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Abstract
Partial edge drawing (PED) is a drawing style for non-planar graphs, in which edges are drawn
only partially as pairs of opposing stubs on the respective end-vertices. In a PED, by erasing
the central parts of edges, all edge crossings and the resulting visual clutter are hidden in the
undrawn parts of the edges. We study symmetric partial edge drawings (SPEDs), in which the
two stubs of each edge are required to have the same length. It is known that maximizing the ink
(or the total stub length) when transforming a straight-line drawing with crossings into a SPED is
tractable for 2-plane input drawings, but generally NP-hard. We show that the problem remains
NP-hard even for 3-plane input drawings. Yet, for k-plane input drawings whose edge intersection
graph forms a collection of trees or cacti we present efficient algorithms for ink maximization.

1 Introduction

Visualizing non-planar graphs as node-link diagrams is challenging due to the visual clutter
caused by edge crossings. The layout readability deteriorates as the edge density and thus
the number of crossings increases. Therefore alternative layout styles are necessary for
non-planar graphs. A radical approach first used in applied network visualization work by
Becker et al. [1] is to start with a traditional straight-line graph drawing and simply drop
a large central part of each edge and with it many of the edge crossings. This idea relies
on the closure and continuation principles in Gestalt theory, which imply that humans can
still see a full line segment based only on the remaining edge stubs by filling in the missing
information in our brains. User studies have confirmed that such drawings remain readable
while reducing clutter significantly [6, 7].

(a) (b)

Figure 1 A straight-line graph drawing (a)
and a maximum-ink symmetric partial edge
drawing (b) of the same graph.

The idea of drawing edges only partially has
been formalized in graph drawing as follows [5].
A partial edge drawing (PED) is a graph drawing
that maps vertices to points and edges to pairs of
crossing-free edge stubs of positive length point-
ing towards each other. These edge stubs are
obtained by erasing one contiguous central piece
of the straight-line segment connecting the two
endpoints of each edge. In other words each
straight-line edge is divided into three parts, of
which only the two outer ones are drawn (see
Fig. 1). More restricted and better readable [2] variations of PEDs are symmetric PEDs, in
which both stubs of an edge must have the same length (see Fig. 1(b)), and homogeneous
PEDs, in which the ratio of the stub length to the total edge length is the same for all edges.
Symmetric stubs facilitate finding adjacent vertices due to the identical stub lengths at both
vertices, and symmetric homogeneous stubs additionally indicate the distance at which to
find a neighboring vertex. The natural optimization problem in this formal setting is ink
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maximization, i.e., maximizing the total stub length, so that as much information as possible
is given in the drawing while all crossings disappear in the negative background space.

We study the ink maximization problem for symmetric partial edge drawings (SPEDs)
with a given geometric input drawing. This problem is known as MaxSPED. Bruckdorfer
and Kaufmann [5] presented an integer linear program for solving MaxSPED. Later,
Bruckdorfer et al. [4] gave an O(n logn)-time algorithm for MaxSPED on the class of
2-plane input drawings (no edge has more than two crossings), where n is the number of
vertices, and an efficient 2-approximation algorithm for the dual problem of minimizing
the amount of erased ink for arbitrary input drawings. Bruckdorfer [3] further gives an
NP-hardness proof for MaxSPED.

Contribution. We extend the results of Bruckdorfer et al. [4] on 2-plane geometric graph
drawings to k-plane graph drawings for k > 2. In particular, we show that MaxSPED is
NP-hard even for 3-plane input drawings. However, for k-plane graph drawings whose edge
intersection graphs are collections of trees or cacti (which have maximum degree k), we give
polynomial-time algorithms for solving MaxSPED.

2 Preliminaries

Throughout the paper let G be a simple graph with edge set S = {s1, . . . , sm} and Γ a
straight-line drawing of G in the plane. We call Γ k-plane if every edge si ∈ S is crossed
by at most k other edges from S in Γ. We use the terms edge in S and segment in Γ
interchangeably. Hence we can also interpret S as a set of line segments.

The intersection graph C = (V,E) of Γ is the graph containing a vertex vi in V for every
si ∈ S and an edge vivj ∈ E between vertices vi, vj ∈ V if the corresponding edges si, sj ∈ S
intersect in Γ. We also denote the segment in S corresponding to a vertex v ∈ V by s(v).
Observe that the intersection graph C of a k-plane drawing Γ has maximum degree k. Using
a standard sweep-line algorithm, computing the intersection graph C of a set of m line
segments takes O(m logm+ |E|) time [8], where |E| is the number of intersections.

