
Integer and Mixed Integer Tverberg Numbers
J.A. De Loera1, T. Hogan2, F. Meunier3, and N. Mustafa4

1,2 Department of Mathematics, University of California, Davis
deloera@math.ucdavis.edu,tahogan@math.ucdavis.edu

3 CERMICS, Ecole Nationale des Ponts et Chaussées, Univ. Paris-Est, France
frederic.meunier@enpc.fr

4 Laboratoire d’Informatique Gaspard-Monge, Univ. Paris-Est, ESIEE Paris,
Marne-la-Vallée, France
mustafan@esiee.fr

Abstract
We show the exact values of Tverberg numbers of Z2 and improve the bounds for Z3 and Zj×Rk.

1 Introduction

Consider n points in Rd and a positive integer m ≥ 2. If n ≥ (m− 1)(d+ 1) + 1, the points
can always be partitioned into m subsets whose convex hulls contain a common point. This
is the celebrated theorem of Tverberg [11], which has been the topic of many generalizations
and variations since it was first proved in 1966. In this paper we formalize new versions of
Tverberg’s theorem where the coordinates of the points are integer. Our opening result closes
a gap in the literature. It deals with a Tverberg-type theorem in the case of Z2. According
to Eckhoff [6] it was stated by Doignon in a conference. Doignon (personal communication)
confirmed that this was not published.

I Theorem 1. Consider n points in Z2 and a positive integer m ≥ 3. If n ≥ 4m− 3, then
the points can be partitioned into m subsets whose convex hulls contain a common point in
Z2.

Such a partition is an integer m-Tverberg partition and such a common point is an in-
teger Tverberg point for that partition. Regarding the case m = 2, the integer 2-Tverberg
partitions are integer Radon partitions. Any configuration of at least 6 points admits an
integer Radon partition. This was proved by Doignon in his PhD thesis [5] and later dis-
covered independently by Onn [10]. All these values are optimal as shown by following
examples. The 5-point configuration {(0, 0), (0, 1), (2, 0)(1, 2), (3, 2)}, exhibited by Onn in
the cited paper, has no Radon partition. To address the optimality when m ≥ 3, consider
the set {(i, i), (i,−i+ 1): i = −m+ 2,−m+ 3, . . . ,m− 2,m− 1}. (According to Eckhoff [6],
this set was proposed by Doignon during a conference.) It has 4m− 4 points and a moment
of reflection might convince the reader that it has no integer m-Tverberg partition.

More generally, one can define the Tverberg number Tv(S,m) for a subset S of Rd and
an integer m ≥ 2 as the smallest integer number n such that any multiset of n points in S
admits a partition into m subsets A1, A2, . . . , Am with(

m⋂
i=1

conv(Ai)
)
∩ S 6= ∅.

(Here, by “partition of a multiset”, we mean that each element of a multiset A is contained
in a number of subsets that does not exceed its multiplicity in A.) Theorem 1 together with
the discussion that follows can then be rephrased as

Tv(Z2,m) =
{

6 if m = 2,
4m− 3 otherwise.
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Our second main result improves the upper bound for the case S = Z3.

I Theorem 2. The following inequality holds for all m ≥ 2:

Tv(Z3,m) ≤ 24m− 31.

Proofs of Theorems 1 and 2 are respectively given in Sections 2 and 3. The strategy of
both proofs is standard: we show that there exists an integer centerpoint (which we define
at the end of this section) of sufficient depth and that this centerpoint is actually a Tverberg
point of an m-Tverberg partition.

Choosing S of the form Zj ×Rk leads to the “mixed integer” case, which is the common
generalization of the real and the integer cases. Our third main result is an inequality
simultaneously involving the three already considered instantiations of S: real, integer, and
mixed integer.

I Theorem 3. The following inequality holds for all positive integers j and k and all m ≥ 2:

Tv(Zj × Rk,m) ≤ Tv(Zj ,Tv(Rk,m)).

