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Abstract
Given a set D = {d1, ..., dn} of imprecise points modeled as disks, the minimum diameter problem
is to locate a set P = {p1, ..., pn} of fixed points, where pi ∈ di, such that the furthest distance
between any pair of points in P is as small as possible. This introduces a tight lower bound on
the size of the diameter of any instance P . In this paper, we present a fully polynomial time
approximation scheme (FPTAS) for this problem that runs in O(n3ε−2) time, where the input is
a set of disjoint disks.

1 Introduction

One of the most extensively quantitative techniques used to deal with uncertainty of the
input is the Region-based model, where the input is a set R = {r1, r2, . . . , rn} of regions and
each region represents an imprecise point. In this model, the minimum diameter problem
was studied by Löffler and van Kreveld [1], who presented a PTAS in O(n3π/

√
ε) time, where

the uncertainty of the input was modeled by arbitrary disks. In the same paper, the authors
also presented an exact algorithm that runs in O(n logn) time and computes an upper bound
on the diameter (maximum diameter problem). Recently, a new approximation algorithm
was presented for this problem, where the uncertainty of the input is modeled by convex
objects in d-dimensional space [5]. The presented algorithm runs in O(2ε−d

ε−2dn3) time.
The minimum diameter problem is also studied in other models of uncertainty [2–4,6, 9].

Contribution. We formulate our problem as follows. We are given a set D ={
d1, d2, . . . , dn

}
of imprecise points modeled as disjoint disks; choose a set P = {p1, ..., pn}

of points, where pi ∈ di, such that the size of the diameter of P is as small as possible among
all choices for each pi.

As for the result, we present an FPTAS for this problem which runs in O(n3ε−2) time
(Section 3).

2 Preliminaries
αi

di−1

di+1
di

Figure 1 Critical sequence (gray
disks).

In terms of definitions and terminology, we will follow
Löffler and van Kreveld [1]. For a given set D ={
d1, d2, . . . , dn

}
of imprecise points modeled as disks,

an extreme disk di ∈ D has a line ` tangent to some
point on the boundary of di, where no other disk can have its interior completely on the
same side of di, unless it is tangent to `, as illustrated in Figure 1. The critical sequence ∆D

is the set of all extreme disks of D. Without loss of generality, suppose the elements of ∆D

are ordered clock-wise. The ordered set ∆D can be found in O(n logn) time [8].
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



55:2

In the minimum diameter problem it is possible that the diameter occurs at several pairs
at the same time, and many points are involved in the diameter, such that moving any of
them would increase the distance between at least one pair of them. This property makes
the problem difficult (see Figure 3(right)). In this situation, the diameter constructs a graph,
the star graph. A star graph G is defined as G = (P ∗, E), where P ∗ = {b1, ..., bm} (m ≤ n)
is a collection of points, such that bi ∈ di for some i, and all the elements of E have equal
length, which is the optimal diameter and denoted by d∗. Since this is the diameter, no two
points can be more than |d∗| away from each other. It follows that all the elements of E
must intersect each other, and the path makes an angle of at most 60◦ at each vertex. Thus
the degree of each vertex of G can be at most two, and each element of P ∗ (with degree 2)
is in balance between its neighbors, that is, it could move closer to one neighbor but only
by moving further from the other neighbor. Note that we can remove any vertex in this
graph that can come closer to some element without moving further from another element.
Also notice that all n points could be involved in such a construction, where none of the
points can be moved without increasing the diameter. The elements of P ∗ are called bends.
Indeed, computing the exact positions of the bends is a difficult problem. Any two adjacent
disks on ∆D introduce a common tangent line (see Figure 1). The extreme arc αi of an
extreme disk di is defined by two disks di−1 and di+1 that are neighbors of di on ∆D, such
that the endpoints of αi are the touching points of the common tangent lines, as illustrated
in Figure 1. Note that αi is the part of the boundary of disk di that must contain bi. Let ri
and ci denote the radius and the center of di, respectively. The distance from a point x on
disk di to a disk dj is the minimum distance between x and any point on dj . The distance
between two arcs αi and αj (resp. two disks di and dj) is the minimum distance from any
point on αi (resp. di) to any point on αj (resp. dj).

I Observation 2.1. For a given set D of n unit disks with n ≥ 3, the smallest diameter |d∗|
is at least 0.28 and for n ≥ 7, |d∗| ≥ 2.

The observation can be easily proved by considering Figure 2.

I Lemma 2.2. Let D = {d1, ..., dn} be a set of disjoint disks, and let |αi| denote the size
of the constructed angle where the two lines through the endpoints of the extreme arc αi of
extreme disk di meet the center. Then

∑n
i=1 |αi| = 2π.

d∗
d∗

π
3

Figure 2 (left) For n ≥ 3, |d∗| ≥ 0.28.
(right) For n ≥ 7, |d∗| ≥ 2.