A symmetric partial edge drawing (SPED) D of Γ draws a fraction 0 < fs ≤ 1 of each
edge s = uv ∈ S by drawing two symmetric edge stubs at u and v of length fs · |s|/2 each.
No two stubs in D may intersect. The ink or ink value I(D) of a SPED D is the total
stub length I(D) =

∑
s∈S fs|s|. In the problem MaxSPED, the task is to find for a given

drawing Γ a SPED D∗ such that its ink I(D∗) is maximum over all SPEDs.

3 Hardness of MaxSPED for k ≥ 3

In this section we close the gap between the known hardness of MaxSPED [3] and the
polynomial-time algorithm for 2-plane drawings [4] as stated in the following theorem.

I Theorem 3.1. MaxSPED is NP-hard even for 3-plane graph drawings.

Proof. We reduce from the NP-hard problem Planar 3-Sat [9] using similar ideas as in
Bruckdorfer’s sketch of the hardness proof for general MaxSPED [3]. Here we specify
precisely the maximum ink contributions of all gadgets needed for a satisfying variable
assignment. Our variable gadgets are cycles of edge pairs that admit exactly two maximum-
ink states. Finally we construct clause gadgets consisting of three pairwise intersecting edges
so that all crossings are between two edges only, while Bruckdorfer’s gadgets have multiple
edges intersecting in the same point. Let φ be a planar 3-Sat formula with n variables
{x1, . . . , xn} and m clauses {c1, . . . , cm}, each consisting of three literals. We can assume
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x1 = true

x2 = false

x3 = false

x1 ∨ ¬x2 ∨ x3

Figure 2 Example of three variable gadgets and a satisfied clause gadget. Dotted parts do not
belong to the SPED.

that φ comes with a planar drawing of its variable-clause graph Hφ, which has a vertex for
each variable xi and a vertex for each clause cj . Each clause vertex is connected to the three
variables appearing in the clause. In the drawing of Hφ all variable vertices are placed on a
horizontal line and the clause vertices connect to the adjacent variable vertices either from
above or from below the horizontal line. In our reduction (see Fig. 2) we mimic the drawing
of Hφ by creating a 3-plane drawing Γφ as a set of line segments of uniform length and a
value L such that Γφ has a SPED with ink at least L if and only if φ is satisfiable.

All segments in the gadgets are of length 5. We use pairs of intersecting segments,
alternatingly colored red and green. The intersection point of each red-green segment pair is
at distance 1 from an endpoint. Thus, the maximum amount of ink contributed by such a
pair is 7 (one full segment of length 5 and the other one with two stubs of length 1 each).

Each variable gadget is a cycle of segment pairs, with (at least) one pair for each occurrence
of the variable in φ, see Fig. 2. Observe that this cycle has exactly two ink-maximal SPEDs:
either all red edges are full segments and all green edges are length-1 stubs or vice versa. We
associate the configuration with green stubs and full red segments with the value true and
the configuration with full green segments and red stubs with the value false.

For each clause we construct a triple of mutually intersecting segments, see the gadget
on yellow background in the upper part of Fig. 2. Again, their intersection points are at
distance 1 from the endpoints. It is clear that in such a clause triangle at most one of the
three segments can be fully drawn, while the stubs of the other two can have length at most 1.
Hence, the maximum amount of ink in a SPED contributed by a clause gadget is 9.

Finally, we connect variable and clause gadgets in such a way that a clause gadget can
contribute its maximum ink value of 9 if and only if the clause is satisfied by the selected
truth assignment to the variables. For a positive (negative) literal, we create a path of even
length between a green (red) edge of the variable gadget and one of the three edges of the
clause gadget as shown in Fig. 2. The first edge s of this path intersects the corresponding
variable edge s′ such that s′ is split into a piece of length 2 and a piece of length 3, whereas
s is split into a piece of length 1 and a piece of length 4. The last edge of the path intersects
the corresponding clause edge with the same length ratios. The path itself consists of a chain
of red-green segment pairs, so each pair contributes an ink value of at most 7.

Since the drawing of Hφ has polynomial size, the number of segments created in the
reduction is polynomial. Further, no segment intersects more than three other segments, so
the constructed drawing is 3-plane.

