
Combinatorial and Asymptotical Results on the
Neighborhood Grid Data Structure
Martin Skrodzki1, Ulrich Reitebuch1, Konrad Polthier1, and
Shagnik Das1

1 Freie Universität Berlin
martin.skrodzki@fu-berlin.de
ulrich.reitebuch@fu-berlin.de
konrad.polthier@fu-berlin.de
shagnik@mi.fu-berlin.de

Abstract
In 2009, Joselli et al. introduced the Neighborhood Grid data structure for fast computation of
neighborhood estimates in point sets. Even though the data structure has been used in several
applications and shown to be practically relevant, it is theoretically not yet well understood. The
purpose of this paper is to give results on the complexity of building algorithms – both single-
core and parallel – for the neighborhood grid. Furthermore, current investigations on related
combinatorial questions are presented.

1 Introduction

The neighborhood grid data structure can be used to compute estimates of neighborhoods in
point sets. That is, for a given point pi in a point set P , it provides a point pj that is close to
pi but not necessarily its nearest neighbor in P . It has been introduced by Joselli et al. [3,4].
In order to give a short introduction to the data structure, consider the example in Figure 1.
It shows how points from a point set (Figure 1a) are placed in a grid (Figure 1b). The order
in which the points are given is random, thus their initial placement in the grid is also. After
the placement, only the coordinates of the points are considered in the grid (Figure 1c).

(a) Point set with nine points
in R2.

(b) The points are initially
placed randomly.

4.07, 5.13

2.06, 7.76

8.23, 4.79

3.73, 6.84

1.77, 5.46

8.41, 1.96

4.27, 1.45

9.18, 9.05

1.53, 1.30

(c) The point coordinates are
considered.

Figure 1 First part of the neighborhood grid pipeline.

The grid as obtained in Figure 1c will now be sorted. Each row should grow in the first
coordinates from left to right, each column should grow in the second coordinates from
bottom to top. A corresponding sorted grid is given in Figure 2a. Note how it – in this
example – recovers the combinatorial neighborhood relation from the points.

In order to use the grid to determine a neighborhood estimate for a given point pi, find
that point in the sorted grid. Then, consider a small neighborhood around that point in
the grid, e.g. the one-ring around it. The size of this neighborhood should not depend on
the number of inserted points such that this lookup runs in asymptotically constant time
O(1). From that neighborhood in the grid, find the closest point to the considered point and
output it as estimated nearest neighbor to pi.
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



30:2 Results on the Neighborhood Grid

4.07, 5.13

2.06, 7.76

8.23, 4.79

3.73, 6.84

1.77, 5.46

8.41, 1.964.27, 1.45

9.18, 9.05

1.53, 1.30

(a) Coordinates are sorted to grow
in their x-values in rows and in their
y-values in columns.

4.07, 5.13

2.06, 7.76

8.23, 4.79

3.73, 6.84

1.77, 5.46

8.41, 1.964.27, 1.45

9.18, 9.05

1.53, 1.30

(b) Determining the neighbors of the
upper left point by looking at its
neighbors in the grid.

Figure 2 Second part of the neighborhood grid pipeline.

In this report, we present new results on the neighborhood grid data structure. A more
extensive version of our results can be found in a corresponding paper on ArXiv [6]. Malheiros
and Walter [2] investigated several iterative building strategies for the data structure. Despite
the evidences of practical relevance, as given in the publication cited above, neither Joselli
nor Malheiros investigated the asymptotic building times of the grid or answered the question
for a time-optimal building algorithm. Therefore, this paper contains:

a polynomial-time algorithm to build a neighborhood grid (Theorem 2.2),
a proof of asymptotic time-optimality of the presented algorithm (Section 3.1),
a comparison with the parallel building algorithm of Malheiros and Walter (Section 3.2).

The mentioned ArXiv paper contains – apart from more examples and proofs – several
combinatorial results on the number of possible sorted placements, a complete list of unique
sorted placements for n ∈ {1, 2, 3}, and a proof of non-existence of unique sorted placements
for n ≥ 4. So far, the following question remains unanswered:

For a given n ∈ N, n ≥ 4, what is a point set with the least or largest number of stable
states?

For the case of the largest number we give a conjecture.

2 The Neighborhood Grid

In this first section, we present the neighborhood data structure, fix corresponding notation,
and prove a first theorem on a polynomial-time building algorithm.

