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Abstract
We introduce a new distance measure for comparing polygonal chains: the k-Fréchet distance.
As the name implies it is closely related to the well-studied Fréchet distance but allows to find
similarities between curves that resemble each other only piecewise. As we will explain it pro-
vides a nice transition between (weak) Fréchet distance and Hausdorff distance. We prove NP-
completeness for the k-Fréchet distance of polygonal curves in different variants and furthermore
APX-completeness for the optimization version of our problem, discuss algorithmic approaches
and present open questions.

1 Introduction

During the past decades several methods for comparing geometrical shapes have been studied
in a variety of applications, for example analysing geographic data, such as trajectories, or
comparing chemical structures, e.g. protein chains or human DNA.

The Fréchet distance has been well-studied in the past decades since it has proven to
be very helpful in applications such as the above mentioned geographic data analysis or
computer aided design. The Hausdorff distance, another similarity measure, has also proven
to be useful in applications and can be computed more efficiently than the Fréchet distance.
However, it provides us with less information by taking only the overall shape of curves into
consideration, not how they are traversed.

We introduce the k-Fréchet distance as a distance measure in between Hausdorff and
(weak) Fréchet distance. The k-Fréchet distance allows to compare shapes consisting of
several parts by cutting a curve into a number of subcurves where the subcurves resemble
each other in terms of the (weak) Fréchet distance. Therefore it allows to find similarities
between objects of rearranged pieces such as chemical structures or handwritten characters
and symbols.

Characterizing these distance measures in the free space shows that the k-Fréchet distance
bridges between the (weak) Fréchet distance and Hausdorff distance (see below for details):
the weak Fréchet distance can be characterized by one component in the free space projecting
surjectively onto both parameter spaces, and the Hausdorff distance can be characterized
by all components of the free space projecting surjectively onto both parameters. For the
k-Fréchet distance we ask that k components of the free space project surjectively onto both
parameter spaces.

This paper is organized as follows: first we recall some necessary definitions and formally
define the k-Fréchet distance. In Section 3 we prove NP- and APX-completeness of the
k-Fréchet problem. In Section 4 we present an approximation algorithm of factor 2 as well
as an exact algorithm which runs in polynomial time for fixed k. We conclude the paper
with open questions.
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2 Definitions

Recall the Fréchet distance [1], a well-known measure for curves, which is defined as follows:
For curves P,Q : [0, 1]→ [0, 1] the Fréchet distance is given by

δF (P,Q) = inf
σ

max
t∈[0,1]

‖P (t)−Q(σ(t))‖,

where the reparametrisations σ : [0, 1]→ [0, 1] range over all orientation-preserving homeomor-
phisms. A variant is the weak Fréchet distance δwF , where both curves are reparameterised
by σ and τ , respectively, which range over all continuous surjective functions.

A well-known characterisation which is key to efficient algorithms for computing both
weak and (strong) Fréchet distance [1] uses the free space diagram. First we recall the
free space Fε:

Fε(P,Q) = {(t1, t2) ∈ [0, 1]2 : ‖P (t1)−Q(t2)‖ 6 ε}.

The free space diagram puts this information into a (n×m)-grid, where n and m are the
number of segments in P and Q, respectively.

The Fréchet distance of two curves is at most a given value ε if there exists a monotone
path through the free space connecting the bottom left to the top right corner. For the
weak Fréchet distance to equal at most ε such a path need not be monotone. The Hausdorff
distance δH can be characterised as the free space projecting surjectively onto both parameter
spaces.

We define the k-Fréchet distance δkF as in between Hausdorff and weak Fréchet distance
using only a constant number k of components in the free space to project onto both
parameter spaces:

δkF (P,Q) = inf
σ,τ

max
t∈[0,1]

‖P (σ(t))−Q(τ(t))‖,

where now σ, τ : [0, 1]→ [0, 1] range over all surjective functions which are piecewise defined,
allowing at most k − 1 jump discontinouities, such that the images of the continuous parts
partition the curve. That is, we cut the curves P and Q into at most k pieces or subcurves
such that two resembling subcurves have small weak Fréchet distance. For the decision version
of the problem, we ask whether the weak Fréchet distance between pieces can be bounded a
given value ε (note that k is a fixed upper bound of cuts here). Naturally, for a fixed distance
ε, we would like to cut the curves into as few subcurves as possible (optimization version).

We will also consider the variant where we use (strong) Fréchet distance instead of weak
Fréchet distance for the subcurves, that is the reparameterizations σ, τ have to be piecewise
homeomorphisms. However, as the weak Fréchet distance (arguably) results in the more
natural definition for the k-Fréchet distance we use it as the standard variant.

By definition k-Fréchet distance lies in between Hausdorff and (weak) Fréchet distance

δH(P,Q) ≤ δkF (P,Q) ≤ δF (P,Q).

