
Mitered offsets and straight skeletons for circular
arc polygons
Bastian Weiß1, Bert Jüttler1, and Franz Aurenhammer2

1 Johannes Kepler University Linz
bastian.weiss@jku.at
bert.juettler@jku.at

2 Graz University of Technology
franz.aurenhammer@igi.tugraz.at

Abstract
We generalize the offsetting process that defines straight skeletons of polygons to circular arc
polygons. The offsets and the associated skeleton are obtained by applying an evolution process
to the boundary and tracing the paths of vertices. These paths define the associated patch
decomposition. While the skeleton is a forest, the patches of the decomposition possess a radial
monotonicity property. Analyzing the events that occur during the evolution process is non-
trivial. This leads us to an event-driven algorithm for offset and skeleton computation. Several
examples (both manually created ones and approximations of planar free-form shapes by arc
polygons) are presented and used to analyze the performance of our algorithm.

1 Introduction

Arc polygon Polygon

Classical
offset

Mitered
offset

Figure 1 Comparison of classical and
mitered offsets.

We define mitered offsets and straight skeletons
for planar free-form shapes represented as circu-
lar arc polygons, see Fig. 1, which also provides
a comparison with classical offsets and polygons.

Offsets and skeletons of planar shapes are
widely used in shape analysis, shape design, mo-
tion planning, image processing and tool path
generation. Besides classical offsets, various gen-
eralizations have been considered.

The singularities and self-intersections of off-
set curves are closely related to the medial
axis [6], which is a particular skeleton, i.e., a
structural shape descriptor. Algorithms for com-
puting the medial axes of planar shapes are stud-
ied in several publications, see [1, 7].

In the case of piecewise linear shapes, mitered offsets provide an alternative to classical
offsets with enhanced shape-preserving properties around reflex vertices [9]. They are defined
procedurally, by specifying the evolution of the boundary of a shape as the offset distance
increases. Special attention has to be paid to topological changes of the offsets, which can
be classified into events.

An evolution is used in [3, 4, 8] to define the straight skeleton of simple polygons and
planar straight line graphs.

Circular arc polygons are potentially piecewise G1 smooth and possess a better ap-
proximation order than piecewise linear boundaries [5]. Algorithms for the approximate
conversion of general shapes into arc polygons are also well understood. The mitered offsets
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



52:2 Mitered offsets and straight skeletons for circular arc polygons

are again defined by specifying the evolution of the boundary, where the use of arcs leads
to a wider variety of events.

2 Definitions

We define offsets, and consequently the skeleton, for arc polygons P as the result of an
evolution of its boundary. Offsetting P means that the edges shrink or expand in radial
direction (parallel for straight line segments) with constant speed towards the interior of the
polygon. Simultaneously, the edges’ endpoints travel on certain paths, which are determined
by the evolution of the adjacent edges. This process is well-defined until we encounter (self-)
intersections or the boundary becomes disconnected, see splice event below. We introduce
events in order to obtain a globally consistent definition of trimmed offsets. More precisely,
we distinguish between four classes of events.

Vanish event An edge e of P vanishes. This happens if the two endpoint vertices of e
become coincident and the length of e shrinks to zero, see Fig. 4.

Terminal event These events occur if a connected component of P has three or fewer edges.
Depending on the situation, these events can be grouped into seven possible types, see
Fig. 2. The label kTv` of each type depends on the number k of involved edges and ` of
vanishing edges.

(a) Events 1Tv1, 2Tv0 and 2Tv2 (from left to right).

(b) Events 3Tv0, 3Tv1, 3Tv2 and 3Tv3 (from left to right).

Figure 2 Terminal events.

Contact event The arc polygon touches itself in its interior. There are three events of this
type (Fig. 3): A split event occurs when a reflex vertex hits an edge of P . Two touching
edges create a squeeze event. Finally, a bubble event happens when the endpoints of a
shrinking edge e meet while the length of that edge is not zero.

Circular edges can become disconnected during the offsetting process. Since this situation
was not encountered for straight skeletons, we need to introduce a new event:
Splice event A reflex vertex splices at the moment when the adjacent edges become tangen-

tial. The continuation of the evolution is not unique. We propose to close the gap in P
by inserting a semicircle that starts to expand, thereby creating two smooth vertices, see
Fig. 4. This solution ensures the property of local invertibility, which will be discussed
in the next section.

Terminal events play a role in the later stages of the evolution. In these situations, it is
common that three endpoints meet in a single point. While this might happen also in



B. Weiß, B. Jüttler and F. Aurenhammer 52:3

Figure 3 Split, squeeze and bubble event.

earlier stages of the evolution, we do not consider it as it has zero probability, i.e., it occurs
in non-generic cases only.

Most events are of local nature, since they involve only a small number of adjacent edges.
The only exceptions are split and squeeze events, which entail global modifications of the
polygon’s topology. Consequently we will distinguish between local and global events.