2.1 Definition of the Data Structure
Given a set of points P = {p1, . . . , pN | pi ∈ Rd}. In the following we will assume that
N = n2 for some n ∈ N and d = 2. Therefore, each point is given by pi = (pi1, pi2) ∈ R2,
where pi1 will be referred to as x- and pi2 as y-value. Furthermore, we assume that pi 6= pj
for all i 6= j. Finally, we can restrict w.l.o.g. to {pik | i ∈ [N ]} = [N ] for k ∈ {1, 2}, which
will be important in Section 3.1. Consider [6] for the general case without these restrictions.

The points will be placed in an n× n matrix, where each cell of the matrix contains a
point pi. That is, we consider a matrix M ∈ (R2)n×n which then has the form

M =
(a1n, b1n) . . . (ann, bnn)

... . .
. ...

(a11, b11) . . . (an1, bn1)
. (1)



M. Skrodzki, U. Reitebuch, and K. Polthier 30:3

Ultimately, we want to order the points in the matrix such that the following state is
reached.

I Definition 2.1. The matrix M as given in (1) is said to be in a stable state if and only
if the following two conditions are satisfied for any i, j ∈ [n], i 6= j.

1. For all k ∈ [n] it is: i < j ⇒ aki < akj ∨ (aki = akj ∧ bki < bkj).
2. For all ` ∈ [n] it is: i < j ⇒ bi` < bj` ∨ (bi` = bj` ∧ ai` < aj`).

In other words, a matrix M is in a stable state, if the points in each row of M are
ordered lexicographically according to the first and then the second coordinate. Similarly, all
columns of M have to be ordered lexicographically according to the second and then the
first coordinate. An illustration of Definition 2.1 is given in Figure 3. We call a stable state
unique, if there exists no other stable state for the same point set P .

(55, 42) (60, 49)

(26, 61) (13, 69)

(95, 13) (95, 65) (06, 69) (26, 61) (86, 89)

(02, 55) (80, 34) (86, 41)

(05, 19) (47, 11) (95, 13)

Figure 3 On the left a partially filled matrix with a violation of Definition 2.1 marked red. On
the right a 3 × 3 matrix M in stable state.

2.2 Polynomial-Time building algorithm
Now the following question arises naturally: For any set of points P as specified above, is
there a bijective placement π : [n2]→ [n]× [n], i 7→ (k, `) such that the matrix Mπ(P ) with

M =
(pπ−1(n,1)1, pπ−1(n,1)2) . . . (pπ−1(n,n)1, pπ−1(n,n)2)

... . .
. ...

(pπ−1(1,1)1, pπ−1(1,1)2) . . . (pπ−1(1,n)1, pπ−1(1,n)2)
. (2)

is in a stable state? In other words, given n2 points, can these be written into an n× n
matrix such that it is in a stable state as defined in Definition 2.1.

I Theorem 2.2. For every set of points P = {p1, . . . , pN | pi ∈ R2} there is a bijective
placement π such that Mπ(P ) is in a stable state. A placement π can be found in O(N log(N)).

Proof. Consider the points p1, . . . , pN as a sequence. Sort this sequence according to the
first condition given in Definition 2.1. Obtain a sequence

(q11, q12), (q21, q22), . . . , (qN1, qN2),

where for i, j ∈ [n], i < j we have qi1 < qj1 or (qi1 = qj1 ∧ qi2 < qj2). Now split this sequence
into n blocks as follows:

(q11, q12), . . . , (qn1, qn2)︸ ︷︷ ︸
=:Q1

, (q(n+1)1, q(n+1)2), . . . , (q(2n)1, q(2n)2)︸ ︷︷ ︸
=:Q2

,

. . . (q(n2−n+1)1, q(n2−n+1)2), . . . , (qN1, qN2),︸ ︷︷ ︸
=:Qn

.

EuroCG’18



30:4 Results on the Neighborhood Grid

Now consider each sequence Qi and sort it according to the second condition given in
Definition 2.1. Obtain a sequence

Rk := (r11, r12), (r21, r22), . . . , (rn1, rn2), k ∈ [n],

where for i < j we have ri2 < rj2 or (ri2 = rj2 ∧ ri1 < rj1). That is, the points in the
sequence Rk are sorted according to the second condition of Definition 2.1. Furthermore, for
i < j, any point from Ri satisfies the first condition of Definition 2.1 when compared to any
point from Rj , since the Rk derive from the Qk. Therefore, placing the sequence Rk into the
kth column of the matrix M results in a stable state.

