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Abstract
We show that the problem of guarding an x-monotone terrain from an altitude line and the
problem of guarding a uni-monotone polygon are equivalent. We present a polynomial time
algorithm for both problems, and show that the cardinality of a minimum guard set and the
cardinality of a maximum witness set coincide. Thus, uni-monotone polygons are perfect.

1 Introduction

Both the Art Gallery Problem (AGP) and the 1.5D Terrain Guarding Problem (TGP) are
well known problems in Computational Geometry. We are given a polygon P (AGP) or
an x-monotone chain T of line segments in R2 (1.5D TGP) and need to place a minimum
number of point-shaped guards in P or on T , such that they cover all of P or T , respectively.
Both problems have been shown to be NP-hard: Krohn and Nilsson [3] proved the AGP to
be hard even for monotone polygons, and King and Krohn [2] established the NP-hardness
of both the discrete and the continuous TGP (with guards restricted to the terrain vertices
or guards located anywhere on the terrain).

The problem of guarding a uni-monotone polygon (an x-monotone polygon with a single
horizontal segment as one of its two chains) and the problem of guarding a terrain with
guards placed on a horizontal line above the terrain appear to be problems somewhere
between the 1.5D TGP and the AGP in monotone polygons. We show that, surprisingly,
both problems allow for a polynomial time algorithm: a simple sweep.

Moreover, we are able to construct a maximum witness set of the same cardinality as the
minimum guard set for uni-monotone polygons. Hence, we establish the first non-trivial class
of perfect polygons (earlier only proven for “rectilinear”[5] and “staircase” visibility [4]).

One application of guarding a terrain with guards placed on a horizontal line above
the terrain, the Altitude Terrain Guarding Problem (ATGP), comes from the idea of using
drones to surveil a complete geographical area. Usually, these drones will not be able to
fly arbitrarily high, which motivates to cap the allowed height for guards (and without this
restriction a single sufficiently high guard above the terrain will be enough). Of course,
eventually we are interested in working in two dimensions and a height, the 2.5D ATGP—one
dimension and height is a natural starting point for this.

2 Notation and Preliminaries

A polygon P is x-monotone if any line orthogonal to the x-axis has a simply connected
intersection with P . Its leftmost and rightmost vertex split the boundary in two x-monotone
polygonal chains. A uni-monotone polygon P is an x-monotone polygon, such that one of
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its two chains is a single horizontal segment. W.l.o.g. we will assume the single horizontal
segment to be the upper chain for the remainder of this paper; we denote this segment
by H. The lower chain of P , LC(P ), is defined by its vertices V (P ) = {v1, . . . , vn} and
has edges E(P ) = {e1, . . . , en−1} with ei = vivi+1. Due to uni-monotonicity the vertices
of P are totally ordered w.r.t. their x-coordinates. A point p ∈ P sees or covers q ∈ P if
and only if pq is fully contained in P . VP (p) is the visibility polygon (VP) of p in P with
VP (p) := {q ∈ P | p sees q}. For G ⊂ P we abbreviate VP (G) :=

⋃
g∈G VP (g).

A terrain T is an x-monotone chain of line segments in R2 defined by its vertices
V (T ) = {v1, . . . , vn} that has edges E(T ) = {e1, . . . , en−1} with ei = vivi+1; and int(ei) :=
ei \ {vi, vi+1} is ei’s interior. Due to monotonicity the points on T are totally ordered w.r.t.
their x-coordinates. For p, q ∈ T , we write p ≤ q (p < q) if p is (strictly) left of q.

