
Data Gathering in Faulty Sensor Networks Using
a Mule

Stav Ashur1

1 Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
stavshe@post.bgu.ac.il

Abstract
We study the problem mentioned in the title, assuming the underlying sensor network is a unit
disk graph. That is, let S be a set of n sensors with transmission range 1. We wish to find a
data gathering tree (i.e., a rooted spanning tree) for the network, and to augment it with a data
mule based at one of the nodes of the tree. The mule’s job is to collect the data from the children
of a node u, if u is faulty. The goal is to find a gathering tree and to locate the mule at one of
its nodes, so that the expected length of the mule’s tour is minimized, where the mule can move
freely in the plane. We present an O(n logn)-time constant-factor approximation algorithm for
this problem. Our algorithm is faster by a linear factor than the previous one due to Yedidsion
et al. [5].

1 Introduction

Given a set S of n sensors with wireless capabilities deployed in the plane, one would like to
gather the data collected by the sensors using a data gathering tree — a hierarchical structure
that determines the paths in which data flows from the sensors to the storage center (i.e., a
directed rooted tree). The transmission range of the sensors is 1, so our starting point is the
unit disk graph (UDG) G induced by S, that is, the graph over S in which there is an edge
between two sensors s1, s2 ∈ S if and only if the Euclidean distance between them, d(s1, s2),
is at most 1.

Assuming G is connected, our goal is to find a rooted spanning tree T of G. However,
it is possible that some node u of the tree is faulty, in which case, in order not to lose the
data at the children of u, we employ a data mule that visits each of u’s children and collects
the data from them. The mule’s location is fixed when the gathering tree is determined; it
is at one of the nodes of the tree. Then, if some node u is faulty, the mule must leave its
base, travel to each of u’s children and return to its base, where the mule can move freely
in the plane. Thus, we would like to find a rooted spanning tree T of G and to determine
the mule’s location, such that the expected length of the mule’s tour is minimum. In other
words, our goal is to find a rooted tree T and a node v of T , such that the sum of TSP v(u),
over all internal nodes u of T , is minimum, where TSP v(u) is the shortest tour beginning
and ending at v and visiting each of the children of u.

This problem was introduced by Crowcroft et al. [2], who only studied its one-dimensional
version. Subsequently, Yedidsion et al. [5] considered the two-dimensional version of the
problem and presented an O(n2 logn)-time constant-factor approximation algorithm for it.
That is, their algorithm finds a rooted tree and places the mule at one of its nodes, so
that the sum of tours corresponding to their tree is bounded by a constant times the sum
corresponding to the optimal solution. In this paper, we present an alternative, more efficient,
constant-factor approximation algorithm for the (two-dimensional version of the) problem.
The running time of our algorithm is O(n logn).
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

38:2 Gathering Data in Faulty Sensor Networks Using a Mule

In general, some research has been done on various problems related to sensor networks
that are augmented with mobile elements, see, e.g., [2–4]. See [5] for more details on related
work.

2 Tree Construction

In this section we describe how to construct a spanning tree of the UDG induced by the set
of sensors S. The constructed tree will have some desirable properties, mentioned below. In
the subsequent section we will choose one of the nodes to serve as the tree’s root (and as the
mule’s base); this will determine the direction of the edges of the tree.

We begin by laying a regular grid of edge length 1√
2 over the input scene. (Notice that any

two nodes within the same cell are at distance at most 1 from each other and are therefore
connected by an edge in the underlying UDG.) Next, in each non-empty grid cell, we pick an
arbitrary node to be the cell’s central node (CN) and connect all other nodes in the cell to
the CN. At this point the set of central nodes is a dominating set (DS) of UDG.

We now add some edges to connect between adjacent stars. More precisely, for any pair
of stars, if the distance between them is at most one, i.e., if there exist a node u in one and
v in the other such that d(u, v) ≤ 1, then add an edge between the closest such pair of nodes.
We do so by running the following algorithm.

1. For each cell X:
Construct the Voronoi diagram of the nodes in X and preprocess it for point location
queries.

2. For each cell X:
For each of the 24 cells Y surrounding X (i.e., for each cell in the first or second circle
around X):
a. For each node u ∈ Y :

Find the node v of X which is closest to u.
b. Let (u, v) be the closest pair that was found.
c. If d(u, v) ≤ 1

E ← E ∪ {(u, v)}
3. Eliminate the cycles from the current graph by running DFS.

