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Abstract
We present a deterministic linear time algorithm to find a set of five points that stab a set of
n pairwise intersecting disks in the plane. We also give a simple construction with 13 pairwise
intersecting disks that cannot be stabbed by three points.

1 Introduction

Let D be a set of n pairwise intersecting disks in the plane. If every three disks in D have a
nonempty intersection, then, by Helly’s theorem, the whole intersection ∩D is nonempty [6–8].
Thus, D can be stabbed by one point. More generally, when there are three disks with empty
intersection, D can still always be stabbed by four points. In July 1956, Danzer presented a
proof at Oberwolfach (see [3]). Since Danzer was not satisfied with his proof, he never published
it, but he gave a new proof in 1986 [3]. Previously, in 1981, Stachó published a proof for the
existence of four stabbing points [11], using similar arguments as in his previous construction
of five stabbing points [10]. Hadwiger and Debrunner showed that three points suffice for unit
disks [5]. Danzer’s upper bound proof is fairly involved, and there seems to be no obvious way to
turn it into an efficient algorithm. The two constructions of Stachó are simpler, but not enough
for an easy subquadratic algorithm. We present a new argument that yields five stabbing points.
Our proof is constructive and allows us to find the stabbing points deterministically in linear
time.

As for lower bounds, Grünbaum gave an example of 21 pairwise intersecting disks that cannot
be stabbed by three points [4]. Later, Danzer reduced the number of disks to ten [3]. This example
is close to optimal, because every set of eight disks can be stabbed by three points [10]. It is
hard to verify the lower bound by Danzer for ten disks—even with dynamic geometry software.
We present a simple construction that uses 13 disks.

2 The geometry of pairwise intersecting disks

Let D be a set of n pairwise intersecting disks. A disk Di ∈ D is given by its center ci and its
radius ri. We assume without loss of generality that no disk is contained in another. The lens of
two disks Di, Dj ∈ D is the set Li,j = Di∩Dj . Let u be any of the two intersection points of ∂Di
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Figure 1 Left: At least one lens angle is large. Right: D1 and E have the same radii and lens
angle 2π/3. By Lemma 2.2, D2 is a subset of E. {c1, c, p, q} is the set P from Lemma 2.4.

and ∂Dj . The angle ∠ciucj is called the lens angle of Di and Dj . It is at most π. Three disks
Di, Dj , and Dk are non-Helly if Di ∩Dj ∩Dk = ∅. We present some useful geometric lemmas.

I Lemma 2.1. Among any three non-Helly pairwise intersecting disks D1, D2, and D3, there
are two disks with lens angle larger than 2π/3.

Proof. By assumption, the lenses L1,2, L1,3 and L2,3 are pairwise disjoint. Let u be the vertex
of L1,2 nearer to D3, and let v, w be the analogous vertices of L1,3 and L2,3 (see Figure 1, Left).
Consider the simple hexagon c1uc2wc3v, and write ∠u, ∠v, and ∠w for the interior angles at u,
v, and w. The sum of all interior angles is 4π. Thus, ∠u+ ∠v + ∠w < 4π, so at least one angle
is less than 4π/3. It follows that the exterior angle at u, v, or w must be larger than 2π/3. J

I Lemma 2.2. Let D1 and D2 be two intersecting disks with radii r1 ≥ r2 and lens angle
α ≥ 2π/3. Let E be the unique disk with radius r1 and center c, such that (i) the centers c1, c2,
and c are collinear and c lies on the same side of c1 as c2; and (ii) the lens angle of D1 and E
is exactly 2π/3 (see Figure 1, Right). Then, if c2 lies between c1 and c, we have D2 ⊆ E.

Proof. Let x ∈ D2. Then, since c2 lies between c1 and c, the triangle inequality gives

|xc| ≤ |xc2|+ |c2c| = |xc2|+ |c1c| − |c1c2|. (1)

Since x ∈ D2, we get |xc2| ≤ r2. Also, since D1 and E each have radius r1 and form the lens angle
2π/3, it follows that |c1c| =

√
3r1. Finally, by the law of cosines, |c1c2| =

√
r2

1 + r2
2 − 2r1r2 cosα.

As α ≥ 2π/3 and r1 ≥ r2, we get cosα ≤ −0.5 ≤ (
√

3− 1.5) r1
r2
−
√

3 + 1, so

|c1c2|2 = r2
1+r2

2−2r1r2 cosα ≥ r2
1+r2

2−2r1r2

((√
3− 1.5

) r1

r2
−
√

3 + 1
)

=
(
r1
(√

3− 1
)

+ r2
)2
.