Cherry disks. For any disk di that shares bend
bi on the star graph, there always exist two other
disks dj , dk ∈ ∆D with j 6= k, such that bend bi is in
balance between them, that is bi could move closer to
one of them but only by moving further from the other
one. We call dj and dk the cherry disks of di. An
example is illustrated in Figure 3. If a disk di ∈ ∆D

does not have two cherry disks, di cannot introduce
a bend on the star graph. It is an interesting open
question to compute all the possible cherry disks efficiently, since then the minimum diameter
problem can be formulated as a second order cone program, and its optimal solution can be
computed in quadratic time [7]. This results in an O(n2n!) time exact algorithm.1

For any disk di ∈ ∆D, let eij and eik denote the intersection of disk di by line segments
cicj and cick, respectively (see Figure 3(right)), such that dj and dk are the cherry disks of

1 In a model of computation that we can exactly compute the roots of any constant degree polynomials.
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Figure 3 (left) Extreme disk di ∈ D
has two cherry disks dj and dk. (right)
All the cherry disks of D; the con-
structed star graph on them is shown
in green. Bend bi is located in the inter-
val [eij , eik].

di. The points eij and eik are the startpoint and the endpoint of the arc on which bend bi
on αi is in balance between the cherry disks of di (which we will prove later). We denote
this interval by [eij , eik]. Obviously di is also a cherry disk for both dj and dk.

I Lemma 2.3. Let dj and dk with j < k denote the cherry disks of di. Then bi is located in
the interval [eij , eik].

Proof. Suppose this is false. Then bend bi is strictly located either before eij or after eik
(on the boundary of di). Consider the case where bi is strictly located before the position
eij (the other case is similar). In this case, at least bj is strictly located after eji (on the cw
ordering of the boundary of dj). But then the two disks (or even one) which determine the
position of bj on dj must be located between di and dj . Let dp and dq denote these disks.
Since bj is strictly located after eji, at least one of dp and dq is different from di. Clearly,
bibk, bjbp and bjbq are some edges of the star graph. But bjbp and bjbq never intersect the
edge bibk. This gives a contradiction with the fact that all the edges of the star graph are
pairwise intersecting. J

3 Minimum diameter problem

If the disks are not unit but still disjoint, Observation 2.1 holds if the smallest disk is a unit disk.

3.1 Unit disks
From Lemma 2.2 we know that if D consists of disjoint disks, the total sum of the angles of extreme
arcs equals 2π. First, suppose D consists of disjoint unit disks. We proceed by covering the boundary
of a unit disk U by all the extreme arcs of set ∆D, such that they just intersect at the endpoints,
as illustrated in Figure 4(a). This covering is indeed a translation transformation. We decompose
the boundary of U into smaller, equal-length sub-arcs by regularly inserting 2π/ε points. Then, for
any disk di, the added points on the boundary of U which is covered by αi will be transferred to
the boundary of di, as illustrated in Figure 4(a). Consequently the extreme arcs get divided into
sub-arcs of length at most ε.

Recall that P ∗ denote the optimal point set. Let P ′ = {p1, ..., pm} denote the optimal point set
restricted to the endpoints of the sub-arcs. The set P ′ minimizes the furthest distance between any
pair of points on P ′ among all possible choices for P ′ 2. Let d denote the diameter of P ′. As said
before, d∗ denote the optimal diameter of P ∗. We will show that d approximates d∗ within a factor
(1 + ε).

For any disk di ∈ ∆D, we define the optimal sub-arc α∗i that includes (if any) the bend bi. Also,
α∗i minimizes the difference of distances of the endpoints of α∗i to the approximated cherry disks of

2 We use the name P for the set of all the candidate points of set D, where P ′ ⊆ P . It is easy to observe
that the diameter d′ of P ′ equals the diameter d of P .
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Figure 4 (a) Subdivisions
of the extreme arcs into sub-
arcs of length ε. (b-d) The
configuration of the approx-
imated diameter (gray) and
the optimal diameter (green).
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di, where the diameter which realizes by this selection of α∗i , is as small as possible. Note that in
the optimal solution, the length of each α∗i equals 0.

We will postpone the discussion of computing the optimal sub-arcs, and we first consider how
set P ′ approximates the minimum diameter. Note that the optimal diameter d∗ at least equals the
largest distance between any two optimal sub-arcs (where the distance between two arcs αi and αj
is the minimum distance from any point on αi to any point on αj). Thus, we show that for any
two optimal sub-arcs which include the vertices of the potential minimum diameter, the ratio of the
smallest distance to the furthest distance equals (1 + ε). There exist two configurations to consider
the ratio of the smallest distance to the furthest distance of a pair of optimal sub-arcs.