Finally, in Section 4, we prove Theorem 3 and collect some consequences of the main
theorems presented above, including the following result:

2j(m− 1)(k + 1) + 1 ≤ Tv(Zj × Rk,m) ≤ j2j(m− 1)(k + 1) + 1. (1)

To conclude the introduction we mention a key lemma about integral centerpoints that is
used for proving Theorems 1 and 2. Given a multiset A of points, a point p is a centerpoint
of depth σ in A if every closed half-space containing p contains at least σ points of A.

I Lemma 4. Consider a multiset A of points in Zd. If |A| ≥ 2d(m − 1) + 1 (counting
multiplicities), then there is a centerpoint p ∈ Zd of depth m in A.

Although the present version is new, similar lemmas have been used throughout the
literature and their proofs typically rely on some version of Helly’s theorem [7]. We omit the
classical details here, and simply mention that we need the following theorem of Doignon
[4]: If F is a finite family of at least 2d convex subsets of Zd such that any 2d members of
F have an intersection point in Zd, there is a point p ∈ Zd in every set in F .

In Sections 2 and 3 when we refer to Tverberg partitions or Tverberg points we focus on
integer Tverberg partitions.

Related Results from the Literature
The problem of computing the Tverbeg number for Zd with d ≥ 3 seems to be challenging.
It has been identified as an interesting problem since the 1970’s and yet the following in-
equalities are almost all that is known about this problem: For the general case, De Loera
et al. [8] proved

2d(m− 1) + 1 ≤ Tv(Zd,m) ≤ d2d(m− 1) + 1 for d ≥ 1 and m ≥ 2. (2)

Two special cases get better bounds:

Tv(Z3, 2) ≤ 17 and 5 · 2d−2 + 1 ≤ Tv(Zd, 2) for d ≥ 2. (3)

The left-hand side inequality is due to Bezdek and Blokhuis [2] and the right-hand side was
proved by Doignon in his PhD thesis (and rediscovered by Onn).
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The bounds for the “mixed integer” case include the bounds for the Radon number
(2-Tverberg number) found by Averkov and Weismantel [1].

2j(k + 1) + 1 ≤ Tv(Zj × Rk, 2) ≤ (j + k)2j(k + 1)− j − k + 2.

Later, De Loera et al. [8] gave the following general bound for all Tverberg numbers:

Tv(Zj × Rk,m) ≤ (j + k)2j(m− 1)(k + 1) + 1.

Note that (1) above is a simultaneous improvement of both of these.

2 Tverberg Numbers over Z2: Proof of Theorem 1

The theorem will follow easily from the following two lemmas, the first covering the case
m ≥ 3 and the second the case m = 2.

I Lemma 5. Consider a multiset A of points in Z2 with |A| ≥ 4m− 3 and m ≥ 3. If p /∈ A
is a centerpoint of depth m, then there is an m-Tverberg partition with p as Tverberg point.

I Lemma 6. Consider a multiset A of points in Z2 with |A| ≥ 6. If p /∈ A is a centerpoint
of depth two, then there is a Radon partition with p as Tverberg point.

Proof of Theorem 1. Consider a multiset A of at least 4m−3 points in Z2. By Lemma 4, A
has an integer centerpoint p of depthm. If p is an element of A with multiplicity µ ≥ 0, then
take the singletons {p} as µ of the sets in the Tverberg partition. Then p is a centerpoint of
depth m− µ of the remaining 4m− µ− 3 points. If µ ≥ m, we are done, and if µ = m− 1,
the point p is in the convex hull of the remaining points and we take them to be the last set
in the desired partition. If µ ≤ m− 3, according to Lemma 5, there is an (m− µ)-Tverberg
partition of the remaining points with p as Tverberg point. There is thus an m-Tverberg
partition of A with p as Tverberg point. The case µ = m − 2 is treated similarly with the
help of Lemma 6 in place of Lemma 5 J

Proof of Lemma 5. Since p is not in A, up to a radial projection, we can assume that the
points of A are arranged in a circle around p. Define q and r to be respectively the quotient
and the remainder of the Euclidean division of |A| by m. Define moreover e to be d r

q e.
Suppose first that p is a centerpoint of depth m+ e. In such a case, we arbitrarily select

a first point in A, and label clockwise the points with elements in [m] according to the
following pattern:

1, 2, . . . ,m, 1, 2, . . . , e, 1, 2, . . . ,m, 1, 2, . . . , e, 1, 2, . . .m, 1, 2, . . . k,

where k = |A|− qm− (q−1)e. Note that we have k ≤ e. Each half-plane delimited by a line
passing through p contains at least m + e consecutive points in this pattern and thus has
at least one point with each of the m different labels. Partitioning the points so that each
subset consists of all points with a fixed label, we therefore obtain an m-Tverberg partition
with p as Tverberg point.