Concerning the runtime, in the first step, N points were sorted, which takes O(N log(N)).
In the second step, n sets of n points each were sorted, which takes

n · O(n log(n)) = O(n2 log(
√
N)) = O(N log(N)),

as N = n2. Hence, the stable state was computed in O(N log(N)). J

Theorem 2.2 imposes an upper bound on the runtime of any time-optimal comparison-
based algorithm that creates a stable state of a matrix M . The next question is then: What
is a lower bound?

3 Optimality of the Algorithm

3.1 A Lower Bound
To prove a lower bound, consider a comparison-based algorithm A. The input to A is a
point set P , the output is a stable placement π. Each query of A establishes pik < pjk for
i, j ∈ [N ], k ∈ {1, 2} and can be seen as a node of a decision-tree. The leafs of this tree
correspond to placements of which some are stable for the given point set. A time-optimal
algorithm builds this tree such that it is of depth log((n2)!).

If we fix a placement π, we can say w.l.o.g. that π fixes the x-coordinates in the matrix
such that they satisfy Definition 2.1. When counting the number of point sets for which π is
stable, we can now pair the already placed x-values with y-values as follows: When setting
up the y-values for the first column, one can pick n of the possible N = n2 values, which
then admit to a unique order in the column. Therefore, for the y-values in the first column,
there are

(
n2

n

)
possibilities. For the second column, there are

(
n2−n
n

)
possibilities, until there

is
(
n2−(n−1)n

n

)
= 1 possibility for the last column. Overall, there are

(n−1)∏
k=0

(
n2 − kn

n

)
= n2!

(n2 − n)!n! ·
(n2 − n)!

(n2 − 2n)!n! · . . . ·
(2n)!
n!n! ·

n!
n! = (n2)!

(n!)n

possibilities to put y-values into the matrix and obtain a stable state from them utilizing the
fixed π. That is, a placement π is always stable for exactly (n2)!

(n!)n point sets.
Thus, when building its decision-tree, the algorithm A cannot stop at a subtree with

more than (n2)!
(n!)n leafs, as one of them will surely not be stable under the currently considered

placement. That is, the tree has to be traversed to depth at least

log((n2)!)− log
(

(n2)!
(n!)n

)
= log

(
(n2)! · (n!)n

(n2)!

)
= log((n!)n) = n · log(n!) = O(n2 · log(n)).

Therefore, each decision-based algorithm building a stable state needs to perform at least
Ω(n2 · log(n)) operations. Together with Theorem 2.2 this proves the following:

I Theorem 3.1. The algorithm outlined in Theorem 2.2 is asymptotically time-optimal.



M. Skrodzki, U. Reitebuch, and K. Polthier 30:5

3.2 Comparison to Malheiros and Walter
In the previous section, we have seen that a decision-based algorithm running on a single
core has optimal asymptotic runtime O(n2 · log(n)). However, both Joselli et al. [3, 4] and
Malheiros and Walter [2] utilize a parallelized version of odd-even sort. Assuming n2/2
processors given, they alternately perform one step of the odd-even sort algorithm on rows
and columns. By exchanging two points that violate Definition 2.1, they claim to converge
to a stable state. Even though they do not prove this claim, it can easily be established
when plugging the matrix M from Equation (1) into the energy

E(M) =
n∑

i,j=1
i · aij + j · bij , (3)

which grows for each exchange, but is bounded from above. Thus, the procedure converges
to a stable state.

As a point can only move by one row or column in each step, consider the element (1, 1)
that has to be placed in the lower left corner given our restrictions. In case it starts in
the upper right corner, the algorithm needs to perform 2n − 2 = O(n) steps to move the
element to its designated position. Therefore, this parallel algorithm has a lower bound of
ω(n). There are even examples for elements that cycle through the grid, consider [6] for an
example.

Note that the algorithm presented in Theorem 2.2 needs to sort the given points. When
utilizing n2/2 processors, sorting can be performed in log(n2) time, see [1]. Therefore, the
presented algorithm can be parallelized to run in O(log(n2)). However, this is of rather
theoretical relevance, as the constants in [1] are comparably large.

Compare this to building a KdTree in parallel. In each step i, we have to sort i sets of
n2/2i points in the dimension with largest spread, which takes log(n2)− i time for each of
the log(n2) levels of the tree, resulting in a total building time of O(log2(n)). Therefore, the
neighborhood grid can be build slightly faster, but only gives estimated answers, while the
KdTree provides exact neighbor relations.

