
3D-Disk-Packing∗

Helmut Alt1, Otfried Cheong2, Ji-won Park2, and Nadja Scharf1

1 Institut für Informatik, Freie Universität Berlin
alt@mi.fu-berlin.de,nadja.scharf@fu-berlin.de

2 School of Computing, KAIST
otfried@kaist.edu,wldnjs1727@kaist.ac.kr

Abstract
In this article, we consider the problem of finding in three dimensions a minimum volume axis-
parallel cuboid container into which a given set of unit size disks can be packed under translations.
The problem is neither known to be NP-hard nor to be in NP. We give a constant factor approxi-
mation algorithm based on reduction to finding a shortest Hamiltonian path in a weighted graph.
As a byproduct, we can show that there is no finite size container into which all unit disks can
be packed simultaneously.

1 Introduction

Packing a set of geometric objects in a nonoverlapping way into a minimum size container is
an intriguing problem and because of its practical significance it has been widely investigated.
For a survey see [1, 6] and the references therein. Even simple variants like packing a set
of rectangles into a rectangular container turn out to be NP-hard [4]. Whereas that simple
problem is in NP, in many cases not much is known about the true complexity of the problem.

Constant factor approximation algorithms of polynomial running time have been found
for many variants of the packing, in particular for finding minimum size rectangular or
convex containers for a set of convex polygons under translations [2], i.e., the objects may be
translated but rotations are not allowed. Also, approximation algorithms for rigid motions
(translations and rotations) are known in this case.

In three dimensions, approximation algorithms for packing cuboids or convex polyhedra
into minimum volume cuboid or convex containers are known if rigid motions are allowed [3].
It remains an open problem whether this is possible for translations only. In this paper, we
give a positive answer for a restricted set of possible objects, namely disks of unit radius and
axis-parallel cuboid containers. So far, our approximation factor is forbiddingly high but it
should be of theoretical interest that the problem, which is neither known to be NP-hard nor
to be in NP, can be approximated in polynomial time at all.

Packing disks in 3D is meant in the following sense: We say that two disks touch if their
intersection contains only one point and that two disks intersect if their intersection consists
of more than one point. By nonoverlapping, we mean that no two disks intersect whereas it
is allowed that two disks touch. The main problem we study in this work is then defined as
follows:

I Definition 1.1 (3D-3D-Disk-Packing). Given a set of unit disks by their unit normal vectors
in R3. The goal is to find

an axis-parallel box of minimum volume such that all disks can be packed without
overlapping under translation inside the box

∗ This work was partially supported by a fellowship within the FITweltweit program and by the Johann-
Gottfried-Herder program of the German Academic Exchange Service (DAAD).

34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

47:2 3D-Disk-Packing

and the actual packing of the disks inside the box.
We assume that no two disks are the same, i.e., no two normal vectors are parallel.

We will reduce approximating this problem with a constant factor to approximating the
following problem with a constant factor.

I Definition 1.2 (1D-3D-Disk-Packing). Given a set of nonidentical unit disks by their normal
vectors in three dimensional space and an additional vector defining the direction of a line.
The goal is to find an ordering of the disks with the following property: If the disks are
placed nonoverlappingly with their centers in this order on the line, the distance from the
center of the first to the center of the last disk is minimum. We call the distance of the
center of the first to the center of the last disk when stabbed by the line the length of the
ordering. See Figure 1 for a 2D example.

length of the ordering

stabbing line

1D unit disks in 2D

length of the ordering

Figure 1 A (nonoptimal) solution to the 1D-2D-Interval-Packing problem. Here, the unit disks
are unit line segments.

This problem then again will be reduced to finding the shortest Hamiltonian path in a
complete weighted graph.

Let a ∈ R3 be a vector. Define ha(D1, D2) to be the distance of the centers of the disks
D1 and D2 when placed with their centers on a line parallel to the vector a such that D1
and D2 touch. ha(D1, D2) can be computed easily from the normal vectors of D1 and D2
and it can be shown that ha(D1, D2) = ha(D2, D1). The following lemma will be used for
the reduction to Hamiltonian path.