The case where d and d∗ intersect each other (see Figure 4(b)). Let d1 and d2 (resp. d∗1 and d∗2)
denote the two segments which are determined on d (resp. d∗) by intersection with d∗ (resp. d),
such that d1 and d∗1 form a triangle, where the endpoints of its base are located on an optimal
sub-arc.
Since the length of the optimal sub-arc is at most equal to ε, by the triangle inequality we have
|d∗1|+ ε > |d1| and |d∗2|+ ε > |d2|, and since |d∗| ≥ 2, |d| ≤ |d∗|(1 + ε).
The case where d and d∗ do not intersect each other, in which case d∗ selects its two vertices
at the endpoints of its optimal sub-arcs, or d∗ selects one vertex at the middle of one of its
optimal sub-arcs (as illustrated in Figure 4(c,d)). Let θ1 and θ2 denote the angles between d
and (tangents of) the optimal sub-arcs, then |d| ≤ ε(cos θ1 + cos θ2) + |d∗|. This again gives us
|d| ≤ |d∗|(1 + ε).

Computing the optimal sub-arcs. Let m denote the number of extreme disks of D. We show
that for any disk di ∈ ∆D, we can find α∗i efficiently. For any disk di ∈ ∆D we first select point pi
which is chosen to be one of the endpoints of the sub-arcs of αi. This is the initialization of set P ′.
Then, during the algorithm, we try to move each element of P ′ to its best position, so that the final
set P ′ minimizes the diameter among all possible choices for P ′. Indeed, for any disk di we look for
the optimal sub-arc α∗i , where one of the endpoints of α∗i determines one element of P ′.

In each step of the algorithm we start by computing the diameter of P ′. Let d′ denote the
diameter of P ′ with pi and pj as the vertices. If pi (or pj) is not yet in balance, we move it forward
among the endpoints of the sub-arcs of αi in the direction that the size of d′ is decreasing. In each
possible movement, we update the size of d′, and stop moving pi, when in the next movement, the
distance of pi to any other point pk will be greater than the current size of d′. Let d′′ < d′ denote
the diameter with a vertex at pj . Then we move pj forward in the direction that the size of d′′
is decreasing, and also we update the size of d′′ in each movement, until in the next movement,
the distance of pj to any other point pl is greater than the current size of d′′. We also repeat this
procedure for pk and pl, respectively, by computing the corresponding diameter with a vertex at
pk and pl, respectively. We stop this step when we have checked/corrected the position of all the
elements of P ′, each of which one time.

In the second step, we again start by computing the diameter of P ′. We continue above procedure,
until we check the position of all the elements of P ′. Since the vertices of the diameter may already
be in balance, it is not always possible to move them to reduce the diameter. In the following we
prove that it is always possible to reduce the value of the diameter after O(mε−1) consecutive steps
of the algorithm.

In the last step of the algorithm, we only can check the position of all the elements of P ′, while
no other movement is possible. This way we have approximated the cherry disks of any disk di, and
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also one endpoint of the optimal sub-arc α∗i . The other endpoint is the one which is closer to both
cherry disks of di.

I Lemma 3.1. After at most O(mε−1) steps of the algorithm, the size of d′ reduces by a factor of√
2/2.

Proof. In the worst case, in each step, we only could move one point pa to its balanced position.
Then in the next step, at least another point pb, with b 6= a can be moved (otherwise the algorithm
will be terminated) which could not be moved in the previous step. This point can only be the
point which previously was in balance between pa and another point pc. Then we may go back to
move pb, and then pa and pc, if they make a bend with its two cherry disks. Since the distances
of the bend from its cherry disks are only decreasing, in at most O(ε−1) consecutive steps of the
algorithm, either the algorithm stops, or we can move a new point which is distinct from pa, pb and
pc. Consequently, after at most O(mε1−) steps, we have changed the position of all the elements of
P ′, and since we have reduced all the furthest distances of the bends from the corresponding cherry
disks, the size of the diameter is decreased. Now we clarify the changes on the size of the diameter
that occur during the algorithm. Let pi and pj denote the vertices of the diameter d′ which we have
reduced its value. Thus we at least move one vertex of the diameter from a position xi to xi+1.