Let T be the tree that was obtained and notice that the set of its internal nodes is a
connected dominating set (CDS) of UDG. We call an internal node of T a backbone node, and
denote the set of internal nodes of T by BBNT . Thus BBNT is a CDS of UDG. Actually,
BBNT is an area constrained CDS (ACCDS) of UDG, where a CDS is an ACCDS if the
number of nodes of the set in any disk of constant area A is O(A). This is because the
number of backbone nodes in any cell is bounded by 25 (the cell’s CN plus at most 24
backbone nodes that are created by the code fragment above).

Finally, it is easy to see that the total time required to construct T is O(n logn). The
total time spent on building the Voronoi diagrams and their corresponding search structures
is O(n logn), and, for each node we perform a constant number of point location queries, so
the total time spent on querying the diagrams is O(n logn).

S. Ashur 38:3

3 Fixing the root and placing the mule

In [5], it was shown that the optimal solution with the additional constraint that the mule
must be placed at the root is a 2-approximation of the unconstrained optimal solution. We
therefore restrict our attention to the constrained version and present a constant-factor
approximation for it, which in turn is a constant-factor approximation for the unconstrained
version.

We focus on the more interesting and difficult case, where the area of the union of the
unit disks around the sensors is greater than some constant. When this area is small, the
number of backbone nodes (which is a linear function of the area) is small and the problem
becomes much easier.

3.1 Placing the mule
Let T be the tree that was constructed in the previous section, and let BBNT = {u1, . . . , um}
be the set of its internal nodes (i.e., backbone nodes). In this section, we describe how to
determine the node of T in which the mule will be placed (and that will serve as the root of
T). For a node u of T , let w(u) =

∑m
i=1 d(u, ui), that is, w(u) is the sum of distances from u

to the internal nodes of T . We would like to place the mule at the node of T for which this
value is minimum, however we cannot afford to compute all these values. Instead, we choose
a node v′ whose value w(v′) is a good approximation of the minimum value.

We use the data structure of Bose et al. [1], which is built over a set of points in the
plane (given some ε > 0), and which supports sum-of-distances queries. More precisely, we
construct the data structure over the set BBNT , in O(1

ε2n logn) time and O(nε2) space, and
perform n queries in it, one per each node in T , in total O(1

ε2n logn) time. The answer to a
query with node u is a value wε(u), such that (1− ε

√
2)w(u) ≤ wε(u) ≤ (1 + ε

√
2)w(u), and

let v′ be the node whose returned value (i.e., wε(v′)) is minimum.
Denote by OPTT the sum of tours corresponding to the optimal location in tree T , and

denote by OPTT∗ the sum of tours corresponding to the optimal location in the (unknown)
optimal tree T ∗. We prove below that the sum of tours corresponding to v′ is bounded by
some constant times OPTT∗ .

I Theorem 3.1. Choosing v′ as the location for the mule yields a constant-factor approxima-
tion of OPTT∗ , for sufficiently large m. Moreover, the total running time of our algorithm is
O(n logn).

Proof. The proof is based on the following three claims, which correspond to Lemmas 3.2–3.5
below.

1. There exists a constant c′ such that OPTT ≤ c′ ·OPTT∗ .
2. Placing the mule at the node v such that w(v) = min{w(u) : u ∈ BBNT } yields a

2-approximation of OPTT , for sufficiently large m.
3. The sum of tours corresponding to v′ is a 4-approximation of the sum of tours corre-

sponding to v, for sufficiently large m.
From these claims it follows that placing the mule at v′ yields a c = 8c′-approximation
of OPTT∗ , for sufficiently large m. As for the running time, the tree T is constructed in
O(n logn) time, after which the node v′ is found in O(n logn) time. J

We now prove the 3 lemmas mentioned in the proof of Theorem 3.1.

I Lemma 3.2. There exists a constant c′ such that OPTT ≤ c′ ·OPTT∗ .

EuroCG’18

38:4 Gathering Data in Faulty Sensor Networks Using a Mule

a

b

c

d

e
ui

F

a

b

c

d

e
ui(w3)

F

w1

w2

w4

TSP v∗
T (ui)

∑
w
TSP v∗

T∗(w)

Figure 1 Proof of Lemma 3.2. Left: CT (ui) = {a, b, c, d, e}. Right: The nodes that T ’s mule will
visit if ui is faulty.