For the correctness of the reduction, let L be the ink value obtained by counting 7 for each
red-green segment pair and 9 for each clause gadget. First assume that φ has a satisfying
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p(u)
s(u)

Figure 3 A segment s(u) with five intersecting segments and the different induced stub lengths.
The boxed stub lengths are considered in short(u) and do not affect p(u).

truth assignment and put each variable gadget in its corresponding state. For each clause,
select exactly one literal with value true in the satisfying truth assignment. We draw the
clause segment that connects to the selected literal as a full segment and the other two as
length-1 stubs. Recall that the literal paths are oriented from the variable gadget to the
clause gadget. Since the last segment of the selected literal path must be drawn as length-1
stubs, the only way of having a maximum contribution of that path is by alternating stubs
and full segments. Hence, the first segment of the path must be a full segment. But because
the variable is in the state that sets the literal to true, the intersecting variable segment is
drawn as two stubs and the path configuration is valid. For the two non-selected literals, we
can draw the last segments of their paths as full segments, as well as every segment at an even
position, while the segments at odd positions are drawn as stubs. This is compatible with
any of the two variable configurations and proves that we can indeed achieve ink value L.

Conversely, assume that we have a SPED with ink value L. By construction, every
red-green segment pair and every clause gadget must contribute its respective maximum ink
value. In particular, each variable gadget is either in state true or false. By design of the
gadgets it is straight-forward to verify that the corresponding truth assignment satisfies φ. J

4 Two polynomial special cases

Section 3 showed that MaxSPED is generally NP-hard for k ≥ 3. Now we consider the
special case that the intersection graph of the k-plane input drawing is a tree or a cactus. In
both cases we present polynomial-time dynamic programming algorithms. Let C = (V,E) be
the intersection graph of a given drawing Γ of a graph G as defined in Section 2. Let u ∈ V
and δ = deg(u). Then for the corresponding segment s(u) ∈ S there are δ + 1 relevant stub
pairs including the whole segment, see Fig. 3. Let `1(u), . . . , `δ(u) ∈ R+ be the stub lengths
induced by the intersection points of s(u) with the segments of the neighbors of u, sorted
from shorter to longer stubs. We define `0(u) as the length of the whole segment s(u).

4.1 Trees
Here we assume that C = (V,E) is a rooted tree of maximum degree k. We give a bottom
up dynamic programming algorithm for solving MaxSPED on C. For each vertex u ∈ V we
compute and store the maximum ink values Ti(u) for i = 0, . . . , δ with δ = deg(u) for the
subtree rooted at u such that s(u) is drawn as a pair of stubs of length `i(u). For u ∈ V let
p(u) denote the parent of u in C and let c(u) denote the set of its children. For u ∈ V let ip
be the index of the stub length `ip(u) induced by the intersection point of s(u) and s(p(u)).
We define the following two values, which allow us to categorize the stub lengths into those
not affecting the stubs of the parent and those that do affect the parent:

short(u) = max{T1(u), . . . , Tip(u)}
long(u) = max{T0(u), . . . , Tδ(u)}.
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Figure 3 highlights the stub lengths that are considered in short(u). We recursively define

Ti(u) = `i(u) +
∑
v∈c(u)

{
short(v) if s(u) with length `i(u) intersects s(v)
long(v) otherwise.

(1)

The correctness of Recurrence (1) follows by induction. For a leaf u in C the set c(u) is empty
and the correctness of Ti(u) is immediate. Further, short(u) = T1(u) and long(u) = T0(u)
are set correctly for the parent p(u). For an inner vertex u with degree δ we can assume by
the induction hypothesis that the values short(v) and long(v) are computed correctly for
all children v ∈ c(u). Each value Ti(u) for 0 ≤ i ≤ δ is then the stub length `i(u) plus the
sum of the maximum ink we can achieve among the children subject to the stubs of u being
drawn with length `i(u). Setting long(u) and short(u) as above yields the two maximum ink
values that are relevant for p(u).