An altitude line A at height ah for a terrain T is a horizontal line located ah above
the lowest (y-)coordinate of all vertices of T , with the leftmost point vertically above v1
and the rightmost point vertically above vn. For this abstract we consider only the case
where the altitude line lies completely above T . The points on A are totally ordered as
well w.r.t. their x-coordinates, and we adapt the same notation as for two points on T .
A point p ∈ A sees or covers q ∈ T if and only if pq is nowhere below T (i.e. pq lies on
or above T ). VT (p) is the visibility region of p with VT (p) := {q ∈ T | p sees q}. For
G ⊆ A we abbreviate VT (G) :=

⋃
g∈G VT (g). We also define the visibility region for p ∈ T :

VT (p) := {q ∈ A | p sees q}.
For an edge e ∈ P or e ∈ T the strong VP (weak VP) is the set of points that see all of

e (at least one point of e): Vs
P (e) := {p ∈ P : ∀q ∈ e p sees q} and Vs

T (e) := {p ∈ A : ∀q ∈
e p sees q} (Vw

P (e) := {p ∈ P : ∃q ∈ e p sees q} and Vw
T (e) := {p ∈ A : ∃q ∈ e p sees q}).

I Definition 2.1 (Altitude Terrain Guarding Problem). In the Altitude Terrain Guarding
Problem (ATGP), abbreviated ATGP(T,A), we are given a terrain T and an altitude line A.
A guard set G ⊂ A is optimal w.r.t. ATGP(T,A) if G is feasible, that is, T ⊆ VT (G), and
|G| = OPT(T,A) := min{|C| | C ⊆ A is feasible w.r.t. ATGP(T,A)}.

I Definition 2.2 (Art Gallery Problem). In the Art Gallery Problem (AGP), abbreviated
AGP(G, W ), we are given a polygon P and sets of guard candidates and points to cover
G, W ⊆ P . A guard set C ⊆ G is optimal w.r.t. AGP(G, W ) if C is feasible, that is,
W ⊆ VP (C), and |C| = OPT(G, W ) := min{|C| | C ⊆ G is feasible w.r.t. AGP(G, W )}. In
general, we want to solve the AGP for G = P and W = P , that is, AGP(P, P ).

A set W ⊂ P (W ⊂ T ) is a witness set if ∀ wi 6= wj ∈W we have VP (wi) ∩ VP (wj) = ∅.
A polygon class P is perfect if the cardinality of an optimum guard set and the cardinality of
a maximum witness set coincide for all polygons P ∈ P.

I Lemma 2.3. Let P be a uni-monotone polygon, with guard set G. Then there exists a
guard set GH with |G| = |GH| and g ∈ H ∀g ∈ GH. That is, if we want to solve the AGP
for a uni-monotone polygon, w.l.o.g. we can restrict our guards to be located on H.

Proof. Let G be an optimal guard set. Consider a point p ∈ P , there exists a guard g ∈ G

that covers p. Let gH be the point located vertically above g on H. Because of P being
uni-monotone the triangle ∆(g, p, gH) must be empty, hence, also gH sees p. J

An analogous proof shows that we can always place guards on the altitude line A even if
we would be allowed to place them anywhere between the terrain T and A.

I Lemma 2.4. Let P be a uni-monotone polygon, G a guard set with g ∈ H ∀g ∈ G that
covers LC(P ), that is, LC(P ) ⊂ VP (G). Then G covers all of P , that is, P ⊆ VP (G).
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(a)

(b)
Figure 1 (a) Terrain T and altitude line A is shown in black and red, resp.. g1, . . . , g4 are an

optimal guard cover. g2 and g3 both cover a critical edge both to their left and to their right. (b)
Example: each of the O(n) guards needs to shoot O(n) (colored) rays.

Proof. Assume there is a point p ∈ P, p /∈ LC(P ) with p /∈ VP (G). Consider the point pLC ,
which is located vertically below p on LC(P ). Let g ∈ G be a guard that sees pLC . LC(P )
does not intersect the line pLCg, and because P is uni-monotone the triangle ∆(g, p, pLC) is
empty, hence, g sees p; a contradiction. J

Consequently, the ATGP and the AGP for uni-monotone polygons are equivalent; we will
only refer to the ATGP in the remainder of this paper, with the understanding that all our
results can be applied directly to the AGP for uni-monotone polygons.

I Lemma 2.5. Let g ∈ A, p ∈ T, g < p. If p /∈ VT (g) then ∀g′ < g, g′ ∈ A : p /∈ VT (g′).