Proof. Let v∗ be the optimal location in T ∗. We will show that the sum of tours corresponding
to v∗ in T is already bounded by some constant c′ times the sum of tours corresponding to
v∗ in T ∗. But the former sum is at least OPTT and the latter sum is equal to OPTT∗ , so we
may conclude that OPTT ≤ c′ ·OPTT∗ .

Let CT (ui) be the set of ui’s children in T . Instead of visiting the nodes in CT (ui) if ui
is faulty, T ’s mule will do the following. For each node w, which in T ∗ is a parent of a node
in CT (ui), T ’s mule will visit the nodes in CT∗(w). In other words, we replace TSP v∗T (ui)
by

∑
w TSP

v∗

T∗(w), where the sum is over all nodes w which in T ∗ have a child in CT (ui);
see Figure 1. Clearly, by doing so, T ’s mule will still visit the nodes in CT (ui), but it may
also visit other nodes, and in either way, the total distance traveled by T ’s mule can only
increase.

Observe, however, that each of the nodes w in the latter sum is at distance at most 2 from
ui. So, since the internal nodes of T constitute an ACCDS, the number of internal nodes of
T that lie within distance at most 2 from w is bounded by some constant c′, and therefore,
the number of times that T ’s mule will need to visit the nodes in CT∗(w) is bounded by some
constant c′. We conclude that the total distance traveled by T ’s mule (after replacing the terms
TSP v

∗

T (ui) by the corresponding sums) is bounded by c′
∑
w∈BBNT∗

TSP v
∗

T∗(w) = c′ ·OPTT∗ ,
which implies that

∑m
i=1 TSP

v∗

T (ui) ≤ c′ ·OPTT∗ . J

From now on, we are dealing only with the tree T , so we write TSP v instead of TSP vT
and BBN instead of BBNT . Our proof of the next two lemmas relies on the following
observation, which follows immediately from the way T was constructed.

I Observation 3.3. Let v1, v2 be two nodes and let u be a backbone node. Then, there exists
at most one node that is a child of u, when the mule is at v1, but is not a child of u, when
the mule is at v2.

I Lemma 3.4. Placing the mule at the node v such that w(v) = min{w(u) : u ∈ BBN} is
a 2-approximation of OPTT , for sufficiently large m.

Proof. Let v∗ be the node in which the mule is placed in the optimal solution for T , i.e.,∑m
i=1 TSP

v∗(ui) = OPTT . We first show that
∑m
i=1 TSP

v(ui) ≤
∑m
i=1(TSP v∗(ui) + 6).

Denote by si and ti the first and last nodes that are visited in the tour taken by the mule
based in v∗ when ui fails, and denote by π(si, . . . , ti) the length of the portion of this tour

S. Ashur 38:5

beginning at si and ending at ti. Then, TSP v
∗(ui) = d(v∗, si) + π(si, . . . , ti) + d(ti, v∗), and,

by Observation 3.3, TSP v(ui) ≤ d(v, ui) + d(ui, si) + π(si, . . . , ti) + d(ti, ui) + d(ui, v) + 2,
where 2 is an upper bound on the total length of the back-and-forth trips from ui to visit
the at most one child of v that is not also v∗’s child. So,
m∑
i=1

TSP v(ui) ≤
m∑
i=1

(d(v, ui) + d(ui, si) + π(si, . . . , ti) + d(ti, ui) + d(ui, v) + 2)

≤(i)
m∑
i=1

(d(v∗, ui) + d(ui, si) + π(si, . . . , ti) + d(ti, ui) + d(ui, v∗) + 2)

≤(ii)
m∑
i=1

(d(v∗, si) + 1 + d(ui, si) + π(si, . . . , ti) + d(ti, ui) + 1 + d(ti, v∗) + 2)

≤
m∑
i=1

(TSP v
∗
(ui) + 6) ,

where inequality (i) is true since w(v) ≤ w(v∗) and inequality (ii) is true since d(v∗, ui) ≤
d(v∗, si)+d(si, ui) ≤ d(v∗, si)+1, and similarly, d(ui, v∗) ≤ d(ui, ti)+d(ti, v∗) ≤ 1+d(ti, v∗).

