
Non-Monochromatic and Conflict-Free Colorings
in Tree Spaces∗

B. Aronov1, M. de Berg2, A. Markovic2, and G. Woeginger3

1 Department of Computer Science and Engineering, New York University, USA.
2 TU Eindhoven, the Netherlands.
3 RWTH Aachen, Germany.

Abstract
We study non-monochromatic and conflict-free colorings on tree spaces, that is, one-dimensional
spaces with a tree topology. More specifically, we analyze the number of colors needed to color a
set A of n objects in a tree space T with k leaves, with each object being a connected subset of T ,
in a non-monochromatic or conflict-free fashion. We prove that there exists a non-monochromatic
coloring with O(min(`,

√
k)) colors, where ` denotes the maximum number of leaves of any object

in A. This bound is tight in the worst case. This result implies that there exists a conflict-free
coloring with O(` log k) colors.

1 Introduction

Conflict-free colorings, or CF-colorings for short, were introduced by Even et al. [4] and
Smorodinsky [8] to model frequency assignment to base stations in wireless networks. In the
basic setting one is given a set S of objects in the plane—often disks are considered—and
the goal is to assign a color to each object such that the following holds: for any point p
in the plane such that the set Sp := {D ∈ S | p ∈ D} of objects containing p is non-empty,
Sp must contain an object whose color is different from the colors of the other objects
in Sp. Even et al. proved, among other things, that any set of disks admits a CF-coloring
with O(logn) colors. Since then many different geometric variants of CF-colorings have been
studied. For example, Har-Peled and Smorodinsky [5] generalized the result to objects with
near-linear union complexity, while Even et al. [4] considered the dual version of the problem.
See the survey by Smorodinsky [10] for an overview. A restricted type of CF-colorings are
unique-maximum colorings (UM-colorings), in which the colors are identified with integers,
and the maximum color in the set Sp is required to be unique. Another type of coloring,
often used as an intermediate step to obtain a CF-coloring, is non-monochromatic (NM). In
an NM-coloring—sometimes called a proper coloring—we only require that, for any point p
in the plane, if the set Sp contains at least two elements, not all of them have the same color.
Smorodinsky [9] showed that if an NM-coloring on n elements using β(n) colors is given, one
can create a CF-coloring using O(β(n) logn) colors.

CF-colorings can also be defined in a more abstract setting. Here one is given a hypergraph
H = (V,E) and the goal is to color V such that for every (non-empty) hyperedge e ∈ E, there
is a vertex in e whose color is different from that of the other vertices in e. Ashok et al. [2]
showed that deciding whether a given hypergraph can be CF-colored using k colors is
fixed-parameter tractable. Note that the basic geometric version mentioned above—coloring
objects in R2 with respect to points—can be phrased in terms of hypergraphs by letting the
objects be the vertex set V and for each point p in the plane creating a hyperedge e := Sp.

∗ MdB and AM are supported by the Netherlands’ Organisation for Scientific Research (NWO) under
project no. 024.002.003. BA has been supported by NSF Grants CCF-11-17336, CCF-12-18791, and
CCF-15-40656, and by BSF grant 2014/170.

34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

33:2 Non-Monochromatic and Conflict-Free Colorings in Tree Spaces

Another avenue for constructing a hypergraph H to be colored is to start with a graph G,
let the vertices of H be the vertices of G and create hyperedges for (the sets of vertices
of) certain subgraphs of G. For example, Pach and Tardos [7] considered the case where
hyperedges are all the vertex neighborhoods. For this case, Abel et al. [1] recently showed
that a planar graph can always be colored with only three colors, if we allow some vertices
to be uncolored. (Otherwise, we can use a dummy color, increasing the number of colors to
four.) As another example, we let the hyperedges be induced by all the paths. This setting
is equivalent to an older notion of vertex ranking [3], also known as ordered coloring [6].