Before we present our algorithm, we observe that the ATGP is intrinsically different
from TGP. We repeat (and extend) a definition from [1]: For a feasible guard cover C of
T (C ⊂ T for TGP and C ⊂ A for ATGP), an edge e ∈ E is critical w.r.t. g ∈ C if C \ {g}
covers some part of, but not all of int(e). If e is critical w.r.t. some g ∈ C, we call e critical
edge (e is critical iff more than one guard is responsible for covering its interior). g ∈ C is a
left-guard (right-guard) of ei ∈ E if g < vi (vi+1 < g) and ei is critical w.r.t. g. We call g a
left-guard (right-guard) if it is a left-guard (right-guard) of some e ∈ E.
I Observation 2.6. For the TGP we have: Let C be finite and cover T , then no g ∈ C \ V (T )
is both a left- and a right-guard, that is, no guard that is not on a vertex is responsible to
cover critical edges to its left and right, see Friedrichs et al. [1]. However, for the ATGP, any
guard g on A may be responsible to cover critical edges both to its left and to its right, that
is, guards may be both a left- and a right-guard, see Figure 1(a).

3 Sweep Algorithm

Our algorithm is a sweep, and informally it can be described as follows (the pseudocode for
our algorithm, using definitions from Section 3.1, is presented in Algorithm 1):
• We start with an empty set of guards, G = ∅, and at the leftmost point of A; all edges

E(T ) are completely unseen.
• We sweep along A from left to right and place a guard gi whenever we could no longer
see all of an edge e′ if we would move more to the right.

• We compute the visibility polygon of gi, VT (gi), and for each edge e = {v, w} partially
seen by gi, we split the edge, and only keep the open interval that is not yet guarded.

• Thus, whenever we insert a new guard gi we have a new set of “edges” Ei(T ) that are
still completely unseen, and ∀f ∈ Ei(T ) we have f ⊆ e ∈ E(T ).

• We continue placing new guards until T ⊆ VT (G).
• As we can define a witness set of |G| our guard set is optimal: we place a point witness

on e′ at the point p we would lose coverage of, if we had not placed guard gi.

EuroCG’18
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3.1 How to Split the Partly Seen Edges
For each edge in the initial set of edges, e ∈ E(T ), we need to determine the point pc

e

that closes the interval on A from which all of e is visible. We denote the set of points
pc

e ∀e ∈ E(T ) as the set of closing points C, that is, C = ∪e∈E(T ){pc
e ∈ A : (e ⊆ VT (pc

e)) ∧
(e * VT (p) ∀p > pc

e, p ∈ A)}. The points in C are the rightmost points on A in the strong
visibility polygon of the edge e, for all edges. Analogously, we define the set of opening points
O: O = ∪e∈E(T ){po

e ∈ A : (e ⊆ VT (po
e)) ∧ (e * VT (p) ∀p < po

e, p ∈ A)}. For each edge e the
point in O is the leftmost point on A in the strong visibility polygon of e.

Moreover, whenever we place a new guard, we need to split partly seen edges to obtain
the new, completely unseen, possibly open, interval, and determine the point on A where we
would lose coverage of this edge (interval). That is, whenever we split an edge we need to
add the appropriate point to C.

To be able to easily identify whether an edge e of the terrain needs to be split due
to a new guard g, we define the set of “soft openings” S: the leftmost point on A in the
weak visibility polygon of e (if g is to the right of this point—and to the left of the closing
point—it can see at least parts of e). We define S = ∪e∈E(T ){ps

e ∈ A : (∃q ∈ e, q ∈ VT (ps
e))∧

(@q ∈ e, q ∈ VT (p) ∀p < ps
e, p ∈ A)}.

So, how do we preprocess our terrain such that we can easily identify the point on A that
we need to add to C when we split an edge? We make an initial sweep from the rightmost
to the leftmost vertex; for each vertex we shoot a ray to all other vertices to its left and
mark the points, mark points, where these rays hit the edges of the terrain. This leaves us
with O(n2) preprocessed intervals. For each mark point m we store the rightmost of the two
terrain vertices that defined the ray hitting the terrain at m, let this vertex be denoted by
vm. For each edge ej = {vj , vj+1} with vj+1 convex, this includes vj+1 as a mark point.