3 Properties and computation

Figure 4 Vanish event (left) and
splice event (right). The gray curve is
the offset. The dashed lines are part of
the skeleton.

The arc polygon P consists of N vertices vi (with
indices modulo N) connected by edges ei = vivi+1
in counterclockwise order. Each edge has a center
mi (possibly at infinity) and a radius ri (non-zero,
possibly infinite). Positive and negative values of the
radius correspond to arcs with counterclockwise and
clockwise orientation, respectively. Vertices with an
inner angle of π are called smooth. The path of a
vertex vi is a conic section and is determined by its
neighbor edges. Note that all edges can be straight
line segments, hence we include straight skeletons [3]
as a special case.

Due to the fact that our offsets are defined by an evolution process there is a local
invertibility: It is possible to reverse the evolution between two consecutive events. In
addition, it is possible to reverse the process when contact or splice events occur. However,
this does not hold for vanished edges. The local invertibility is not valid for classic offsets
where we would loose convex corners as shown in Fig. 5.

I Definition 3.1. The skeleton S of a circular arc polygon P is defined as the path of all
non-smooth vertices.

Figure 5 Local
invertibility.

Figure 6 shows an arc polygon P (black) and its skeleton (blue). The
extended skeleton is the union of S with the paths of all smooth vertices
(green). This extended skeleton together with P separates the domain
into disjoint patches, the so called patch decomposition P. In Fig. 6 there
is a hyperbolic part of S emerging from the reflex vertex. The upper part
of S from left to right, consists of a hyperbolic arc, an elliptic arc and
another hyperbolic arc, joined smoothly. The skeleton S is a forest and
has, in general, several connected components. It can be shown that S
has linear complexity. While this is rather obvious for straight skeletons
of polygons [3], the analysis is slightly more involved for circular arc
polygons, due to the presence of splice events.

EuroCG’18



52:4 Mitered offsets and straight skeletons for circular arc polygons

The straight skeleton possesses a monotonicity perpendicular to the defining edge, while
the patch decomposition P has radial monotonicity. That means, every radial line inter-
sected with its patch is connected (Fig. 6, red segments).

Figure 6 shows the skeleton S (blue)
and the paths of smooth vertices in
green. The radial red lines show the ra-
dial monotonicity property.

The skeleton S is a generalization of straight
skeletons. It is not obvious how to apply well known
principles like sweep-line and divide & conquer since
straight skeletons do not have a Voronoi structure [4].
The intuitive reason for this is that the velocity of
a vertex is determined by its inner angle. In fact,
the vertex velocity tends to infinity as the angle ap-
proaches zero. Instead, our approach is based on a
simulation of the event driven evolution that defines
mitered offsets.

Our main data structures consists of a list E con-
taining edges and vertices which represents P and an
event queue Q. Events are interlinked to edges and
vertices and stored in Q, ordered consecutively. The arc polygon P and its offsets are rep-
resented by patches on right circular cones in space-time, where the time has been added
as third (vertical) coordinate. The patch associated with the edge ei is denoted by ci. A
patch is represented by its boundary curves. Splice events create new edges and associated
patches. Vanish and terminal events trigger the deletion of edges from the arc polygon. At
this stage, the associated patch is complete.

Our algorithm takes P given as an edge list E and computes the skeleton and patch
structure. Initially, the event queue Q is populated by all local events that can be computed
from P . Now we loop over E as long as it is not empty. Each loop performs three steps:
First, computation of the next possible global event and comparison with the next local
event give us the next event e. Second, grow S and P until we reach the event. Third, the
event is handled (see details below). This may trigger the insertion of new local events into
Q.

The computation of events is done differently for local and global ones. All local events
are computed by intersecting cones in space-time, which represent the edges, and certain
planes. For instance, a splice event of vi is computed by analyzing the intersection ci−1 ∩
ci ∩ pi, where pi is the vertical plane defined by the points mi−1, mi.

While computing local events of edges or vertices requires knowledge about their local
neighborhood only, the computation of global events is more expensive since the entire
arc polygon P has to be considered. To speed up this computation, we use a sweep-line
algorithm over axis–aligned bounding boxes of edges and vertices of P .

The procedure for handling an event operates on E which represents P , the event queue
Q, the event e itself and the data structures holding the skeleton S and patches P.

1. Add/delete/split edges.
2. Reconnect edges properly such that there is no gap in P .
3. Update S and P.
4. Delete e from Q.
5. Q← Q ∪ {local events for edges having a new neighbour}

The splice event is necessary to close the gap of the polygon boundary if it breaks. We
suggested in Section 2 to do this at the latest possible point. However, an earlier splice is
achievable: The introduction of an angle σ, which is the inner angle of a reflex vertex v,



B. Weiß, B. Jüttler and F. Aurenhammer 52:5

allows us to control the splice behavior of P . Choosing σ = 2π results in the known splice
event. An angle of π < σ < 2π forces v to splice earlier and σ = π cause each reflex vertex to
splice immediately which results in classical offsets and the obtained skeleton is the medial
axis. The analysis of the algorithms’ complexity is still ongoing work. Experimental results
are provided in the next section.

