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Abstract
A known geometrical problem is to find low density zones (voids) in planar point sets and to
represent them as polygons. In this paper we recall the concept of terminal-edge region to identify
subvoid candidates over a triangulation, present a linear algorithm to find subvoids taking as input
a Delaunay triangulation, and show that this new strategy can be naturally parallelized using
GPU computing. We also show preliminary experimental results.

1 Introduction

A real geometrical problem is to find underdense zones in planar point sets and represent
their shapes by polygons. This problem is particularly relevant in astronomy, where the
regions almost empty of bright galaxies are known as cosmological voids. In computational
geometry, a similar and well studied problem is to find large convex holes in a planar point
set P. A convex hole is represented by a convex polygon that contains no point of P in its
interior. The key question is the expected size (number of vertices) of the existent convex
polygons [2, 8]. Convex polygons solutions would not generally apply to the problem in
astronomy, where the cosmological voids are usually not convex and may contain a few
galaxies in its interior. The computation of the α-shape of a set of points [3], which is a
generalization of the convex hull of it can also be seen as a related problem. The original goal
of the α-shape algorithm is to represent the shape of the set of points and not to compute
the empty spaces inside the convex hull of the point set but it has been also used to study
the topology of the cosmic web [11].
In the last years, a new algorithm was developed to detect and build polygons representing
underdense regions or voids on a planar point set [1, 4]. The algorithm starts from terminal-
edges (local longest-edges) in a Delaunay triangulation and builds the largest possible low
density terminal-edge regions around them. A terminal-edge region can represent either an
entire void or part of a void (subvoid). The algorithm is divided in two main steps: (1)
Building subvoids and (2) Joining subvoids. In the first step, each triangle is attached to
the terminal-edge region (a triangle set) it belongs to. In the second step, fragmented voids,
represented by several terminal-edge regions, are joined to build whole voids. Each void is
described by a polygon defined by the edges which appear only once in the region.
In this paper, we (a) summarize the foundations of the Building subvoids step introduced
in [1], (b) present the design of a linear algorithm to find terminal-edge regions starting from
a Delaunay triangulation, and (c) show that this new solution can be naturally parallelized
using GPU computing. We also show preliminary experimental results.

2 Problem Statement and Solution

In this section we summarize the concepts and some theoretical foundations of the algorithm
to find underdense regions (voids) published in [1]. These concepts are required to understand
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the new algorithm presented in § 3. It is worth to mention that a region whose interior
point density is lower than the background density is considered a void candidate. Each
application must define the corresponding threshold density value.

2.1 Main Approach
A Delaunay triangulation is geometric structure that allows one to find naturally the input
points (sites) that are (locally) close or far from each other. By definition, an edge is a
Delaunay edge, if there exists an empty circle that passes through its endpoints. If the
empty circles are large enough, they are candidates to be part of a void. That is why a
Delaunay triangulation (in time O(n logn)) over the input points is generated first and used
later as input to look for subvoids. As basic strategy, the algorithm described in [1] builds
empty regions around local longest-edges. Each two triangles that share "large enough" local
longest-edge will be part of a subvoid and so define the boundaries of initial empty polygons.
The question is now which other triangles should be added to these two initial triangles to
form a larger empty polygon. The strategy includes triangles that are adjacent to the two
initial triangles and that share their longest-edge with these two initial triangles. Then the
empty polygon will be now defined by the two initial triangles plus the neighbor triangles
that fulfill this criterion. This process is repeated for the newly added triangles until no
other triangle can be added. Notice that this criterion avoids going from a large empty
region to another large empty region trough a zone like a tunnel or a region with higher
point density [4].

2.2 Basic Definitions
Let T be a conforming triangulation of n points and m triangles. Let ti be a triangle,
i = 0, ...,m− 1. Each triangle has a unique longest-edge and a shortest-edge except for
isosceles and equilateral triangles. We assume that there are neither isosceles nor equilateral
triangles but if they would exist, the equal length edges are arbitrarily ordered. The terms
Longest-edge propagation path and terminal-edge were first introduced by Rivara in the
context of new algorithms for the refinement/improvement of triangulations [9]. In [1]
these terms are used to define and characterize the terminal-edge regions, that is, the subvoid
candidates. That is why they are also recalled here.