Whenever the placement of a guard g splits an edge e such that the open interval e′ ⊂ e

is not yet guarded, see for example Figure 2(a), we identify the mark, me′ to the right of e′

and shoot a ray r from the right endpoint of e′ through vme′ (the one we stored with me′).
The intersection point of r and A defines our new closing point pc

e′ , see Figure 2(b).

3.2 Minimum Guard Set and Perfect Polygons
I Lemma 3.1. The set G output by Algorithm 1 is feasible, that is, T ⊆ VT (G).

Proof. Assume there is a point p ∈ T with p /∈ VT (G). p ∈ e for some edge e ∈ E(T ). As p

is not covered, there exists no guard in G in the interval [po
e, pc

e] on A. Thus, pc
e is never the

(a) (b)
Figure 2 Terrain T and altitude line A is shown in black and red, resp.. The orange lines show

the rays from the preprocessing step, their intersection points with the terrain define the mark points.
Assume the open interval e′, shown in light green, is still unseen. To identify the closing point for e′

we identify the mark to the right of e′, me′ , and shoot a ray, shown in dark green, from the right
end point of e′ through vme′ . The intersection point of r and A defines our new closing point pc

e′ .
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INPUT : Terrain T , altitude line A, its leftmost point a, sets C,O,S of closing, opening, and soft
opening points for all edges in T , all ordered from left to right.

OUTPUT : An optimal guard set G.
1 Eg = E(T ) // set of edges that still need to be guarded
2 i := 1
3 g0 := a // the point on A before the first guard is a
4 while Eg 6= ∅ // as long as there are still unseen edges
5 do
6 1. Sweep right from gi−1 along A until the first closing point c ∈ C is hit
7 2. Place gi on c, G = G ∪ {gi}, i := i + 1
8 3. for all e ∈ Eg // gi ≯ pc

e by construction
9 do

10 if po
e ≤ gi ≤ pc

e then
11 Eg = Eg \ {e} // if all of e is seen, delete it from Eg

12 C = C \ {pc
e} // and delete the closing point from the event queue

13 else if gi < po
e then

14 if ps
e ≤ gi // if gi can see the right point of e

15 then
16 Shoot a visibility ray from gi onto e, let the intersection point be re // all points on e

to the right of re (incl. re) are seen
17 Identify the mark me immediately to the right of re on e
18 Shoot a ray r from re through vme
19 Let pc

e′ be the intersection point of r and A // pc
e′ is the closing point for the still

unseen interval e′ ⊂ e
20 C = C ∪ {pc

e′} \ {p
c
e}

21 Sort C
22 Eg = Eg ∪ {e′} \ {e}

Algorithm 1: Optimal Guard Set for ATGP

event point that defines the placement of a guard in lines 6,7 of Algorithm 1. Moreover, as
@gi : po

e ≤ gi ≤ pc
e, e is never completely deleted from Eg in lines 10–12. Consequently, for

some i we have gi < po
e and ps

e ≤ gi (lines 14–22). As p /∈ VT (G), we have p ∈ e′ ⊂ e.
Again, because p /∈ VT (G), @gj ∈ [po

e, pc
e′ ] ⊂ A, j ≥ i. Due to line 6 no guard may be

placed to the left of pc
e′ , hence, there is no guard placed in [po

e, b] (b being the right end point
of A). So, e′ is never deleted from Eg, a contradiction to G being the output of Alg. 1. J

I Theorem 3.2. The set G output by Algorithm 1 is optimal.

Proof. To show that G is optimal, we need to show that G is feasible and that G is minimum.
Feasibility follows from Lemma 3.1, it remains to show that G is minimum. Given a witness
set W and a guard set G, |W | ≤ |G| holds. Thus, if we can find a witness set W with
|W | = |G|, we can show that G is minimum. We will place a witness for each guard
Algorithm 1 places. First, we need an auxiliary lemma (and omit the proof):

I Lemma 3.3. Let c ∈ C be the closing point for a complete edge (and not just an edge
interval) in line 6 of Algorithm 1 that enforces the placement of a guard gi. Then there exists
an edge ej = {vj , vj+1} ∈ E(T ) for which c is the closing point, such that vj+1 is a reflex
vertex, and vj is a convex vertex.