In this paper we study CF- and NM-colorings in a setting that is closely related to both
the geometric and the graph-based setting. More precisely, the spaces that we consider are
tree spaces—that is, one-dimensional spaces with a tree topology—and the objects that we
want to color are connected subsets (in other words, subtrees) of the given tree space. In this
setting, we are interested in how the complexity of the given tree space and of the objects
to be colored influence the chromatic number. Note that, if the given tree space is a single
curve, the problem reduces to coloring intervals on the real line.

Our contributions. Let T be the given tree space. It may be convenient to visualize T as
being embedded in R2, although the embedding is actually immaterial. We assume without
loss of generality that T is bounded—it does not have infinitely long branches—and define the
vertices of T in the natural manner. Any vertex of T is either an internal vertex (a branching
point of degree at least three) or a leaf. The curves connecting the vertices, whose union
is T , are called the edges of the tree space. We denote the number of leaves of T by k.

Let A be the set of n objects that we wish to color, where each object T ∈ A is a
connected subset of T . Thus each object itself is also a tree. From now on, we will refer to
the objects in A as “trees”, and always use “tree space” when talking about T . We denote
the maximum number of leaves of any tree in A by `. Note that internal vertices of a tree are
necessarily internal vertices of T , but leaves of a tree may also lie in the interior of an edge
of T . CF-colorings of such a set A are now defined as above: for any point p ∈ T , the set
Sp := {T ∈ A | p ∈ T} (if non-empty) should have a tree with a unique color. We now define
the CF-chromatic number Xtree,tree

cf (k, `;n) as the minimum number of colors sufficient to
CF-color any set A of n trees of at most ` leaves each in a tree space of at most k leaves.
The NM-chromatic number Xtree,tree

nm (k, `;n) is defined similarly. We will show that1

I Theorem 1.1 (Main result).
(i) Xtree,tree

nm (k, `;n) 6 min(`+ 3, 2
√

6k + 2), and (ii) Xtree,tree
cf (k, `;n) = O(` log k).

In the full version we also (a) show how to use two fewer colors in part (i) of the
theorem and (b) provide two lower bounds for NM-colorings, namely Xtree,tree

nm (k, `;n) >

min
(
`+ 1,

⌊√
1+8k

2

⌋
, n
)
, which clearly also apply to CF-colorings, and Xtree,tree

cf (k, `;n) >
blog2 min(k, n)c; and (c) study other variants, for example by considering more general
network spaces (rather than tree spaces) and other types of objects to be colored.

2 The coloring algorithms

Preliminaries: The chain method. We start by describing a folklore technique, called the
chain method, to color intervals in R1 in a non-monochromatic fashion using at most two

1 Obviously the number of trees, n, is an upper bound as well. To avoid cluttering the bounds, we usually
omit this trivial bound.

B. Aronov, M. de Berg, A. Markovic, and G. Woeginger 33:3

Figure 1 The original tree T (left), the set
⋃

e∈E(T) e ∩ T (middle), and the new tree T ′ (right).

colors. We order the intervals left-to-right by their left endpoints (in case of ties, we take
the longest interval first) and color them in this order using the so-called active color which
is defined as follows. We start with blue as the active color. We color the first interval,
then change the active color to red. We then use the following procedure: we color the
next interval I in the ordering using the active color, then if the right endpoint of I is not
contained in any other colored interval, we change the active color from red to blue or blue
to red. It is easy to show the resulting coloring is non-monochromatic.

Overview of the coloring procedure. Let T be a tree space and let A be a set of n trees
on T , each with at most ` leaves. We will NM-color A in two phases: first, we select a
subset C ⊆ A of size at most 6k − 12 and color it with at most min(`+ 1, 2

√
6k) colors. In

the second phase we extend this coloring to the whole set A using at most two extra colors.
An edge e of T is a leaf edge if it is incident to a leaf; the remaining edges are internal.