Also, the k-Fréchet distance decreases as k increases, and for k = 1 it equals weak Fréchet
distance, whereas for k ≥ n2 it equals Hausdorff distance.

3 NP-Completeness

I Theorem 3.1. Deciding wether δkF (P,Q) ≤ ε for fixed ε and k is NP-complete. Finding
the minimum number of cuts (or components) k is NP-complete as well.
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Proof. First note that we can easily verify a given solution to our problem: we compute the
free space diagram of P and Q and identify the free space components resembling mappings
of the respective subcurves. Next we need to check whether the union of these components
projects surjectively onto both parameter spaces. This can be done in polynomial time,
therefore we have k-Fréchet ∈ NP.

To show NP-hardness of our problem we reduce from the Minimum Common String
Partition (MCSP)-Problem. Let us first recall the MCSP-Problem [7]: Given two strings
A and B we want to partition them into substrings such that A = A1A2 . . . An and B =
B1B2 . . . Bn where for all i = 1, . . . , n holds that Ai = Bj for some j ∈ {1, . . . , n}.

There are several variants of MCSP, such as k-MCSP where each letter occurs at most
k times in each string (which was proven to be an NP-hard optimization problem in [5])
or MCSPc where there are at most c elements in the alphabet of the strings (an NP-hard
problem even for the decision version, presented in [4]). Both 2-MCSP and MCSP2 have
been proven to be NP-hard (therefore MCSP is NP-hard as well), the first variant is even
APX-hard ( [5], [7]).

Now, for an instance of MCSP we construct curves P and Q as follows: first we subdivide
the unit interval into c intervals of equal size, where c denotes the number of different letters
in both strings (which is bounded since we consider finite strings). We then identify every
letter of the alphabet Σ with a number in {1, . . . , c}. Next we transform string A into a
curve P and string B into curve Q: for every letter l in a string we form a polygonal chain
consisting of five segments: the first connecting ( 1

2 , 0) to ( 1
2 ,

l
c ) vertically, a second connecting

( 1
2 ,

l
c ) to (0, lc ) horizontally, followed by (0, lc ) to (1, lc ), back to ( 1

2 ,
l
c ) and finally back to

(0, lc ). The result is a T -shape, as shown in Figure 1.

Figure 1 A T -shaped curve fragment resembling the letter l in a string

Since beginning and ending of each T -shaped curve fragment is the same, the fragments
can be concatenated. In this manner we produce curves consisting of as many T -shapes as
there are letters in the strings, both curves lying on top of each other. We can choose ε to
be any number smaller than 1/c, e.g. 1/2c.

The T -shapes only differ by length of their vertical line segments, and each length
corresponds to a certain letter of the respective string. By choosing ε < 1/c, T -shapes
resembling different letters cannot be matched. Hence our construction leads to the following
result for all pairs of subcurves:

∀Pi, Qj : Pi = Qj ⇔ δwF (Pi, Qi) 6 ε.

In fact we even have δwF (Pi, Qi) = 0 6 ε, since we place Q on top of P and construct
identical concatenations of T -shaped subcurves for equal substrings. Because all letters start
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in ( 1
2 , 0), we get that two substrings are equal iff the respective subcurves have weak Fréchet

distance less than ε.
In the free space the following picture arises: we get components in the free space of P

and Q resembling equal substrings of A and B. Hence, the longer identical substrings, the
larger their resembling component in the free space. Therefore finding a minimum collection
of k components projecting surjectively onto the parameter spaces equals finding a minimum
number of blocks where each block of A equals a block in B. See Figure 2 for an example.

Figure 2 The curves and resulting free space diagram corresponding to strings A and B.

Note that the antenna-like symbol in the bottom left corner consists of the actual curves
P and Q that resemble the input strings A and B. To make the curves more visible we
added illustrations P̃ , Q̃ above.

For the decision problem we need to identify a collection of components of size at most k,
which is a constant and part of the input in this case, that projects surjectively onto the
parameter spaces. As discussed this corresponds to the problem of finding a common string
partition consisting of at most k substrings per string. The latter has been proven to be
NP-hard [7] and the result transfers to our problem.

When we use (strong) Fréchet distance instead of weak Fréchet distance for the subcurves,
our reduction still works. In fact, even a simpler construction suffices for this variant:
we construct the curves as before but omit the horizontal line segments, i.e., we only get
(one-dimensional) "I"-shaped subcurves. Again, we get that two letters are equal iff the
corresponding subcurves have Fréchet distance 0. Observe that this simplified reduction does
not work for the weak Fréchet distance which allows to backtrack. Therefore we use the
T -shape for the weak Fréchet, which makes backtracking ineffective, in the sense that it is
impossible to map a subcurve of P representing a letter of A to a subcurve of Q representing
a letter of B with reversed orientation. J

I Remark. Our reduction from MCSP also works for the variants MCSPc and k-MCSP,
which translate to curves with at most c different heights of T -shapes (so basically the same
curves as above) and curves with no more than k identical copies of T -shapes of each height.

