
On Merging Straight Skeletons

Franz Aurenhammer1 and Michael Steinkogler2

1 Institute for Theoretical Computer Science, University of Technology, Graz,
Austria
auren@igi.tugraz.at

2 Institute for Theoretical Computer Science, University of Technology, Graz,
Austria
steinkogler@igi.tugraz.at

Abstract
The search for efficient algorithms to compute the straight skeleton of a simple polygon has resulted
in a variety of algorithms. We present a new approach that applies the divide-and-conquer paradigm
with the divide step based on the motorcycle graph. A practical randomized algorithm is obtained
that derives the straight skeleton from the motorcycle graph, with an expected running time of
O(dn logn), where d is the decomposition depth of the motorcycle graph.

1 Introduction

The straight skeleton of a simple polygon was introduced to computational geometry about
two decades ago in [1]. It is defined as the trace of the vertices as the polygon shrinks by
moving its edges in a self-parallel manner towards the interior of the polygon. During this
offsetting process edges disappear (so-called edge events, see the dotted offset in Figure 1
where the edge e disappears), and reflex vertices may run into other edges (so-called split
events, see the dashed offset in Figure 1 where the vertex r runs into some edge and splits
it). For more detailed information see, for example, the section on straight skeletons in [2].

Initially, a simple priority queue algorithm with a running time of O(n2 log n) has been
proposed, simulating the shrinking process by computing all edge and split events. A theo-
retical breakthrough was the first sub-quadratic algorithm, by Eppstein and Erickson in [5]
who also introduce the motorcycle graph. This graph consists of straight traces of ‘motor-
cycles’ that start at reflex vertices, with the speed and direction of the reflex vertex during
the shrinking process; see Figure 2 for an example. A motorcycle’s trace stops when it hits
either the (already existing) trace of another motorcycle or the boundary of the polygon
(as in [3] we assume that no two motorcycles collide). It seems that the motorcycle graph
encodes essential information needed for the construction of the straight skeleton; several
of the more recent algorithms for the straight skeleton build upon it. However, even the

r

e

Figure 1 Straight skeleton offsetting
process with edge and split events.

Figure 2 The motorcycle graph partitions
a nonconvex polygon into convex cells.

34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



42:2 On Merging Straight Skeletons

C5 C4

C3

C2
C1

Figure 3 Motorcycle regions C5 (motorcy-
cle cell) and C2 ∪ C3 (union of two regions).

r1

r2

r3

r4

m2

m3

m4

m1C

R1

R2

R3

R4

Figure 4 An inner motorcycle cell C,
bounded by a cycle of dominant motorcycles.

derivation of the straight skeleton from the motorcycle graph has remained a complicated
task being hard to implement. Also, the computation of the motorcycle graph itself is a
challenging problem (the best known algorithm has a running time of O(n4/3+ε) [6]).

The global nature of split events complicates the design of efficient divide-and-conquer
algorithms for the straight skeleton. It took almost two decades (and several failing at-
tempts) until the first correct and efficient algorithm of this type was published, in Cheng
et al. [3]. Interestingly, this algorithm shows the currently best theoretical running time,
O(n log n log r + r4/3+ε), for a polygon with n edges and r reflex vertices.

Here and later on, let P denote a simple n-vertex polygon,M(P) its motorcycle graph,
and S(P) its straight skeleton (or just skeleton for brevity). The line segments forming S(P)
will be called arcs.

In this note, we present a very simple divide-and-conquer algorithm that computes S(P)
once M(P) is given. The idea is to divide P into cells according to M(P), to compute
the skeletons of the motorcycle cells separately, and then merge them into S(P). We start
in Section 2 by defining motorcycle regions and related concepts. The skeletons of regions
are the topic of Section 3, in particular the relationship between the skeleton of a region
and the skeletons of its subregions. The results from Section 3 are put to use in Section 4
for a divide-and-conquer algorithm that computes S(P). The divide step is trivial provided
M(P) is available. The conquer step is as simple as Chew’s [4] incremental method for the
medial axis of a convex polygon. We first describe the algorithm for motorcycle graphs that
are free of cycles. General motorcycle graphs are handled in Section 5, along with runtime
considerations depending on the structure of these graphs. If the structure ofM(P) is nice
enough, the expected running time is O(n log2 n), while in the general case it is O(n2 log n).