We define C ⊆ A as the set of at most 6k − 12 trees selected as follows. For every pair (e, v),
where e is an edge of T and v is an endpoint of e that is not a leaf of T , we choose two trees
containing v and extending the furthest into e (if they exist), that is, trees T of A containing v
for which length(T ∩ e) is maximal, and place them in A(e, v). Note that if two or more
trees of A fully contain e, then A(e, v) contains two of them, chosen arbitrarily. Note also
that, if a tree contains an internal edge e fully, it may be chosen by both endpoints. We now
define A(e) := A(e, u) ∪ A(e, v) for each internal edge e = {u, v}, define A(e) := A(e, v) for
each leaf edge e = {u, v} with v being its non-leaf endpoint. Finally, we define C :=

⋃
A(e),

with the union taken over all edges e of T . Since A(e) contains at most four trees for any
internal edge e and at most two trees for any leaf edge e, and since the number of internal
edges of T is at most k− 3 and the number of leaf edges is at most k, where k is the number
of leaves of T (which, as a topological tree, does not have degree-two vertices), |C| 6 6k− 12,
as claimed. We first explain how to color C.

Coloring C. We color C in two steps. Let E(T) be the set of edges e of T with T ∈ A(e).
Firstly, if ` > 2

√
6k we select all subtrees T with |E(T)| >

√
6k, and give each of them a

unique color. Since
∑

e |A(e)| 6 6k − 12 there are at most
√

6k − 1 such trees, so we use at
most

√
6k − 1 colors. Then for each uncolored T ∈ C we create a new tree T ′, defined as the

smallest tree containing
⋃

e∈E(T) e∩T ; see Fig. 1. Note that T ′ has at most `′ := min(`,
√

6k)
leaves because |E(T)| <

√
6k. Define C′ := {T ′ | T ∈ C}. The second step is to color C′. We

need the following lemma, which shows that an NM-coloring of C′ carries over to C.

I Lemma 2.1. Any NM-coloring of C′ corresponds to an NM-coloring of C, that is, if we give
each tree T ∈ C the color of the corresponding tree T ′ ∈ C′ then we obtain an NM-coloring.

EuroCG’18

33:4 Non-Monochromatic and Conflict-Free Colorings in Tree Spaces

v

non-monochromatic

singly-colored

uncolored
v

Figure 2 A coloring of trees (left) and an illustration of the invariant for v (right).

Proof. Let q be a point on an edge e of T contained in at least two trees of C (if no such
trees exists, the coloring is trivially non-monochromatic at q). Since q is contained in at least
two trees of C, it is also contained in two trees of A(e). Call these trees T1 and T2. Note
that T1 either receives a color in the first coloring step—namely when |E(T1)| > 2

√
6k—or

T ′
1 ∈ C′ contains q (since e ∈ E(T1)). A similar statement holds for T2. Since the colors used

in the first step are unique and C′ is NM-colored, this implies that T1 and T2 have different
colors. Hence, C is NM-colored. J

Next we show how to NM-color C′. Fix an arbitrary root r of the tree space T . Our
coloring procedure for C′ maintains the following invariant: any path from r to a leaf v
of T consists of three disjoint consecutive subpaths (some possibly empty), in this order, as
illustrated in Fig. 2:

a non-monochromatic subpath containing the root on which at least two trees are colored
with at least two different colors,
a singly-colored subpath containing exactly one colored tree, and
an uncolored subpath containing the leaf on which no tree is colored.

I Observation 2.2. Any set of trees containing r and satisfying the invariant described above
is NM-colored if we disregard uncolored trees.

We color the trees T ∈ C′ that contain r in an arbitrary order, using `′ + 1 colors, as
follows: for each leaf v of T , we follow the path from v to the root r to find a singly-colored
part. Note that if we find a singly-colored part—by the invariant there is at most one such
part on the path from v to r—we cannot use that color for T . Since T has at most `′ leaves,
this eliminates at most `′ colors. Hence, at least one color remains for T .

