(vi, 2tri) − D(vi, 2ri) into 8 congruent

bounded regions, and R2 − D(vi, 2tri) into 14 congruent unbounded regions, as presented
on Figure 2. In the remainder of the proof, we will show that disks with the radius at least
ri, whose centers lie inside one region, form a clique. Clearly this will imply the lemma. It
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Figure 2 Partition of R2 −D(vi, 2ri) into 22 regions: R1, R2, . . . , R22, (t = 1√
2−
√

2
).

is straightforward to verify that the diameter of each bounded region is at most

diam = max
{

2ri

√(
t cos π4 − 1

)2
+
(
t sin π4

)2
, 2ti

√(
t cos π4 − t

)2
+
(
t sin π4

)2
}

= max
{

2ri

√
t2 − t

√
2 + 1, 2ri

√
(2−

√
2)t2

}
.

Since t = 1√
2−
√

2
, we obtain diam = max

{
2ri

√
1

2−
√

2 −
√

2√
2−
√

2
+ 1, 2ri

}
= 2ri. Thus any

two disks with centers in one bounded region and radii at least ri must intersect.
Now consider two disks Dp, Dq, whose centers lie in an unbounded region and vp, vq ∈

N2
SL(vi). We consider three cases. First, suppose that both vp and vq are at distance at

most 4ri from vi. Then the distance between vp and vq is at most

max
{

2ri

√
(2 cos π7 − t)

2 + (2 sin π7 )2, 2ri

√
(2 cos π7 − 2)2 + (2 sin π7 )2

}
< 2ri.

Since rp, rq ≥ ri, we know that rp + rq ≥ 2ri, and thus Dp and Dq intersect.
Now consider the second case where vp is at distance at most 4ri from vi, but the

distance between vq and vi is greater than 4ri (see Figure 3). Let Q be the intersection
point of the line containing points vi and vq, and the circle with radius 4ri, centered at vi.
Let DQ := D(Q, rq − dist(Q, vq)) be the disk with the center Q, contained in and tangent
to Dq. Notice that the radius of DQ is at least ri (since, by (?), we obtain rq−dist(Q, vq) ≥
dist(vi, vq)− 3ri−dist(Q, vq) = dist(vi, Q)− 3ri = 4ri− 3ri = ri). Hence, from the previous
case, we know that DQ and Dp intersect. Since DQ ⊆ Dq, disks Dq and Dp also intersect.

For the last case, suppose that vp and vq both at distance greater than 4ri from vi. As
in the previous case we define the disk DQ ⊆ Dq and analogously DP ⊆ Dp. The radii of
both DQ and DP are at least ri, so the disks intersect. Consequently Dq and Dp intersect.

J

Now we consider the cardinality of N2
LL(vi).
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vp

vqQ

vi

Figure 3 Case 2. Location of the point Q.

I Lemma 3.2. |N2
LL(vi)| ≤ 4

5 ∆(G)2, for any vertex vi in a disk graph G.

Proof. Let vi be a vertex of graph G. Let H be a graph induced by the neighbors of vi

corresponding to disks with radius at least ri. We define ∆ := ∆(G) and d := |V (H)| ≤ ∆.
Notice that vi cannot have 6 independent neighbors - recall the argument showing that UDG
are K1,6-free. Thus the graph H is K6-free, and hence H is K6-free. By Theorem 2.1, the
maximum number of edges in H is 4

5
d2

2 . Therefore the number of edges in H is at least(
d
2
)
− 4

5
d2

2 = d2

10 −
d
2 .

The obvious upper bound on the number of all possible vertices in N2
LL(vi) is d(∆− 1).

Each edge in H reduces this number by two. Thus we obtain the following upper bound on
|N2

LL(vi)|:

d(∆− 1)− 2
(
d2

10 −
d

2

)
= d∆− d2

5 .

One can easily verify this expression is maximized for d = ∆. Hence |N2
LL(vi)| ≤ 4

5 ∆2. J

Now Theorem 1.1 is an easy consequence of Lemmas 3.1 and 3.2.
Proof of Theorem 1.1. Consider a greedy algorithm labeling vertices of G, ordered by non-
increasing radii of disks in the geometric representation. Let vi be a vertex of G and let
V ′ = {v1, v2, . . . , vi−1} be the set of vertices that are already labeled. We will compute
the maximum possible number of labels that cannot be used to label a vertex vi. Each
neighbor of vi that belongs to V ′ blocks at most 3 labels, which gives at most 3∆(G) labels
in total. Each vertex in V ′ ∩ N2(vi) blocks 1 label. Recall that we can partition the set
V ′ ∩ N2(vi) into two subsets – N2

SL(vi) and N2
LL(vi). By Lemma 3.1, N2

SL(vi) blocks at
most 22ω(G) ≤ 22(∆(G) + 1) labels in total. By Lemma 3.2, N2

LL(vi) blocks at most
4
5 ∆(G)2 labels in total. Hence the number of labels that cannot be used for vi is at most
4
5 ∆(G)2 + 25∆(G) + 22. J

4 Conclusion

A very natural question to ask is whether the upper bounds presented in this paper are
tight. It is interesting to look for non-trivial constructions of families of (unit) disk graphs
with large L(2, 1)-span, compared to their maximum degree. It is even more interesting,
since very little is known about the topic. To the best of our knowledge the largest lower
bound is equal to 2∆(G) and is obtained by a 2k-th power of a cycle of length 4k+ 1, so by
the unit disk graph. Clearly this bound is very far from the known upper bounds. It is also
very interesting if we can actually force a quadratic span in general disk intersection graphs.
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