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Abstract
Rectangulations are partitions of a square into axis-aligned rectangles. A number of results
provide bijections between combinatorial equivalence classes of rectangulations and families of
pattern-avoiding permutations. Other results deal with local changes involving a single edge of
a rectangulation, referred to as flips, edge rotations, or edge pivoting. Such operations induce a
graph on equivalence classes of rectangulations, related to so-called flip graphs on triangulations
and other families of geometric partitions. In this note, we consider a family of flip operations
on the equivalence classes of diagonal rectangulations, and their interpretation as transpositions
in the associated Baxter permutations, avoiding the vincular patterns t3142, 2413u. This com-
plements results by Law and Reading (JCTA, 2012) and provides a complete characterization of
flip operations on diagonal rectangulations, in both geometric and combinatorial terms.

1 Introduction

In order to understand the underlying combinatorial structure of geometric space partitions
such as triangle meshes or floorplans, it is often useful to define elementary operations
that modify this structure locally. We can then connect distinct partitions using sequences
of such operations. In triangulations, such a notion is known under the term of flip. A
flip in a triangulation is typically defined as the replacement of an edge shared by two
triangles forming a convex quadrilateral by the other diagonal of the quadrilateral. This
allows the definition of a flip graph, the vertices of which are triangulations, and in which
two triangulations are adjacent whenever one can be obtained from the other by a single
flip. Flip graphs have applications in enumeration and random generation of geometric
partitions as well as optimization, and have also been shown to have intimate links with
many important structures in combinatorics, such as the Catalan objects, the Tamari lattice
and the associahedra, cyclohedra, and partial cubes.

The objects of interest in this paper are rectangulations, defined as partitions of a square
into axis-aligned rectangles. There exists a collection of results establishing bijections between
classes of rectangulations and pattern-avoiding permutations [2, 4, 5, 8, 9]. A permutation σ
is said to contain the pattern π, where π is another permutation, whenever there exists a
subsequence of σ whose elements are in the same relative order as the elements of π. Pattern-
avoiding permutations are families of permutations that do not contain any occurrence of one
or more given patterns. We use the more general vincular notation for forbidden patterns, in
which an underlined pair of elements indicates that they need to occur consecutively in the
permutation . For instance, forbidding the pattern 3142 amounts to forbidding all occurrences
of the pattern 3142 with the added condition that 1 and 4 must occur consecutively.
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Different types of local operations can be defined on rectangulations, which have been
given different names, such as flips, local moves, edge rotations, or edge pivoting. In general,
they all consist in replacing a horizontal edge of the rectangulation by a vertical one, or
vice versa. In what follows, and with a slight abuse of terminology, we will refer to all those
operations under the common name of flip.

Law and Reading [8] described a family of flips on rectangulations and provided an elegant
combinatorial characterization. They showed that two rectangulations were connected by
such a flip if and only if they were in the cover relation of a certain natural lattice structure,
analogous to the Tamari lattice on triangulations. This lattice was also studied by Giraudo [7]
under the name of Baxter lattice. Ackerman, Barequet and Pinter [3] defined related flip
operations on rectangulations of a point set. These rectangulations are defined on a given
point set so that every point lies on a segment of the rectangulation, and vice versa. Ackerman
et al. studied the flip graph induced by these operations [1]. The flips considered by Ackerman
et al. are the same as the ones in Law and Reading whenever the point set lies on the diagonal.
Their results include a linear upper bound on the diameter of this flip graph (see [1], Section
4).

Our results. We first describe a known bijection from diagonal rectangulations to Baxter
permutations, avoiding the vincular patterns t3142, 2413u. Then we consider flip operations
on diagonal rectangulations, classify the different kinds of flips and give a combinatorial
interpretation for each. Those involving edges that do not intersect the diagonal of the square,
have already been characterized by Law and Reading [8]. For the others, we prove that the
obtained flip graph is isomorphic to the graph on the corresponding Baxter permutations in
which two Baxter permutations are adjacent whenever they differ by a single transposition of
consecutive elements. This provides a complete one-to-one correspondence not only between
rectangulations and Baxter permutations, but also between these sets of natural operations
on the geometric and combinatorial structures. Due to space constraints, all proofs are
omitted from this abstract, but can be found in the arXiv version.1

2 Diagonal rectangulations and Baxter permutations

The material of this section is adapted from Ackerman et al. [2], and Law and Reading [8]. A
description of an essentially equivalent map in terms of pairs of twin binary trees was given
by Felsner et al. [6].