I Definition 2.1. Terminal-triangles and -edges [10]: Two triangles are called terminal
triangles if they share their longest-edge. This shared longest-edge is called terminal-edge.

I Definition 2.2. Longest-edge propagation path [10]: For any triangle t0 in any conforming
triangulation T , the Longest-Edge Propagation Path of t0 (Lepp(t0)) is the ordered list
of all the triangles t0 , t1, t2, ..., tl−1, tl, such that ti is the neighbor triangle of ti−1 by
the longest-edge of ti−1, for i = 1, 2, . . . , l. The longest-edge shared by tl−1 and tl is a
terminal-edge and tl−1 and tl are terminal-triangles.

I Definition 2.3. Boundary edge and boundary terminal-edge: The edges that belong to
only one triangle of a triangulation are called boundary edges. If a boundary edge is the
longest-edge of the triangle, it will be called boundary terminal-edge.

2.3 Algorithm Foundations
In this section we recall the definitions and theorems published in [1] required to understand
the new sequential algorithm proposed in § 3.1 and the parallel algorithm presented in § 3.2.
Theorem 2.9 was extended to show that terminal-edges regions cover the whole space.
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I Definition 2.4. Terminal-edge region: A terminal-edge region R is a region formed by
the union of all triangles ti such that Lepp(ti) has the same terminal-edge. In case the
terminal-edge is a boundary-edge the region will be called boundary terminal-edge region. As
illustration see Figure 1.

I Definition 2.5. Frontier-edge: A frontier-edge is an edge that is shared by two triangles,
each one belonging to a different terminal-edge region.

I Lemma 2.6. Let ti and tj be two triangles that share the edge e. If the edge e is a
frontier-edge, then e is neither the longest-edge of ti nor of tj.

Proof: See [1].
Note that the opposite is false. It is possible that two triangles ti, tj whose shared edge is
not the longest-edge of any of them and these two triangles belong to the same terminal-edge
region Ri. e is still a particular case frontier-edge in the sense that the region Ri can not
grow through it. Since e does not separate two different regions, it was called a barrier-edge.

I Definition 2.7. Barrier-edge: A barrier-edge of a region R is an edge shared by two
triangles of R which is not the longest-edge of any of them.

I Definition 2.8. Internal-edge: An internal-edge of a region R is an edge that is neither a
terminal-edge, a frontier-edge, a barrier-edge nor a boundary-edge.

I Theorem 2.9. Let T be a conforming triangulation of any set of points P and let CH be
the convex hull of P . Then T can be partitioned into a set of terminal-edge regions covering
the whole convex hull area as shown in Figure 1, and without overlapping.

Proof: In [1] was demonstrated that terminal-edge regions do not overlap, then we only need
to show that terminal-edge regions cover P. Let us assume that the triangulation T has n
triangles and m terminal-edges ei, i = 0, . . . ,m− 1. ei can also be a boundary terminal-edge.
By definition 2.4, each terminal-edge ei has associated a terminal-edge region Ri. Let assume
that there exists a triangle tj , j = 0, . . . , n− 1 which does not belong to any terminal-edge
region Ri, i = 0, . . . ,m − 1. By definition 2.2 each triangle tj has a Lepp(tj) and so an
associated terminal-edge e. Then tj must be included in the terminal-edge region associated
to e and this fact contradicts our assumption. �

3 The New Algorithm

The algorithms presented in this section decrease the computational cost of the Building
subvoids step published in [1]. The original algorithm sorts the triangles of the Delaunay
triangulation by their longest-edge, and so computes the terminal-edge regions associated to
the largest-terminal edges first. In this way, the Building subvoids step is done in O(n logn),
where n is the number of points. The new algorithm works over a graph representation
G = (V,E) of a triangulation [7] and builds the terminal-edge regions in O(n). In G each
node v ∈ V represents a triangle and E contains the adjacency relations. More specifically,
arc (u, v) ∈ E if and only if the triangles represented by the nodes u and v are adjacent in
the actual triangulation.