I Lemma 1.3. For disks D1, D2, D3 and axis a, it holds that ha(D1, D2) + ha(D2, D3) ≥
ha(D1, D3), i.e., the triangle inequality holds.

We omit the proof due to space constraints. It can be shown by contradiction, assuming that
D1 touches D3 in a point x that is not part of D2. Then considering the triangle formed by
the centers of D1 and D3, and x, it can be shown that D2 cannot fit between D1 and D3.

2 Approximation Algorithms

Next, we will show how to reduce the 1D-3D-Disk-Packing problem to finding the shortest
Hamiltonian path in a complete weighted graph and obtain a constant factor approximation
in this way. Afterwards we will use this approximation algorithm to compute a constant
factor approximation for 3D-3D-Disk-Packing.

2.1 1D-3D-Disk-Packing Approximation
Algorithm 1 computes an approximate 1D-3D-Disk-Packing. In fact, since an ordering of the
disks directly corresponds to a Hamiltonian path in G, the triangle inequality holds in G by

H. Alt, O. Cheong, J. Park, and N. Scharf 47:3

Lemma 1.3, and Hoogeveen’s algorithm computes a 5
3 -approximation for it in polynomial

time. So, we get the following theorem.

Input: n unit disks given by their normal vectors, vector a
Output: Ordering of the n disks

1 Generate complete weighted graph G with n vertices:
2 Set the weight of the edge (i, j) to ha(Di, Dj) for all 1 ≤ i, j ≤ n, i 6= j;
3 For all 1 ≤ i, j ≤ n with i 6= j, approximate shortest Hamiltonian path on the graph

with endpoints i and j with Hoogeveen’s algorithm [5] and determine the overall
shortest path;

4 return the ordering of the overall shortest path;
Algorithm 1: Approximation algorithm for 1D-3D-Disk-Packing

I Theorem 2.1. Algorithm 1 computes a 5
3 -approximation for 1D-3D-Disk-Packing in

polynomial time.

In the next section, we will use Algorithm 1 to approximate 3D-3D-Disk-Packing.

2.2 3D-3D-Disk-Packing Approximation
We define wmin, dmin, hmin to be the maximum extension of any disk in x-,y-, and z-direction
respectively and, thus, the minimum width, depth, and height any container for the disks
must have. Let w = s · wmin and d = s · dmin for a constant s > 1 to be defined later.
Algorithm 2 computes an approximate 3D-3D-Disk-Packing.

dmin

wmin

hmin

Figure 2 Example container for s = 10.5. The green boxes are the enlarged pieces obtained by
dividing the container-box computed by Algorithm 1 for the disks in X . Here, they form two layers.
The blue boxes contain disks from Y and the orange boxes contain disks from Z.

To analyze Algorithm 2 we first give a bound on W , D, and H. Observe that the angle
between the normal vector of a disk and the axis it gets stabbed by in Algorithm 2 can be at
most ϕ = arccos(1√

3).

I Lemma 2.2. It holds that

W ≤ 109 · OPT
dminhmin

, D ≤ 109 · OPT
wminhmin

, H ≤ 109 · OPT
wmindmin

,

where OPT is the volume of an optimal container.

EuroCG’18

47:4 3D-Disk-Packing

Input: n unit disks given by their normal vectors
Output: nonoverlapping packing of the disks into an axis-parallel box

1 Partition the n disks into three sets X ,Y,Z according to the axis their normal vectors
form the smallest angle with;

2 Call Algorithm 1 for the disks in X and vector (1, 0, 0). If Lx is the length of the
returned ordering, this can be interpreted as a packing of the disks in X into an
axis-parallel box of width W = Lx + wmin, depth dmin, and height hmin;

3 Analogously to Step 2 get packings for the disks in Y and Z into boxes of dimensions
wmin ×D × hmin and wmin × dmin ×H respectively;

4 Divide the box obtained for X into pieces of width w − wmin;
5 Assign each disk to the piece its point with smallest x-coordinate lies in;
6 Enlarge each piece from width w − wmin to width w such that all disks that are

assigned to a piece are completely contained in that piece;
7 Divide the box obtained for Y into pieces of depth d analogously to Steps 4 to 6;
8 Divide the box obtained for Z into