Suppose now that p is not a centerpoint of depth m+e. There is thus a closed half-plane
H+ delimited by a line passing through p with |H+∩A| < m+e. The complementary closed
half-plane to H+, which we denote by H−, is such that |H−∩A| > 4m−3− (m+ e). Define
` to be |H−∩A|. Since e ≤ m

3 , we have ` ≥ 2m. Denote the points in H−∩A by x1, . . . ,x`,
where the indices are increasing when we move clockwise. We label xi with r + i from x1
to xm−r, and then label xm−r+j with j from xm−r+1 to xm. We then continue labeling
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Figure 1 Labeling of the points in the half-plane H−.

the points of A, still moving clockwise, using labels 1, 2, . . . ,m, . . . , 1, 2, . . .m, 1, 2, . . . r. See
Figure 1 for an illustration of the labeling scheme.

The labeling pattern is such that any sequence of m consecutive points either has all m
labels, or contains the two consecutive points xm and xm+1. Let us prove that any closed
half-plane H delimited by a line passing through p contains at least one point with each
label. Once this is proved, the conclusion will be immediate by taking as subsets of points
those with same labels, as above.

If such an H does not simultaneously contain xm and xm+1, then H contains at least
one point with each label. Consider thus a closed half-plane H delimited by a line passing
through p and containing xm and xm+1. Note that according to Farkas’ lemma, xm+1
cannot be separated from x1 and x` by a line passing through p, since they are all in H−.
This means that either H contains x1,x2, . . . ,xm+1, or H contains xm+1,xm+2, . . . ,x`. In
any case, H contains a point with each label. J

The proof of Lemma 6 is similar and left to the reader for brevity.

3 Tverberg Numbers over Z3: Proof of Theorem 2

We will make use of the following two lemmas. Lemma 7 is a consequence, upon close
inspection of the argument, of the proof of the main theorem in the already mentioned
paper by Bezdek and Blokhuis [2].

I Lemma 7. Consider a multiset A of at least 17 points in R3 and a centerpoint p of depth
3 in A. There is a bipartition of A into two subsets whose convex hulls contain p.

I Lemma 8. Consider a multiset A of points in R3 with |A| ≥ 24m − 31 and m ≥ 2. If
p /∈ A is a centerpoint of depth 3m − 3, then there is an m-Tverberg partition of A with p

as Tverberg point.

Proof. Since p is not an element of A, we assume without loss of generality that the points
of A are located on a sphere centered at p, as in the proof of Lemma 5.

We claim that we can find pairwise disjoint subsets X1, X2, . . . , Xm−2 of A, each having p

in its convex hull and each being of cardinality at most four. (Here “pairwise disjoint” means
that each element of A is present in a number of Xi’s that does not exceed its multiplicity in
A.) We proceed by contradiction. Suppose that we can find at most s < m− 2 such subsets
Xi’s. Then, by Carathéodory’s theorem [3], p is not in the convex hull of the remaining
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points in A.Therefore there is a half-space H+ delimited by a plane containing p such that
H+ ∩A ⊆

⋃s
i=1 Xi. On the other hand, since each Xi contains p in its convex hull (and we

can assume the Xi are minimal with respect to containing p), we have |H+ ∩Xi| ≤ 3 for all
i ∈ [s]. Therefore |H+ ∩ A| ≤ |H+ ∩ (

⋃s
i=1 Xi)| ≤ 3s < 3(m − 2), which is a contradiction

since p is a centerpoint of depth 3m − 3 in A. There are thus m − 2 disjoint subsets
X1, X2, . . . , Xm−2 as claimed.