I Theorem 3.2. The optimization version of the k-Fréchet-problem is APX-complete.
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Proof. The reduction above provides a one-to-one relationship between MCSP and k-Fréchet,
as any selection of components can be directly translated into common substrings. Therefore
a selection of components (say, of quality k + c with c being a constant and k the size of an
optimal solution) corresponds to a division of the input strings into the exact same number of
substrings, thus proving that our reduction is a strict AP-reduction. Since k-MCSP is APX-
hard (in the optimization version), so is the k-Fréchet-Problem. APX-completeness follows
from the existence of a 2-approximation algorithm which we present in the Section 4. J

I Lemma 3.3. For curves in one dimension, that is P,Q : [0, 1] → R, k-Fréchet distance
equals Hausdorff and weak Fréchet distance, whereas strong k-Fréchet distance remains
NP-complete.

Proof. Equality of k-Fréchet distance, Hausdorff and weak Fréchet distance can be shown
using the Mountain Climbing Theorem, which states that it is possible for two climbers to
proceed from foot to top of a mountain while always remaining on equal height. Of course,
the climbers have to start at the same time but on different sides of the same mountain [2], [6].
For the strong Fréchet distance as underlying distance measure the simplified reduction
mentioned above (I-shapes) shows NP-hardness for one-dimensional curves. J

4 Algorithmic approaches

First, we observe that a brute force approach results in a runtime exponential in k, and then
present an efficient 2-approximation algorithm (regarding the size of the found selection of
components) using a greedy approach.
I Remark. The k-Fréchet distance can be computed in O(k · n2k) time.

The brute force approach simply checks for all selections of k components of the free
space whether their joint projections cover both parameter spaces. That means we have
to check at most

(
n2

k

)
possible combinations of components, which results in a runtime of

O(k · n2k) for fixed k which is only feasible for very small k.
To approximately decide the k-Fréchet distance, we greedily choose a set of components

that cover both parameter spaces.
For this we compute the free space Fε, project its components onto the two parameter

spaces and interpret the projections as intervals. We store the intervals in sorted lists. For
each parameter space we then use a scan to greedily select the smallest number of intervals
that cover it. The worst case that might result is the following: the intervals we select
correspond to different components in the free space for the two parameter spaces, so that
the union of our selections is of size s1 + s2 where s1 and s2 are the number of selected
components for the respective parameter spaces. A different selection of size s = max(s1, s2)
might cover both parameter spaces but is not detected by the greedy scan. So the size of
our selection indicates whether δkF 6 ε: if it is smaller or equal to k the answer is positive,
i.e. δkF 6 ε, and if it is larger than 2k the answer is definitely negative. For any number of
selected components in between k and 2k we cannot rule out that there might be a smaller
selection of at most k components that covers the parameter spaces.

Computing the free space takes quadratic time. Sorting the lists adds another logarithmic
factor while the scan takes linear time in the number of intervals. All in all we get a runtime
of O(n2 logn).

I Theorem 4.1. The algorithm described above runs in O(n2 logn) time and finds a selection
of components that covers both parameter spaces iff one exists. A found selection contains at
worst twice the minimum number of components needed.
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We conjecture that the approximation factor 2 is probably not tight, as we were not able
to construct an example where it is. Showing that it is or that a better approximation factor
holds remains open.

5 Conclusion and further work

We introduced a new distance measure, the k-Fréchet distance, which lies in between Haus-
dorff and (weak) Fréchet distance. We showed NP-hardness of deciding two variants of this
distance between polygonal curves. Finding the minimum number of subcurves is even APX-
hard. Furthermore, we presented a polynomial time algorithm that works for small fixed k as
well as an efficient 2-approximation algorithm. We close this section with some open questions.

Since the MCSP-Problem has been studied intensively, we hope to transfer more of
the interesting results to our k-Fréchet-Problem: It was shown in [3] that MCSP is fixed-
parameter tractable, therefore we plan to investigate whether our problem is as well. We
defined the k-Fréchet distance as subdivision of curves where we match subcurves in terms
of the weak Fréchet distance, but it would be interesting to just reparameterize the curves
allowing jump discontinuities. As a result it is possible to match a subcurve of one to several
subcurves of the other original curve. Our reduction does not work in that case and we
believe it is an even harder problem. Furthermore it would be interesting to see if there are
special cases for our problem to which we can find algorithms with polynomial runtimes since
the curves we construct are neither monotone, nor κ-straight, κ-bounded or c-packed. Finally
it remains open to improve the approximation factor achieved by our greedy approach.

Acknowledgments. We are grateful to Simon Pflips for proofreading and interesting, helpful
discussions.
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