⌊
w

wmin

⌋ ⌊
d

dmin

⌋
pieces of width wmin and depth dmin;

9 Analogously to Steps 5 and 6, enlarge the height of each piece by hmin;
10 Arrange the pieces to a box of width w and depth d. The pieces containing disks of X

form
⌈⌈

W
w−wmin

⌉
/
⌊

d
dmin

⌋⌉
layers of height hmin, the pieces containing disks of Y form⌈⌈

D
d−dmin

⌉
/
⌊

w
wmin

⌋⌉
layers of height hmin, and the pieces containing disks from Z

form one layer of height H/
(⌊

w
wmin

⌋ ⌊
d

dmin

⌋)
+ hmin (See Figure 2 for an example);

11 return the resulting box with the packed disks;
Algorithm 2: Approximation algorithm for 3D-3D-Disk-Packing

Proof. Consider an optimal container with width WOPT, depth DOPT, and height HOPT
and let X ,Y,Z be the partition of disks into subsets as in Algorithm 2. Furthermore consider
a grid with some side length g on the x-z-plane and lines parallel to the y-axis through the
grid cell centers. Then, each point has distance at most g√

2 to the closest line. So, every disk
in Y is stabbed by a line in a point of distance at most g√

2 sin(π
2−ϕ) from the disk center if

g is small enough, i.e. cg < 1, where c = 1√
2 sin(π

2−ϕ) =
√

3
2 . See Figure 3 for illustration.

Therefore, each disk in Y contains a disk of radius 1− cg stabbed by a line through its center.

≤ ϕ≥ π
2 − ϕ

≤ g√
2

unit disk

normal vector
of disk

disk center

stabbing line

Figure 3 Distance of a disk center to the stabbing line

So, by placing the line segments that are the intersection of the container and the lines

H. Alt, O. Cheong, J. Park, and N. Scharf 47:5

behind each other so that they touch, we get a solution to the 1D-3D-Disk-Packing-Problem
for the disks in Y but with radius 1− cg. By stretching this solution by 1/ (1− cg), we get
a solution for disks of radius 1. Let LOPTY be the length of an optimal solution for the
1D-3D-Disk-Packing problem for the disks in Y . Then, this length can be at most the length
of our solution, i.e.,

LOPTY ≤
⌈
HOPT

g

⌉⌈
WOPT

g

⌉
DOPT ·

1
1− cg .

By using wmin, hmin ≤ 2 and WOPT ≥ wmin, HOPT ≥ hmin, it can be shown that

LOPTY ≤
(g + 2)2

g2 (1− cg) ·
OPT

wminhmin
. (1)

Since we use Algorithm 1 to compute a 1D-3D-Disk-Packing solution for Y, we get by
Theorem 2.1

D ≤ 5
3 · LOPTY + dmin,

where the extra term dmin comes from the fact that the length of a 1D-3D-Disk-Packing is
defined as the distance of the center of the first disk to the center of the last disk and we are
interested in the total depth of the packing. By inequality (1),

Dwminhmin ≤

(
5 (g + 2)2

3g2 (1− cg) + 1
)

OPT.

Optimizing for g yields g =
√

1
3
(
27 + 4

√
6
)
− 3 and a factor of approximately 108.49. The

calculations for W and H are analogous. This implies the lemma. J

Now, we are ready to state the main theorem of this article.

I Theorem 2.3. Algorithm 2 computes a 593-approximation for 3D-3D-Disk-Packing in
polynomial time.

Proof. The container computed by Algorithm 2 is a box with base area w · d and height⌈⌈
W

w−wmin

⌉
/
⌊

d
dmin

⌋⌉
hmin +

⌈⌈
D

d−dmin

⌉
/
⌊

w
wmin

⌋⌉
hmin + H/

(⌊
w

wmin

⌋ ⌊
d

dmin

⌋)
+ hmin (See

step 10 in Algorithm 2). Using Lemma 2.2, the definition of w and d (see the begin-
ning of this section), and wmindminhmin ≤ OPT it can be shown that the volume of the
container is at most

s2

(
2 · 109

s−1 + 1
s− 1 + 109

(s− 1)2 + 3
)

OPT.