I Lemma 2.3. The procedure described above maintains the invariant and colors all trees
of C′ containing r with at most `′ + 1 colors.

Proof. Suppose the invariant holds before the coloring of T . Then we need to make sure the
invariant still holds after T has been colored. Let w be a leaf of T and πw the path from w

to the root. If πw does not contain a leaf of T then the invariant obviously still holds on πw.
Now suppose πw contains a leaf v of T , and let πv ⊆ πw be the path from v to r. The part
of πv that was uncolored (if it was non-empty) now is singly-colored. The part that was
singly-colored now becomes non-monochromatic, as we eliminated that color for T . And
the part that was already non-monochromatic stays so. Therefore the invariant is indeed
maintained for πw, concluding the proof. J

Once all the trees containing r are colored we delete r from T , that is, we consider the
space T \ {r}, and we take the closures of the resulting connected components. This creates
a number of subspaces such that each uncolored tree in C′ is contained in exactly one of

B. Aronov, M. de Berg, A. Markovic, and G. Woeginger 33:5

r

r′ r′ r′ r′

Figure 3 When recursing on the subspace rooted at r′ (leftmost), the invariant does not hold
anymore (middle left), as the parts are switched on the edge between r and r′. To remedy this, we
first color the tree extending the furthest into that edge (middle right), starting from r′. We then
trim the tree to fix the invariant (rightmost).

them. Consider such a subspace T ′ and let r′ be the neighbor of r in T ′. We now want
to recursively color the uncolored trees in T ′, taking r′ as the root of T ′. However, the
invariant might not hold on the edge e from r′ to the old root r: Since now r is considered
a child of r′, the order of the three parts might switch on e—see Fig. 3. Suppose this is
the case, and let ce be the color of the singly-colored part on the edge e. Note that for the
order to switch, the non-monochromatic part needs to end on e, and therefore the only color
used in any singly-colored part of the tree rooted at r′ is ce. We overcome this problem
by carefully choosing the order in which we color the trees containing r′. Namely, we first
color the tree T extending the furthest in e. In this case, there is only one color forbidden,
namely ce. We can therefore easily color T . We can then trim the tree space T ′ to remove
any non-monochromatic part and hence restore the invariant and continue with the coloring.

I Lemma 2.4. C admits an NM-coloring with min(`+ 1, 2
√

6k) colors.

Proof. The fact that the procedure above produces an NM-coloring follows from Lemmas 2.1
and 2.3. When ` > 2

√
6k we use

√
6k − 1 colors to deal with trees T with |E(T)| >

√
6k

and `′ + 1 6 min(`, 2
√

6k) + 1 6
√

6k + 1 colors for the other trees, giving 2
√

6k colors in
total. When ` 6 2

√
6k we do not treat the trees with |E(T)| >

√
6k separately, so we just

use `′ + 1 6 min(`,
√

6k) + 1 6 `+ 1 colors. J

Extending the coloring from C to A. Let c : C → N be an NM-coloring on C. We extend
the coloring to A as follows. We start by coloring all trees containing an internal vertex of
T using an arbitrary color already used. Then, for each edge e = {r, r′} we color the set of
uncolored trees contained in e using the chain method. For this we use two new colors, which
are used for all chains—we can re-use the same two colors for the chains, since trivially the
chains in any two edges e, e′ do not interact. (In the full version we describe a more careful
approach, which avoids using two new colors.) The following lemma proves the extended
coloring is non-monochromatic.

I Lemma 2.5. Any NM-coloring c on C can be extended to A by using two extra colors.