3.1 Sequential Algorithm
Algorithm 1 partitions the adjacency graph G = (V,E) into terminal-edge regions by removing
arcs of E associated with adjacencies between triangles sharing frontier-edges. The graph is
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divided into terminal-edge regions, each one a subvoid candidate. The regions are classified
into boundary subvoids or subvoids. Algorithm 2 uses a simple navigation strategy to
compute the area and to check if it is a boundary component or not. The Building subvoids
step is now in O(n).

Input: A adjacency graph G = (V,E) of the Delaunay triangulation
Input: A threshold_value

1 foreach v ∈ V do
2 Label the longest-edge in triangle related to v
3 foreach (u, v) ∈ E do
4 if the triangles related to u and v share a frontier edge then
5 E ← E \ {(u, v)}
6 foreach v ∈ V do
7 if v is not visited yet then
8 total_area, touches_border ← Visit(G, v)
9 if total_area ≥ threshold_value then

10 if touches_border then
11 Component type of v ← Boundary subvoid candidate
12 else
13 Component type of v ← Subvoid candidate
14 return G = (V,E)

Algorithm 1: Building subvoids algorithm

3.2 Parallel Algorithm

The sequential algorithm is naturally parallelizable on GPU because the computation of
terminal-edge regions can be partitioned into O(n) smaller tasks and solved by threads
per arc and threads per nodes using similar data structures as the ones described in [5,6].
Currently, the tasks per thread are O(1) except for the area computation (Algorithm 2),
which in the worst case is O(n). The steps of the kernels are:

1. Kernel Initialization
Create a thread per node v (triangle)
Each thread labels its triangle longest-edge
Each thread computes its triangle area

2. Kernel Generation of terminal-edge regions
Create a thread per arc e
Each thread eliminates arc e if the shared edge is a frontier-edge
Each thread labels the shared edge as terminal-edge if corresponds

3. Kernel Terminal-edge regions classification
Create a thread per terminal-edge region
Each thread computes the area of its terminal-edge region
Each thread labels its region as subvoid, boundary subvoid or null according to a
threshold value.
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Input: G = (V,E) the graph
Input: A node v ∈ V belonging to a terminal-edge region

1 Mark v as visited
2 total_area← Area of the triangle related to v
3 touches_border ← Triangle related to v is a boundary triangle
4 foreach (u, v) ∈ E do
5 if u is not visited yet then
6 u_total_area, u_touches_border ← visit(G, u)
7 total_area← total_area+ u_total_area
8 touches_border ← touches_border ∨ u_touches_border
9 return total_area,touches_border

Algorithm 2: The Visit subroutine

Figure 1 Terminal-edge regions in a Delaunay triangulation. The green edges are terminal-edges,
the light blue are internal edges and the black edges are frontier edges. At the left, each terminal-edge
region is delimited by the black edges, and at the right, the light blue regions are the ones with area
greater than a threshold value. These are subvoids candidates.

4 Empirical Evaluation

Figure 2 shows a comparison of the three implementations of the Building subvoids step.
The x-axis shows the number of points and the y-axis the classification time. The green line
represents the performance of the original solution written in Python [1], the blue line the
time of Algorithm 1 in § 3.1 and the red line, the performance of the parallel implementation
described in § 3.2. Both new implementations are written in C and Opencl.

5 Conclusions and Ongoing work

We have presented a new algorithm to find terminal-edge regions (subvoids candidates) in
planar points sets. This new strategy allowed us to propose sequential and parallel algorithms
which have a lower time complexity than the approach published in [1]. The parallel strategy
is still in the worst case O(n) due to the linear computation of each terminal-edge region
area, but this computation can also be improved by parallelizing inside each terminal-edge
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Figure 2 Performance comparison on a multicore architecture.

region. We also plan to compare our approach with prior work in related problems [11].
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