Optimizing for s gives a long term as approximation factor that is smaller than 593. J

3 Unbounded containers are necessary

In this section, we will conclude from our previous results that there is no bounded size
container into which all unit disks can be packed. More precisely, we will show:

EuroCG’18

47:6 3D-Disk-Packing

I Theorem 3.1. Packing a set of n unit disks requires a container of size Ω(
√
n) in the

worst case.

Proof. In the following, we will show that Ω(
√
n) is a lower bound for the container con-

structed by Algorithm 2 which is within a constant factor of the optimal container. From
that the theorem follows immediately.

Identify any unit disk with its normal vector in the unit sphere S2. Consider a sufficiently
small rectangular surface patch P = I1 × I2 ⊂ S2 where I1, I2 are nonempty intervals of
spherical coordinates. Let P be symmetric to the equator and I1 and I2 sufficiently small,
so that all disks corresponding to points in P are stabbed by the same axis in Algorithm 2.
Furthermore, for any two points in P the shorter grand circle segment connecting them
should lie completely inside P . For a given ε > 0, subdivide P by horizontal and vertical
lines at distance ε, yielding a grid of points in P of size n ≥ c1/ε

2 for some constant c1 > 0.
Let A be the set of unit disks corresponding to the grid points. With standard geometric
arguments it is possible to prove the following
I Claim 3.2. There is a constant c2 > 0 such that for any two grid points having distance δ
on S2 the centers of the corresponding unit disks have distance at least c2δ when stabbed
consecutively on a line as in Algorithm 1.
Now observe, that if P is chosen close enough to the equator, any two distinct points in
A have distance at least c3ε for some constant c3 > 0. Therefore, by the previous claim
the distance of the centers of the corresponding unit disks, when stabbed consecutively, is
at least c4ε for some constant c4 > 0. Consequently the length of a line segment stabbing
all disks in A must be at least c4ε(n− 1). Since n ≥ c1/ε

2, this is in Ω(
√
n) as ε tends to

0. From Lemma 2.2 follows that this is also a lower bound for the volume of a container
computed by Algorithm 2. J

From Theorem 3.1, we obtain immediately

I Corollary 3.3. There is no finite size container into which all unit disks can be packed.

This seems obvious at first glance, but observe that for the case of one-dimensional objects it
is false. In fact, all unit length line segments can be packed in arbitrary dimension d ≥ 2
into a container of finite size for example by placing them with one endpoint in the origin.

References
1 Helmut Alt. Computational aspects of packing problems. Bulletin of the EATCS, 118,

2016.
2 Helmut Alt, Mark de Berg, and Christian Knauer. Approximating Minimum-Area Rectan-

gular and Convex Containers for Packing Convex Polygons. JoCG, 8(1):1–10, 2017.
3 Helmut Alt and Nadja Scharf. Approximating Smallest Containers for Packing Three-

Dimensional Convex Objects. In Proc. 27th Annu. Internat. Sympos. Algorithms Comput.
(ISAAC), 2016.

4 Robert J. Fowler, Mike Paterson, and Steven L. Tanimoto. Optimal Packing and Covering
in the Plane are NP-Complete. Inf. Process. Lett., 12(3):133–137, 1981.

5 J. A. Hoogeveen. Analysis of Christofides’ Heuristic: Some Paths Are More Difficult Than
Cycles. Oper. Res. Lett., 10(5):291–295, 1991.

6 Guntram Scheithauer. Zuschnitt- und Packungsoptimierung: Problemstellungen, Model-
lierungstechniken, Lösungsmethoden. Vieweg+Teubner Verlag, 2008.

	Introduction
	Approximation Algorithms
	1D-3D-Disk-Packing Approximation
	3D-3D-Disk-Packing Approximation

	Unbounded containers are necessary