Proof. Let A1 be the subset of trees in A \ C that contain an internal vertex of T , and let
A2 be the remaining trees in A \ C. By Lemma 2.4 we have an NM-coloring on C, and the
chain method gives us an NM-coloring for the trees in A2 using two additional colors. It is
easy to see that together this gives us an NM-coloring on C ∪A2. The trees in A1 received an
arbitrary color already used. To prove that this gives an NM-coloring for A = C ∪ A1 ∪ A2,

EuroCG’18

33:6 Non-Monochromatic and Conflict-Free Colorings in Tree Spaces

it suffices to prove that each tree T ∈ A1 is doubly-covered by C, that is, any point q ∈ T is
contained in at least two trees in C. To this end, let e be an edge such that q ∈ e. Then,
since T 6∈ C and T contains an endpoint v of e, the two trees in A(e, v) contain q. Hence, T
is doubly-covered by C, as claimed. J

Proof of Theorem 1.1. For the NM-coloring part of the theorem, we use Lemmas 2.4 and 2.5.
For the second part, if ` > 2

√
6k we again reduce C to C′ using at most

√
6k− 1 colors. Then

use the result by Smorodinsky [9] on the NM-coloring on C′ provided by Lemma 2.3. Since this
coloring uses at most `′ + 1 colors and |C′| 6 6k − 12, the CF-coloring uses O(` log k) colors.
We then extend the coloring to A using similar techniques as for the NM-coloring. This
coloring uses O(

√
k log k) colors if ` > 2

√
6k, which is in O(` log k), and directly O(` log k)

colors otherwise. Note that a direct application of the result by Smorodinsty [9] would give
a O(` logn) bound instead. J

3 Concluding remarks

We studied NM- and CF-colorings on tree spaces, where the objects to be colored are
connected subsets of the tree space. We showed that the number of colors can be bounded
as a function of the complexity (that is, number of leaves) of the tree space and the objects,
rather than on the number of objects. In the full version we show that this is also the case for
balls on network spaces. It would be interesting to find more settings where this is the case.

References
1 Z. Abel, V. Alvarez, E. D. Demaine, S. P. Fekete, A. Gour, A. Hesterberg, P. Keldenich,

and C. Scheffer. Three colors suffice: Conflict-free coloring of planar graphs. In Proceedings
of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1951–1963, 2017.

2 P. Ashok, A. Dudeja, and S. Kolay. Exact and FPT algorithms for max-conflict free
coloring in hypergraphs. In Proceedings of the 26th International Symposium of Algorithms
and Computation, pages 271–282, 2015.

3 H. L. Bodlaender, J. S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Müller, and Z. Tuza.
Ranking of graphs. In Proceedings of the 20th International Workshop on Graph-Theoretic
Concepts in Computer Science, pages 292–304, 1994.

4 G. Even, Z. Lotker, D. Ron, and S. Smorodinsky. Conflict-free colorings of simple geometric
regions with applications to frequency assignment in cellular networks. SIAM Journal on
Computing, 33(1):94–136, 2003.

5 S. Har-Peled and S. Smorodinsky. Conflict-free coloring of points and simple regions in the
plane. Discrete & Computational Geometry, 34(1):47–70, 2005.

6 M. Katchalski, W. McCuaig, and S. M. Seager. Ordered colourings. Discrete Mathematics,
142(1-3):141–154, 1995.

7 J. Pach and G. Tardos. Conflict-free colourings of graphs and hypergraphs. Combinatorics,
Probability & Computing, 18(5):819–834, 2009.

8 S. Smorodinsky. Combinatorial Problems in Computational Geometry. PhD thesis, Tel-Aviv
University, 2003.

9 S. Smorodinsky. On the chromatic number of some geometric hypergraphs. In Proceedings
of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 316–323, 2006.

10 S. Smorodinsky. Conflict-free coloring and its applications. In I. Bárány, K. J. Böröczky,
G. F. Tóth, and J. Pach, editors, Geometry — Intuitive, Discrete, and Convex: A Trib-
ute to László Fejes Tóth, pages 331–389. Springer Berlin Heidelberg, 2013. See also
arXiv:abs/1005.3616.

	Introduction
	The coloring algorithms
	Concluding remarks