Figure 1 A diagonal
rectangulation.

A rectangulation is a partition of the unit square into axis-
aligned rectangles. We define vertices as corners of the rectangles,
and edges as line segments connecting two vertices, with no other
vertex in between. The term segment is used to refer to inclu-
sionwise maximal line segments of the rectangulation, possibly
composed of several edges. We consider only rectangulations in
which every vertex has exactly three incident edges, except the
four vertices of the square, which have exactly two incident edges.
We classify the vertices into four self-explanatory classes denoted
by $, %, J, and K.

Figure 2 Forbidden con-
figurations.

We refer to the top-left to bottom-right diagonal of the square
as the main diagonal. A diagonal rectangulation is a rectangu-
lation in which every rectangle intersects the main diagonal. An

1 https://arxiv.org/abs/1712.07919
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example of diagonal rectangulation is given in Figure 1. However, we actually define diagonal
rectangulations as equivalence classes of such partitions of the square, with respect to changes
of vertex locations that preserve the adjacency relation between the rectangles. We have the
following characterization of (the equivalence classes of) diagonal rectangulations.

� Lemma 2.1. A rectangulation is diagonal if and only if it does not contain one of the two
forbidden configurations of Figure 2.

Figure 3 Wall slides.

We can also consider the equivalence classes of rectangulations
for which we can change the adjacency relation between the
rectangles. Two rectangulations are then said to be equivalent
when one can be obtained from the other by performing so-called
wall slides, as shown on Figure 3. The equivalence relation is
sometimes referred to as R-equivalence [4], and the R-equivalence
classes are called mosaic floorplans.

� Lemma 2.2. Every mosaic floorplan, or R-equivalence class, has a unique representative
as a diagonal rectangulation.
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Figure 4 Illustration of the map B on the
rectangulation R of Figure 1. The obtained
Baxter permutation is BpRq � 4651372.

We now describe the bijection B between
diagonal rectangulations and Baxter permuta-
tions, which avoid the patterns t3142, 2413u.
In order to define B, we define two linear or-
ders on the rectangles of a rectangulation: the
n-order and the m-order. The n-order is the
order in which the rectangles are intersected
by the main diagonal, from top-left to bottom-
right. The m-order is obtained by taking the
representative mR of R in the equivalence class
of mosaic floorplans such that the bottom-left

to top-right diagonal intersects every rectangle. By Lemma 2.2, this representative exists
and is unique. The order in which this diagonal intersects the rectangle is the m-order. The
map B can then be described as follows:

1. label the rectangles with respect to the n-order,
2. enumerate the labels of the rectangles in the m-order.

� Theorem 2.3. [2] The map B is a bijection between diagonal rectangulations with n

rectangles and Baxter permutations on n elements.

3 Flips

We consider only flipping edges that are not part of the boundary of the square. We say
that an edge is matched at one of its endpoints whenever this endpoint is incident to another
edge with the same (horizontal/vertical) orientation.

Simple flips involve edges cutting a rectangle into two rectangles, which are precisely
the edges that are unmatched at both endpoints. In a diagonal rectangulation, all such
edges must intersect the diagonal. A simple flip consists in replacing such a horizontal edge
by a vertical one, or vice versa. When replacing the edge, we can always do it in such a
way that the resulting rectangulation remains diagonal. An example of simple flip in the
rectangulation of Figure 1 is given in Figure 5a.
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(a) Simple flips (b) Flip involving an edge that does not intersect
the diagonal

(c) Flip involving an edge intersecting the diagonal (d) The four types of unflippable edges matched
at only one endpoint

Figure 5 Flips in diagonal rectangulations.

In some cases, an edge that is matched only at one of its endpoints can be rotated about
this endpoint to yield another diagonal rectangulation. Examples of such flips are given in
Figures 5b and 5c.

However, not all edges can be flipped. An edge is said to be unflippable in two cases.
If the edge is matched at both endpoints, and if rotating this edge about any of the two
endpoints yields a partition that is not a rectangulation. It can also be the case that an edge
is matched at only one endpoint, and rotating it about this endpoint yields a rectangulation,
but the obtained rectangulation is not diagonal. Unflippable edges matched at only one
endpoint can be shown to come in four types, illustrated in Figure 5d.