Let θ1 denote the angle subtended by the arc with length ε at the center of di, and let θ2 denote
the determined angle by the intersection of pjxi and the tangent line of di at xi, and let θ3 denote
the angle between pjxi and pjxi+1, as illustrated in the below Figure. Notice that the size of the
angles θ2 and θ3 change during the algorithm. Also let y denote the height of triangle xixi+1pj
from the triangle’s vertex xi+1 to the base pjxi, and let p denote the intersection point of y and
pjxi. Since |y| < |xixi+1| and, |xixi+1| < 2 and |pjxi| = |d′| ≥ 2, the angle |θ3| < 45◦. Consequently
|y|
|d′| <

√
2

2 . Also since |pjxi+1| = |d′′| ≥ 2, |xixi+1| < 2 and |θ3| < 45◦, the angle |θ2| > 45◦. Then we
have |y|

|d′′| <
√

2
2 and |xip|

|xixi+1|
<
√

2
2 , and thus |xip|·|y|

|xixi+1|·|d′′|
< 2

4 . Since
|y|

|xixi+1|
<
√

2
2 , |xip| < 1√

2 |d
′′|

and since |d′′| < |d′| we have |xip| < 1√
2 |d
′| 3. J

The importance of the reduced value from the diameter is on the convergence of the iterative
process. Also 2 ≤ |d∗| < |dmax|, where dmax denote the maximum diameter of D (it can be computed
in O(n logn) time [1]). Obviously the same bound also holds for d′. Consequently, the algorithm
will be terminated after O(mε−1(log√2 |dmax|) steps. Since log√2 |dmax| is a constant, we omit it
from the total running time. Now we consider the running time of each step.

xi+1

xi θ2

pj

ε

θ1

ci

θ3

p

y

Since we know the cw order of the elements of P ′, the
diameter of P ′ can be computed in linear time in each step
of the algorithm. In each movement of any element pi of
P ′, we should be careful for not increasing the size of the
diameter with a vertex at pi. Thus we costs O(m+mε−1)
for each element in one step. The later m is the time
costs to check whether the corresponding element gets in balance or not. Thus the algorithm takes
O(m3ε−1(1 + ε−1)) time.

I Lemma 3.2. For any disk di ∈ ∆D, computed α∗i includes possible bend bi.

Proof. Suppose this is false. Then bi is located on a sub-arc α′i which is distinct from α∗i . Then
either we have passed over this sub-arc during the algorithm, or we did not find it and we stopped.
Let dj and dk denote the approximated cherry disks of di by the algorithm.

In the first case, at both endpoints of α′i, the computed distance of di to both dj and dk must
be greater than our current diameter, while we have found a solution with strictly a smaller size.
This contradicts the optimality of the computed minimum diameter.

In the second case, since α′i and α∗i are distinct, at least one computed cherry disk for α′i has
to be distinct from dj or dk (if not; α′i = α∗i , and we are done). But then we could move pi to

3 Notice that this lemma holds for a set of arbitrary disks where the smallest disk is a unit disk, since
we do not let the length of the sub-arcs (which is ε) on the smallest disk to be as large as π, |y| must
always be smaller than 2.
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reduce the distance of di to at least one of dj and dk. This contradicts the stop criterion of the
algorithm. J

3.2 Disks with different size cd′

cd′

cd′/2

di

djci

Figure 5 The maximum possible
length for an extreme arc appears be-
tween two disks di and dj with |ri| =
|cd′|/2 and |rj | ≈ 0. Thus the total
sum of the extreme arcs is bounded by
|2π(cd′/2)|. Note that the subtended
angle of a sub-arc cannot equals π, it
is supposed so to compute the upper
bound.

In the case where D consists of arbitrary disjoint disks, the
total sum of the angles of the extreme arcs still equals 2π,
but with the idea we used on unit disks, the optimal sub-
arcs will not necessarily have the same length. In this case,
we first apply the presented constant factor approximation
algorithm [1] for the minimum diameter problem on a
set of disks. The presented algorithm approximates the
smallest diameter within a constant factor c in linear time.
Let d′ denote the approximated smallest diameter of D
within factor c. We define h = ε · c · |d′| as the new length
of the sub-arcs. Note that if h is greater than the extreme
arc of a disk di, we consider αi instead of a sub-arc of
length h. In this case, the total sum of the lengths of the
extreme arcs is bounded by |2π(cd′/2)|, since any circle
whose radius is greater than |cd′/2| will share an extreme arc with less curvature (and thus with less
arc length), also any circle whose radius is less than |cd′/2| will share an extreme arc with a shorter
arc length (see Figure 5). Thus the maximum number of the points that approximates the extreme
arcs is bounded by 2π(cd′/2)

h
, which is in O(ε−1). Since computed sub-arcs admit the same length h,

the considered ratio of the furthest distance to the smallest distance between the optimal sub-arcs
(in Section 3.1) still holds, and the presented algorithm works in O(n3ε−2) time.

I Theorem 3.3. Given a set of n disjoint disks, the problem of choosing a point on the boundary of
each disk such that the diameter of the resulting point set is as small as possible can be approximated
within a factor (1 + ε) in O(n3ε−2) time.
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