2 Motorcycle regions

The motorcycle graph M(P) partitions P into polygons called cells, which are convex be-
cause a motorcycle egde emanates from each reflex vertex of P, bisecting its interior angle.
We first assume that each cell is supported by edges of P. (Inner motorcycle cells, which are
caused by cycles inM(P), will be handled later.) To combine motorcycle cells we introduce
motorcycle regions. A motorcycle region, R, ofM(P) is either a motorcycle cell defined by
M(P), or R = R1 ∪ R2 where R1 and R2 are regions sharing some motorcycle edge. See
Figure 3 for an illustration of both kinds of regions.

From now on let R = R1 ∪ R2 be a region of M(P), let m be the common motorcycle
edge of R1 and R2, and denote with r the reflex vertex that defines m. To associate R with
a skeleton suitable for future merging steps, a so-called region polygon for R (which is a
superset of R and actually generates the desired skeleton) is needed. Following the recursive



Franz Aurenhammer and Michael Steinkogler 42:3

Figure 5 Motorcycle cell polygon (dashed,
open) using only the cell’s polygon edges.

e

Figure 6 Motorcycle cell polygon (dashed)
with the dominating edge e.

definition of motorcycle regions, we will define the region polygon for a motorcycle cell first,
and then show how the region polygons for R1 and R2 are combined to obtain the region
polygon for R.

Consider some motorcycle cell C. Each edge of C is either supported by an edge of P
or by an edge of M(P). The former type of edges could be used to construct a (possibly
unbounded) convex polygon by extending them until adjacent edges intersect; see Figure 5
for an example. However, merging two such polygons can create a polygon whose skeleton
contains an arc longer than its motorcycle edge inM(P). This leads to complications during
the merging process.

The solution is to also add edges of P that define motorcycle edges supporting C. Let
m be a motorcycle edge supporting C, and let r be its reflex vertex in P. The edge e of P
incident to r and on the same side of m as C is called a dominating edge of C. Combining all
dominating edges of C with all edges of P that support C still results in a convex polygon,
the motorcycle cell polygon; see Figure 6 for an example. Note that the combined size of all
motorcycle cell polygons is O(n).

In the following, let R, R1 and R2 be the region polygons of R, R1 and R2, respectively.
To obtain R, the polygons R1 and R2 need to be merged at both endpoints, say r and v,
of m. At the reflex vertex r this is done by simply truncating the respective edges of R1 and
R2. Concerning v, this endpoint either lies on a polygon edge (which, therefore, is already
part of the subregions’ polygons), or on another motorcycle edge m′ that dominates m, and
thus the corresponding dominating edge is already part of the subregions’ polygons. As a
consequence, the merging of R1 and R2 at v is simple as well. Note that r is the only new
reflex vertex that gets introduced by the merge.

3 Straight skeletons of motorcycle regions

The skeleton of a region R of M(P) is defined as the part of the skeleton of R’s region
polygon that lies within R. That is, S(R) = S(R) ∩R.

As an important property of S(R), the skeleton arcs of reflex vertices are contained in R.
Therefore, such skeleton arcs cannot cross region boundaries during the merge process.

I Lemma 3.1. Let u be the arc of a reflex vertex r in S(R). Then u ⊂ R.

Proof. Vertex r is part of R, therefore its motorcycle edge m is completely contained in R.
If m hits the boundary of P, then the hit edge of P is also part of R, and thus the arc
u is contained in R. Assume now that m is blocked by another motorcycle edge m′. The
motorcycle cells that have parts of bothm andm′ on their boundary are part of R. Therefore
the associated dominating edge of m′ with respect to these cells contributes to the boundary
of R. Thus u cannot cross m′, and u ⊂ R again. J

EuroCG’18



42:4 On Merging Straight Skeletons

Let us now look in more detail at the straight skeleton within a single motorcycle cell C.
We say that an edge e of P is relevant for C, if the unique face fP(e) that e defines in S(P)
has a nonempty intersection with C.

I Theorem 3.2. The relevant edges for C (extended if necessary) form a convex polygon in
the cyclic order given by P.

Proof. Clearly, the edges of P that support C are all relevant for C, and they form a convex
polygon. All other edges relevant for C must cross a motorcycle edge during the shrinking
process to have a part of C in their face in S(P). Therefore, they must form convex angles
with the adjacent edges in the polygon formed by all relevant edges; the arcs of reflex vertices
are shorter than their corresponding motorcycle edges. J

I Corollary 3.3. Let e be an edge of R2 that is not an edge of R1, and such that its face
fR(e) in the straight skeleton of R = R1 ∪R2 has a nonempty intersection with R1. Then e

forms convex angles when inserted into R1.