4 Examples

We perform experiments with manually designed arc polygons as well as approximations of
planar free form shapes by circular arc polygons. These arc splines are created by spiral
biarcs following the approach described in [2]. The results are depicted in Fig. 7.

(a) The lion shape for σ = 180◦, 280◦, 320◦ and 360◦.

102 103 104

10−1

102

105

N – number of edges

co
m
pu

ta
tio

n
tim

e
(in

se
c.
)

easy
reflex

(b) The examples easy, reflex and computation times.

Figure 7 Offsets of examples easy and reflex (left and center). Computation times (right) for
arc splines of different size representing these examples. As a reference, the black line indicates
O(N2 logN).

Figure 7a shows offsets of the lion shape, which is represented by spiral biarcs, for
various values of the splicing parameter σ. The leftmost picture visualizes the classical
offset. Increasing σ delays the occurring splice events, thereby preserving the reflex vertices.

The examples easy and reflex (Fig. 7b) are used to analyze the complexity of the
algorithm. Finally, we also include Fig. 8, containing straight line segments (arcs with
infinite radii) on the left. The right of Fig. 8 shows the skeleton (blue) and the paths of
smooth vertices (green).

The proposed algorithm has been implemented in Python 3.6 on an Intel i7-6700 CPU
machine with 8 GB RAM. We demonstrate experimentally that our algorithms’ complexity
does not exceed O(N2 logN) in practice: Figure 7b (right) shows the computation time in
seconds over the number of edges N for the easy and reflex examples. Both axes use loga-
rithmic scales. Since the graphs depicting the computation times for the two examples seem
to become tangential to the reference line (black) Fig. 7b supports the claimed complexity.

EuroCG’18



52:6 Mitered offsets and straight skeletons for circular arc polygons

Figure 8 Mitered offsets (left) and skeleton (right, blue).

5 Conclusion

We presented an extension of straight skeletons to shapes bounded by circular arc polygons.
Experimental results indicate that the proposed algorithm computes offsets and its skeleton
for N edges in O(N2 logN) time in practice. The size of the resulting skeleton is linear,
the patch decomposition possesses a radial monotonicity property and the offsets are locally
invertible. The introduction of the parameter σ allows us to control the inner angle at which
reflex vertices splice, thereby influencing the structure of the skeleton. Consequently, our
algorithm can be adapted to compute either the medial axis or the straight skeleton (for
polygons with only straight edges) as special cases. Finally we note that the algorithm can
be extended to general circular arc figures in the plane.

References
1 O. Aichholzer, W. Aigner, F. Aurenhammer, T. Hackl, B. Jüttler, E. Pilgerstorfer, and

M. Rabl. Divide-and-conquer for voronoi diagrams revisited. Computational Geometry:
Theory and Applications, 8(43):688–699, 2010.

2 O. Aichholzer, W. Aigner, F. Aurenhammer, T. Hackl, B. Jüttler, and M. Rabl. Medial axis
computation for planar free–form shapes. Computer-Aided Design, 41(5):339–349, 2009.

3 O. Aichholzer and F. Aurenhammer. Straight skeletons for general polygonal figures in
the plane. In International Computing and Combinatorics Conference, pages 117–126.
Springer, 1996.

4 O. Aichholzer, F. Aurenhammer, D. Alberts, and B. Gärtner. A novel type of skeleton for
polygons. In The Journal of Universal Computer Science, pages 752–761. Springer, 1996.

5 O. Aichholzer, F. Aurenhammer, T. Hackl, B. Jüttler, M. Rabl, and Z. Šír. Computational
and structural advantages of circular boundary representation. Int. J. Comput. Geom.
Appl., 21(1):47–69, 2011.

6 H. Blum. A transformation for extracting new descriptors of shape. In Weiant Wathen-
Dunn, editor, Models for the Perception of Speech and Visual Form, pages 362–380. MIT
Press, Cambridge, 1967.

7 D.T. Lee. Medial axis transformation of a planar shape. IEEE Transactions on pattern
analysis and machine intelligence, pages 363–369, 1982.

8 Peter Palfrader and Martin Held. Computing mitered offset curves based on straight skele-
tons. Computer-Aided Design and Applications, 12(4):414–424, 2015.

9 S.C. Park and Y.C. Chung. Mitered offset for profile machining. Computer-Aided Design,
35(5):501–505, 2003.


	Introduction
	Definitions
	Properties and computation
	Examples
	Conclusion