4 Combinatorial Questions

4.1 Point Set with a unique Stable State
In the previous section it was shown that the running time of the algorithm outlined in
Theorem 2.2 is asymptotically time-optimal. However, the question remains whether the
stable state found by the algorithm for a given point set P is unique. By iterating over all
possible point sets P with n = 4, we found that none of the two-dimensional point sets on 16
points has a unique stable state. Utilizing an inductive argument, we show that given any
point set P with n ≥ 5, there exists no unique stable state. See [6] for details and a complete
enumeration of unique stable states in the case of n ∈ {1, 2, 3}. The fact that for n ≥ 4 there
is no point set with a single unique stable state raises the following question:

Open Question. Given n ∈ N, n ≥ 4, what is a point set P with the minimum number of
stable states among all point sets with n2 points?

4.2 Point Set with largest number of Stable States
We proceed by turning the question from the last section around. What is the maximal
number of stable states a point set can obtain for some given n ∈ N? In order to investigate

EuroCG’18



30:6 Results on the Neighborhood Grid

this question, we first turn to a specific point set, for which we can count the number of
stable states. Consider the identity: {(1, 1), (2, 2), . . . , (n2, n2)}. Counting the number of
stable states for the identity is equivalent to placing only one number in each field of the
n× n matrix, which then has to satisfy both conditions of Definition 2.1. But this is exactly
the number of standard Young tableaux of shape (n, . . . , n). See [5] for an introduction into
the underlying combinatorics and [6] for the application of these to the given setup. The
number of stable states of the identity is then given by

f (n,...,n) = N !∏n
i=1
∏n
j=1(2n− i− j + 1)

. (4)

The results for n ∈ {1, 2, 3} and computational experiments lead us to state the following
conjecture.

I Conjecture 4.1. Given n ∈ N, the number of stable states of any point set P on n2 points
is less or equal to f (n,...,n).

5 Conclusion and Future Work

We have presented a polynomial-time algorithm to build a stable state for a given point set P .
Furthermore, we have proven the parallel algorithm from [2–4] to converge to a stable state
and provided a lower bound on its runtime. Finally, we have deduced two open combinatorial
questions resulting from the investigations of the data structure. A question not addressed in
this paper concerns the quality of neighborhood estimates obtained from the grid. Answering
these is left as future work.

Acknowledgments. The first author acknowledges the support by the Einstein Center for
Mathematics Berlin, the Berlin Mathematical School, and the German National Academic
Foundation. Furthermore, this research was supported by the DFG Collaborative Research
Center TRR 109, ’Discretization in Geometry and Dynamics’.

References
1 Miklós Ajtai, János Komlós, and Endre Szemerédi. Sorting in c logn parallel steps. Com-

binatorica, 3(1):1–19, 1983.
2 Marcelo de Gomensoro Malheiros and Marcelo Walter. Simple and efficient approximate

nearest neighbor search using spatial sorting. In Graphics, Patterns and Images (SIB-
GRAPI), 2015 28th SIBGRAPI Conference on, pages 180–187. IEEE, 2015.

3 Mark Joselli, José Ricardo da S Junior, Esteban W Clua, Anselmo Montenegro, Marcos
Lage, and Paulo Pagliosa. Neighborhood grid: A novel data structure for fluids animation
with gpu computing. Journal of Parallel and Distributed Computing, 75:20–28, 2015.

4 Mark Joselli, Erick Baptista Passos, Marcelo Zamith, Esteban Clua, Anselmo Montenegro,
and Bruno Feijó. A neighborhood grid data structure for massive 3d crowd simulation on
gpu. In 2009 VIII Brazilian Symposium on Games and Digital Entertainment (SBGAMES),
pages 121–131. IEEE, 2009.

5 Bruce E. Saga. The Symmetric Group. Springer, 2001.
6 M. Skrodzki, U. Reitebuch, and K. Polthier. Combinatorial and Asymptotical Results on

the Neighborhood Grid. ArXiv e-prints, October 2017. arXiv:1710.03435.

http://arxiv.org/abs/1710.03435

	Introduction
	The Neighborhood Grid
	Definition of the Data Structure
	Polynomial-Time building algorithm

	Optimality of the Algorithm
	A Lower Bound
	Comparison to Malheiros and Walter

	Combinatorial Questions
	Point Set with a unique Stable State
	Point Set with largest number of Stable States

	Conclusion and Future Work