Now, since BBN is an ACCDS, if we assume that m is sufficiently large, then the
average tour length from v∗ (i.e., (

∑m
i=1 TSP

v∗(ui))/m) is greater than 6, and there-
fore

∑m
i=1(TSP v∗(ui) + 6) ≤ 2

∑m
i=1 TSP

v∗(ui). Thus, for sufficiently large m, we get∑m
i=1 TSP

v(ui) ≤ 2
∑m
i=1 TSP

v∗(ui) = 2OPTT . J

I Lemma 3.5.
∑m
i=1 TSP

v′(ui) ≤ 4
∑m
i=1 TSP

v(ui), for sufficiently large m.

Proof. Since wε(v′) ≤ wε(v),

(1− ε
√

2)w(v′) ≤ wε(v′) ≤ wε(v) ≤ (1 + ε
√

2)w(v) ,

or
m∑
i=1

d(v′, ui) ≤
1 + ε

√
2

1− ε
√

2

m∑
i=1

d(v, ui) .

Now, as in the proof of Lemma 3.4, we write TSP v(ui) = d(v, si) + π(si, . . . , ti) + d(ti, v),
where si and ti are the first and last nodes visited by the mule based at v when ui fails, and
π(si, . . . , ti) is the portion of TSP v(ui) beginning at si and ending at ti. Then,

m∑
i=1

d(v′, si) ≤
m∑
i=1

(d(v′, ui) + d(ui, si)) ≤
1 + ε

√
2

1− ε
√

2

m∑
i=1

(d(v, ui) + d(ui, si)) ,

and, similarly,
m∑
i=1

d(v′, ti) ≤
1 + ε

√
2

1− ε
√

2

m∑
i=1

(d(v, ui) + d(ui, ti)) .

Again, as in the proof of Lemma 3.4,
m∑
i=1

TSP v
′
(ui) ≤

m∑
i=1

(d(v′, si) + π(si, . . . , ti) + d(ti, v′) + 2) ,

so
m∑
i=1

TSP v
′
(ui) ≤

1 + ε
√

2
1− ε

√
2

m∑
i=1

(d(v, ui) + d(ui, si) + π(si, . . . , ti) + d(v, ui) + d(ui, ti) + 2)

≤ 1 + ε
√

2
1− ε

√
2

m∑
i=1

(TSP v(ui) + 6) .

EuroCG’18

38:6 Gathering Data in Faulty Sensor Networks Using a Mule

Now, since BBN is an ACCDS, if we assume that m is sufficiently large, then the
average tour length from v (i.e., (

∑m
i=1 TSP

v(ui))/m) is greater than 6, and therefore∑m
i=1(TSP v(ui)+6) ≤ 2

∑m
i=1 TSP

v(ui). Thus, for sufficiently largem, we get
∑m
i=1 TSP

v′(ui) ≤
4

∑m
i=1 TSP

v(ui), by choosing ε < 1/(3
√

2). J

Acknowledgements
The author wishes to thank Matya Katz for his help during all stages of this work.

References
1 Prosenjit Bose, Anil Maheshwari, and Pat Morin. Fast approximations for sums of distances,

clustering and the fermat-weber problem. Comput. Geom., 24(3):135–146, 2003.
2 Jon Crowcroft, Liron Levin, and Michael Segal. Using data mules for sensor network data

recovery. Ad Hoc Networks, 40:26–36, 2016.
3 M. Di Francesco, S. K. Das, and A. Giuseppe. Data collection in wireless sensor networks

with mobile elements: A survey. ACM Transactions on Sensor Networks (TOSN), 8.1:7–38,
2011.

4 O. Tedas, V. Isler, J. h. Lim, and A. Terzis. Using mobile robots to harvest data from
sensor fields. IEEE Wireless Communications, 16.1:22, 2009.

5 Harel Yedidsion, Aritra Banik, Paz Carmi, Matthew J. Katz, and Michael Segal. Efficient
data retrieval in faulty sensor networks using a mobile mule. In 15th International Sym-
posium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, WiOpt
2017, Paris, France, May 15-19, 2017, pages 1–8, 2017.

	Introduction
	Tree Construction
	Fixing the root and placing the mule
	Placing the mule