Proof. For each motorcycle cell C ⊆ R1 with fR(e) ∩ C 6= ∅, we know from Theorem 3.2
that e is in convex position with C’s motorcycle cell polygon, that is, e cuts off a single
convex vertex from this polygon. Therefore e forms convex angles with its adjacent edges
in R1. J

The straight skeleton behaves nicely when inserting an edge in convex position. During
the shrinking process, the new edge is always ahead of the parts of the adjacent edges that
were cut off. All other edges remain unchanged. Thus the skeleton faces of old edges can
shrink but never expand.

For the merge of S(R1) and S(R2) we need to find the edges from one region that
can influence the skeleton of the other region within S(R). The following lemma gives a
necessary condition for such edges.

I Lemma 3.4. Only edges of R2 whose faces in S(R2) are bounded by the common motor-
cycle edge m can change S(R1) within S(R), the merged skeleton.

Proof. Let e be an edge ofR2 whose face fR(e) in S(R) has a nonempty intersection with R1.
Then fR(e) must be intersected by m, since e is on the opposite side of m. Edges of R1 with
faces that have nonempty intersection with R2 in S(R) are in convex position with respect
to R2, by Theorem 3.3. Consequently, e’s face in S(R2) can only shrink; more precisely,
fR(e) ∩R2 ⊆ fR2

(e). But this implies that fR2
(e) is bounded by m. J

The following related lemma is stated without proof, due to lack of space.

I Lemma 3.5. Let E be the (cyclically ordered) set of edges of R2 whose faces in S(R2)

are bounded by m, excluding the edge adjacent to m’s reflex vertex r in R2. Then E forms
a convex chain, and its edges form convex angles when inserted into R1.

4 Divide-and-conquer

We are now ready to describe our divide-and-conquer algorithm. In the divide part, we
use the motorcycle graph M(P) to recursively divide P along motorcycle edges. Since we
assumedM(P) to have no cycles, there exists a motorcycle edge m that hits the boundary
of P. This divides P into two polygons, P1 and P2. This dividing step can be repeated,
using motorcycle edges m1 and m2 that split P1 and P2 into two parts, respectively, and is



Franz Aurenhammer and Michael Steinkogler 42:5

iterated until all motorcycle edges have been used and the final polygons are the motorcycle
cells ofM(P). The division process can be represented in a tree, which inherits the future
merge plan and is therefore called the merge tree.

In the conquer part of our algorithm, the results from the previous section are put to
use. Suppose S(R1) and S(R2) have already been computed, and need to be merged into
S(R). For S(R1), all edges with faces bounded by m are computed. By Lemma 3.5, these
edges form a convex chain E1 that forms convex angles when inserted into R2. Inserting E1

into S(R2) results in S(R2 ∪E1). The same is done with the roles of R1 and R2 exchanged,
to obtain S(R1∪E2). Note that both skeletons coincide along m, and only need to be glued
together along m to obtain S(R).

Still missing is the part of the algorithm that updates a straight skeleton during the
insertion of a convex chain E. We adapt the approach from Chew [4] that computes the
medial axis of a convex polygon (which equals its straight skeleton). We insert the edges
of E in random order, with each update taking time proportional to the number of arcs of
the inserted edge’s face as its boundary is traced out.

Suppose an edge e in convex position is inserted into a region polygon and its skeleton
needs to be updated. The expected number of arcs defined by e and other (already inserted)
edges from E is still constant (here Chew’s analysis still applies), but the expected number of
arcs defined by e and edges from the original polygon (so-called mixed arcs) is not constant.
Let l be the size of the original polygon, k the size of E, and n = l+k. Suppose that i−1 edges
have already been inserted and the skeleton of the resulting polygon computed. Inserting the
ith edge may cause the construction of new mixed arcs. The maximal number of mixed arcs
after the insertion is l+i−1, and since the insertion order is randomized, the expected number
of mixed arcs supported by the new edge is (l + i− 1)/i. Summing over all insertions gives
the expected total number of mixed arcs when E is inserted:

∑k
i=1(l+ i−1)/i = O(n log n).