4 A complete combinatorial characterization of flips

A transposition maps a permutation π � πp1qπp2q . . . πpjq . . . πpkq . . . πpnq to a permutation
π1 � πp1qπp2q . . . πpkq . . . πpjq . . . πpnq. Furthermore, if the two values j and k satisfy |πpjq �
πpkq| � 1, then the transposition is said to be a transposition of consecutive elements. If
k � j � 1, then the transposition is said to be an adjacent transposition. Note that an
adjacent transposition corresponds to a transposition of consecutive elements in the inverse
permutation.

We first summarize a result of Law and Reading, characterizing some of the flip operations
described above as a cover relation in a lattice, which can be found in Section 7 of [8]. In
what follows, we will use the term Law-Reading flips to refer to those flips. In the original
description (Section 7 of [8]), Law-Reading flippable edges are defined in terms of a locking
operation. The following lemma gives a simple alternative definition of Law-Reading flips.

� Lemma 4.1. Law-Reading flips are exactly the flips that are either simple, or that involve
the rotation of a flippable edge that does not intersect the diagonal, as illustrated in Figure 5b.

We now give a combinatorial characterization of Law-Reading flips proved in [8] using the
map from rectangulations to Baxter permutations. Before stating the result, we must define
the lattice dRecn of diagonal rectangulations with n rectangles.

The weak order (also known as the weak Bruhat order) is a partial order on the set Sn of
permutations of n elements in which a permutation π is smaller than another permutation
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π1 whenever the set of inversions of π is a subset of the set of inversions of π1. The cover
relation of the weak order is the set of pairs of permutations that differ by a single adjacent
transposition. The lattice dRecn on diagonal rectangulations can be defined as the restriction
of the weak order to the Baxter permutations corresponding to diagonal rectangulations
with n rectangles. Recall that BpRq is the Baxter permutation associated with the diagonal
rectangulation R.

� Theorem 4.2 (Law and Reading [8]). Let R and R1 be two diagonal rectangulations. Then
R and R1 are connected by a Law-Reading flip if and only if BpRq and BpR1q are in a cover
relation in dRecn.

This means that the two Baxter permutations corresponding to the pair of rectangula-
tions are related by a monotone sequence of adjacent transpositions, and the intermediate
permutations, if any, are not Baxter permutations.

We define Barcelona flips as those flips that involve a flippable edge intersecting the main
diagonal. Barcelona flips are either simple flips, or flips involving the rotation of an edge
intersecting the diagonal, as shown in Figure 5c.

� Lemma 4.3. Let R and R1 be two diagonal rectangulations that are connected by a Barcelona
flip. Then mR and mR1 are connected by a Law-Reading flip.

e

f
g

h

e

f g

h

Figure 6 Illustration of Lemma 4.3:
edges that can be flipped by a Barcelona
flip in R (left) can be flipped by a Law-
Reading flip in mR (right).

The lemma is illustrated in Figure 6. Combining
the above lemma with an observation on the way
to obtain mR from the inverse permutation BpRq�1,
and the characterization of Law-Reading flips in The-
orem 4.2, we can already conclude that a Barcelona
flip in a rectangulation R corresponds to a sequence
of adjacent transpositions in BpRq�1, that is, a se-
quence of transpositions of consecutive elements in
BpRq. In fact, we can prove the following precise
correspondence, involving only single transpositions.

� Lemma 4.4. Let R and R1 be two diagonal rectangulations. Then R and R1 are connected
by a Barcelona flip if and only if BpRq and BpR1q differ by a single transposition of consecutive
elements.

The following theorem summarizes our results.

� Theorem 4.5. Two diagonal rectangulations R and R1 are connected by a flip if and only
if one of these two conditions hold:

BpRq and BpR1q differ by a single transposition of consecutive elements,
BpRq and BpR1q are in a cover relation in dRecn.

Furthermore, R and R1 are connected by a simple flip if and only if both conditions hold.

The flip graph on diagonal rectangulations with four rectangles is given in Figure 7.
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Figure 7 The flip graph on diagonal rectangulations made of four rectangles. In each rectangula-
tion, the green edges are simply-flippable, and the blue and red edges are respectively Law-Reading
and Barcelona-flippable, but not simply flippable.
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