Let X denote
⋃m−2

i=1 Xi. Consider an arbitrary half-space H+ delimited by a plane
containing p. Since |H+ ∩ Xi| ≤ 3 for all i, we have |H+ ∩ X| ≤ 3(m − 2). Furthermore
|H+∩A| ≥ 3m−3, so |H+∩ (A\X)| ≥ 3. Since H+ is arbitrary, p is a centerpoint of depth
3 of A \ X. Also, |A \ X| ≥ |A| − 4(m − 2) ≥ 20m − 23 ≥ 17, so Lemma 7 implies that
A \X can be partitioned into two sets whose convex hulls contain p. With the subsets Xi,
we have therefore an m-Tverberg partition of A, with p as Tverberg point. J

From these two lemmas we can now finish the proof of Theorem 2.

Proof of Theorem 2. Consider a multiset A of 24m − 31 points in Z3. The case m = 2
is the already mentioned result by Bezdek and Blokhuis. Assume that m ≥ 3. Applying
Lemma 4, A has an integer centerpoint p of depth 3m − 3. If p is an element of A with
multiplicity µ ≥ 0, then take the singletons {p} as µ of the sets in the Tverberg partition.

If µ ≥ m, we are done. If µ = m − 1, the point p is still in the convex hull of points
in A, and thus we are done. And if µ ≤ m − 2, the point p is still a centerpoint of depth
3m− µ− 3 ≥ 3(m− µ)− 3 of the remaining 24m− µ− 31 ≥ 24(m− µ)− 31 points. Thus,
we may apply Lemma 8 to get an (m− µ)-Tverberg partition of the remaining points, with
p as Tverberg point, and conclude the result. J

4 Tverberg Numbers over Zj × Rk

In this section, we prove Theorem 3. We adapt an approach by Mulzer and Werner [9,
Lemma 2.3] and show how all the results of our paper can be combined to improve known
bounds and to determine new exact values for the Tverberg number in the mixed integer
case.

Proof of Theorem 3. Let t = Tv(Rk,m) = (m − 1)(k + 1) + 1. Choose a multiset A in
Zj × Rk with |A| ≥ Tv(Zj , t). It suffices to prove that A can be partitioned into m subsets
whose convex hulls contain a common point in Zj × Rk.

Let A′ be the projection of A onto Zj . Since |A′| ≥ Tv(Zj , t), there is a partition of A′
into t subsets Q′1, . . . , Q′t whose convex hulls contain a common point q in Zj . The Q′i are
the projections onto Zj of t disjoint subsets Qi forming a partition of A. For each i ∈ [t],
we can find a point qi ∈ conv(Qi) projecting onto q.

The t points q1, . . . , qt belong to {q} × Rk. As t = Tv(Rk,m), there exists a partition
of [t] into I1, . . . , Im and a point p ∈ {q} ×Rk such that p ∈ conv

(⋃
i∈I`

qi

)
for all ` ∈ [m].

For each ` ∈ [m], define A` to be
⋃

i∈I`
Qi. We have for each ` ∈ [m]

p ∈ conv
(⋃

i∈I`

qi

)
⊆ conv

(⋃
i∈I`

conv(Qi)
)

= conv(A`)

and the A` form the desired partition. J

Here are the new bounds and exact values we get:

(a) Tv(Z× Rk,m) = 2(m− 1)(k + 1) + 1.
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(b) Tv(Z2 × Rk,m) = 4(m− 1)(k + 1) + 1.
(c) Tv(Z3 × Rk,m) ≤ 24(m− 1)(k + 1)− 7.
(d) 2j(m− 1)(k + 1) + 1 ≤ Tv(Zj × Rk,m) ≤ j2j(m− 1)(k + 1) + 1.

The lower bound in (d) is obtained by repeated applications of Lemma 9 below, whose
proof, almost identical to that of Proposition 2.1 in [10], is omitted for brevity. The upper
bounds follow from Theorem 3, combined with the fact that Tv(Z,m) = 2m − 1 (consider
the median), Theorem 1, Theorem 2, and the upper bound in Equation (2), respectively.

I Lemma 9. Let j and k be two non-negative integers. Then we have

Tv(Zj+1 × Rk,m) > 2 Tv(Zj × Rk,m)− 2.
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