Recurrence (1) can be solved naively in O(mk2) time, where m = |V |. Using the
order on the stub lengths we can improve this to O(mk) time by computing all Ti(u) for
one u ∈ V in O(k) time. Let u ∈ V be a vertex with degree deg(u) = δ. The values
T0(u) = `0(u) +

∑
v∈c(u) short(v) and T1(u) = `1(u) +

∑
v∈c(u) long(v) for the whole segment

s(u) and the shortest stubs can be computed in O(k) time each. Now Tj+1(u) can be
computed from Tj(u) in O(1) time as follows. Let vj be the neighbor of u that induces
stub length `j(u) and assume vj 6= p(u). In Tj(u) we could still count the value long(vj),
but in Tj+1(u) the stub length of u implies that vj can contribute only to short(vj). Then
Tj+1(u) = Tj(u)− long(vj) + short(vj). If vj = p(u), then the two values Tj(u) and Tj+1(u)
are equal as the corresponding change in stub length has no effect on the children of u.
Computing short(u) and long(u) clearly takes O(k) time.

So by solving Recurrence (1) in O(mk) time we find an optimal solution to the MaxSPED
problem on G with drawing Γ using standard backtracking from max{T0(r), . . . , Tdeg(r)(r)}
for the root r of C. Since the intersection graph C is a tree with O(m) edges it can be
computed in O(m logm) time and we obtain the following theorem.

I Theorem 4.1. Let G be a simple graph with m edges and Γ a straight-line drawing of G.
If the intersection graph C = (V,E) of G is a tree with maximum degree k ∈ N, then problem
MaxSPED can be solved in O(mk +m logm) time and space.

4.2 Cactus graphs
We now generalize our previous algorithm to cactus graphs. Due to space constraints we
provide only a sketch of the arguments and omit further details. Let the intersection graph
C = (V,E) be a cactus graph, i.e. a simple graph in which no edge e ∈ E is part of more than
one cycle. For a cactus graph C the block-cut tree is an arbitrarily rooted tree T = (V, E),
where V contains a node for every cycle and for every cut vertex in C. We call a node u ∈ V a
block node if it represents an induced cycle on vertices V (u) ⊆ V and an articulation node of
the cut vertex a(u) = v ∈ V otherwise. We have an edge uv ∈ E between a block node u and
an articulation node v whenever a(v) ∈ V (u) and an edge uv ∈ E between two articulation
nodes whenever a(u)a(v) ∈ E. We re-use the notation p(u) and c(u) to refer to the parent
and to the children of a node u ∈ V.

We further define for each node u ∈ V two indices ip(u) ≤ iq(u). For an articulation node
u, ip and iq are the indices corresponding to the stub lengths induced by the intersection
points of s(a(u)) and its neighbors in C among the vertex set of p(u). For a block node u,
ip and iq are the indices corresponding to the intersection points of the parent’s segment

EuroCG’18



50:6 Maximizing Ink in Symmetric Partial Edge Drawings of k-plane Graphs

s(a(p(u))) with its neighbors in V (u). Similar to Section 4.1 we now define three values for
each articulation node u ∈ V with degree δ:

long(u) = max{T0(u), . . . , Tδ(u)}
mid(u) = max{T1(u), . . . , Tiq (u)}

short(u) = max{T1(u), . . . , Tip(u)}.

Further, we define the recurrence Ti(u) for all articulation nodes u ∈ V:

Ti(u) = `i(a(u)) +
∑
v∈c(u)


Tip(v)(v) if 1 ≤ i < ip(v)
Tiq(v)(v) if ip(v) < i ≤ iq(v)
T0(v) otherwise.

(2)

For a block node u ∈ V we cut open the cycle it represents at vertex a(p(u)) (refer to
Bruckdorfer et al. [4] for details) and consider the three relevant stub lengths of the parent’s
segment s(a(p(u))) induced by ip(u) and iq(u) and the whole segment. The resulting subgraph
is a path on V (u) with attached children that are articulation vertices in T , so we can apply
our algorithm of Section 4.1 with minor modifications. Once all values in the subgraph of
block node u are computed, we can derive the values Ti(u) for the block node u.

Correctness can be proved by modifying the inductive arguments of Section 4.1 accordingly.
Combining the linear running time for cycles of Bruckdorfer et al. [4] with the running time
for trees of Theorem 4.1 we can argue that cactus graphs can in fact be handled in the same
time and space bounds as trees.

I Theorem 4.2. Let G be a simple graph with m edges and Γ a straight-line drawing of G.
If the intersection graph C = (V,E) of G is a cactus with maximum degree k ∈ N, problem
MaxSPED can be solved in O(mk +m logm) time and space.
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