As a conseqence, the expected running time for all merges on a single level of the merge
tree is O(n log n). The running time of the complete algorithm depends on the depth of the
merge tree and we get the following theorem:

I Theorem 4.1. Let d be the height of the merge tree. Then the straight skeleton of P can
be computed in O(d n log n) expected time.

5 General motorcycle graphs and runtime considerations

Now we lift the restriction that the motorcycle graph must be free of cycles. A motorcycle
graph cycle is created by a cycle of dominating motorcycles bounding an inner region (see
Figure 4). Merges cannot be performed as above, since no two regions share a complete
motorcycle edge. However, it is possible to first compute the skeleton of the inner cell, and
use the known merge procedure for the skeletons of the outer regions.

Let C be an inner motorcycle cell, bounded by the cycle of dominating motorcycle edges
m1, . . . ,mk. Let Ri denote the region bounded by mi and mi+1 (indices modulo k).

Now consider an edge e of Ri, such that its face fP(e) in S(P) has a nonempty inter-
section with C. Then the face of e in S(Ri) must be bounded by mi+1, giving a necessary
condition for an edge to have a face in S(P) intersecting with C. It can be shown that all
such edges form a convex polygon, enabling the computation of S(C) in linear time.

Having computed S(C), it is now possible to detect the edges that sweep over C during
the shrinking process, and thus need to be included in the skeletons of the outer regions
adjacent to C. Merging all these edges into the skeletons of the appropriate regions Ri can
be done in overall O(l log l) expected time, with l being the number of edges involved.

EuroCG’18



42:6 On Merging Straight Skeletons

C

Figure 7 All ears are merged into C. Figure 8 The merge tree degenerates to a path.

Finally, the updated skeletons of the outer regions are combined. First, these skeletons
can be restricted to their region (remember that the skeleton of C does not change). Then
they can be merged using the original merge procedure along a common motorcycle edge.
Balanced binary merges can be used to get an overall expected running time of O(n log2 n).

Whereas motorcycle graphs with cycles can be integrated into the divide step with-
out causing the running time to increase, the dependency on the height of the merge tree
(Theorem 4.1) can cause an expected running time of O(n2 log n). There are two kinds
of motorcycle graph structures producing merge trees with linear height. The first one re-
sults from a ‘central’ motorcycle cell C with linearly many adjacent cells that need to be
merged with C as they have no common motorcycle edge with another cell (see Figure 7
for an example). The second kind occurs when for linearly many motorcycles m1, . . . ,mk,
the motorcycle mi crashes into the trace of mi+1, and mk hits the polygon boundary as in
Figure 8. For both structures, there are efficient solutions once they have been identified in
the motorcycle graph. However, detecting these structures efficiently is an open problem.

6 Conclusions

We have presented a simple and easy-to-implement divide-and-conquer algorithm that de-
rives the straight skeleton of a polygon from its motorcycle graph. The running time depends
on the structure of the motorcycle graph, and is expected O(n log2 n) if the motorcycle graph
is reasonably ‘balanced’, competing with the best known algorithm [3]. Still, it seems to be
a long way till such a running time may be achieved for constructing the straight skeleton
from scratch, as precomputing the motorcycle graph is believed to be the hardest part.

References
1 Oswin Aichholzer, Franz Aurenhammer, David Alberts, and Bernd Gärtner. A novel type of

skeleton for polygons. In J.UCS The Journal of Universal Computer Science, pages 752–761.
Springer, 1996.

2 Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. Voronoi diagrams and Delaunay trian-
gulations. World Scientific Publishing Co., Inc., 2013.

3 Siu-Wing Cheng, Liam Mencel, and Antoine Vigneron. A faster algorithm for computing
straight skeletons. In European Symposium on Algorithms, pages 272–283. Springer, 2014.

4 L. Paul Chew. Building voronoi diagrams for convex polygons in linear expected time. Tech-
nical report, 1990.

5 David Eppstein and Jeff Erickson. Raising roofs, crashing cycles, and playing pool: Ap-
plications of a data structure for finding pairwise interactions. Discrete & Computational
Geometry, 22(4):569–592, 1999.

6 Antoine Vigneron and Lie Yan. A faster algorithm for computing motorcycle graphs. Discrete
& Computational Geometry, 52(3):492–514, 2014.


	Introduction
	Motorcycle regions
	Straight skeletons of motorcycle regions
	Divide-and-conquer
	General motorcycle graphs and runtime considerations
	Conclusions