Now we can define our witness set: we consider the edges or edge intervals, which define
the closing point c ∈ C that leads to a placement of guard gi in lines 6,7 of Algorithm 1.

If c is defined by some complete edge ej ∈ E(T ), let Ec ⊆ Eg be the set of edges for
which c is the closing point. We pick the rightmost edge ej ∈ Ec such that vj is a convex
vertex and vj+1 is a reflex vertex, which exists by Lemma 3.3, and choose wi = vj .

Otherwise, that is, if c is only defined by edge intervals, we pick the rightmost such edge
interval e′ ⊂ ej . Then e′ = [vj , q) for some point q ∈ ej , q 6= vj+1, and we place a witness at
qε, a point εi to the left of q on T : wi = qε. We define W = ∪|G|i=1wi. By definition |W | = |G|,
and we still need to show that W is indeed a witness set.

EuroCG’18
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Let Si be the strip of all points with x-coordinates between x(gi−1) + ε and x(gi). Let
pT and pA be the vertical projection of a point p onto T and A, respectively. Si = {p ∈
R2 : (x(gi−1) + ε ≤ x(p) ≤ x(gi)) ∧ (y(pT ) ≤ y(p) ≤ y(pA))}. We show that VT (wi) ⊆ Si∀i,
hence, VT (wk) ∩ VT (w`) = ∅ ∀wk 6= w` ∈W , which shows that W is a witness set.

If wi = vj for an edge ej ∈ E(T ), VT (wi) contains the guard gi, but no other guard: If
gi−1 could see vj , we would have ∠(gi−1, vj , vj + 1) ≤ 180◦ because vj is a convex vertex,
thus, gi−1 could see all of ej , a contradiction to ej ∈ Eg. Moreover, assume wi could see some
point p with x(p) ≤ x(gi−1). The terrain does not intersect the line wip, and because the
terrain is monotone the triangle ∆(wi, p, gi−1) would be empty, a contradiction to gi−1 not
seeing wi. Hence, no guard gj , j < i sees wi; a similar argument can be given for gj , j > i.

If wi = qε for e′ = [vj , q), VT (wi) contains the guard gi, but no other guard: If gi−1
could see wi, q would not be the endpoint of the edge interval, a contradiction. Moreover,
assume wi could see some point p with x(p) ≤ x(gi−1). T does not intersect the line wip, and
because T is monotone the triangle ∆(wi, p, gi−1) would be empty, a contradiction. Thus,
again, no guard gj , j < i sees p (and the case j > i can be shown similarly). J

We showed that there exists a maximum witness set W ⊂ T and a minimum guard set
G ⊂ A with |W | = |G|. By Lemma 2.3 and 2.4 the ATGP and the AGP for uni-monotone
polygons are equivalent. Thus, for a uni-monotone polygon P we can find a maximum
witness set W ⊂ LC(P ) ⊂ P and a minimum guard set G ⊂ H ⊂ P with |W | = |G|:

I Theorem 3.4. Uni-monotone polygons are perfect.

3.3 Algorithm Runtime
The preprocessing step to compute the mark points costs O(n2), based on these we can
compute the closing points for all edges of the terrain. Similarly, we compute the mark points
from the left to compute the opening points (using the left vertex of an edge to shoot the
ray) and the soft opening points (using the right vertex of an edge to shoot the ray). Then,
whenever we insert a guard (of which we might add O(n)), we need to shoot O(n) rays, see
Figure 1(b), which altogether costs O(n2 log n). Similarly, for each of the intersection points
re, we need to shoot a ray through vme

. This gives a total runtime of O(n2 log n). In fact,
when we stepwise build the convex hull of the terrain vertices from the right and only shoot
rays through vertices of this CH, we can reduce the preprocessing step to O(n).
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