Plugging this into Eq. (1), we obtain |xc| ≤ r2 +
√

3r1− (r1
(√

3− 1) + r2
)

= r1, i.e., x ∈ E. J

I Lemma 2.3. Let D1 and D2 be two intersecting disks of equal radius r with lens angle 2π/3.
There is a set P of four points so that any disk F of radius at least r that intersects both D1 and
D2 contains a point of P .

Proof. Consider the two tangent lines of D1 and D2, and let p and q be the midpoints on these
lines between the respective two tangency points. We set P = {c1, c2, p, q} (see Figure 2, Left).

Given F , we decrease its radius, keeping its center fixed, until either the radius becomes r
or until F is tangent to D1 or D2. Suppose the latter case holds and F is tangent to D1. We
move the center of F continuously along the line spanned by the center of F and c1 towards c1,
decreasing the radius of F to maintain the tangency. We stop when either the radius of F reaches
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Figure 2 Left: P = {c1, c2, p, q} is the stabbing set. The green arc γ = ∂(D2
1 ∩ D2

2) ∩ Q is
covered by D2

1 ∩Dq. Right: Situation (ii) in the proof of Lemma 2.4: D2 6⊆ E. x is an arbitrary
point in D2 ∩ F ∩ k+. The angle at c in the triangle ∆xcc2 is ≥ π/2.

r or F becomes tangent to D2. We obtain a disk G ⊆ F with center c = (cx, cy) so that either:
(i) radius(G) = r and G intersects both D1 and D2, or (ii) radius(G) ≥ r and G is tangent to
both D1 and D2. Since G ⊆ F , it suffices to show that G ∩ P 6= ∅. We introduce a coordinate
system, setting the origin o midway between c1 and c2, so that the y-axis passes through p and
q. Then, in the manner depicted in Figure 2 (left), we have c1 = (−

√
3r/2, 0), c2 = (

√
3r/2, 0),

q = (0, r), and p = (0,−r).
For case (i), letD2

1 be the disk of radius 2r centered at c1, andD2
2 the disk of radius 2r centered

at c2. Since G has radius r and intersects both D1 and D2, its center c has distance at most 2r
from both c1 and c2, i.e., c ∈ D2

1 ∩D2
2. Let Dp and Dq be the two disks of radius r centered at p

and q. We will show that D2
1∩D2

2 ⊆ D1∪D2∪Dp∪Dq. Then it is immediate that G∩P 6= ∅. By
symmetry, it is enough to focus on the upper-right quadrant Q = {(x, y) | x ≥ 0, y ≥ 0}. We show
that all points in D2

1∩Q are covered by D2∪Dq. Without loss of generality, we assume that r = 1.
Then, the two intersection points of D2

1 and Dq are r1 = ( 5
√

3−2
√

87
28 , 38+3

√
29

28 ) ≈ (−0.36, 1.93)
and r2 = ( 5

√
3+2
√

87
28 , 38−3

√
29

28 ) ≈ (0.98, 0.78), and the two intersection points of D2
1 and D2 are

s1 = (
√

3
2 , 1) ≈ (0.87, 1) and s2 = (

√
3

2 ,−1) ≈ (0.87,−1). Let γ be the boundary curve of D2
1

in Q. Since r1, s2 6∈ Q and since r2 ∈ D2 and s1 ∈ Dq, it follows that γ does not intersect the
boundary of D2 ∪Dq and hence γ ⊂ D2 ∪Dq. Furthermore, the subsegment of the y-axis from o

to the startpoint of γ is contained in Dq, and the subsegment of the x-axis from o to the endpoint
of γ is contained in D2. Hence, the boundary of D2

1 ∩ Q lies completely in D2 ∪Dq, and since
D2 ∪Dq is simply connected, it follows that D2

1 ∩Q ⊆ D2 ∪Dq, as desired.
For case (ii), sinceG is tangent toD1 andD2, the center c ofG is on the perpendicular bisector

of c1 and c2, so the points p, o, q and c are collinear. Suppose without loss of generality that
cy ≥ 0. Then, it is easily checked that c lies above q, and radius(G) + r = |c1c| ≥ |oc| = r + |qc|,
so q ∈ G. J

I Lemma 2.4. Consider two intersecting disks D1 and D2 with radii r1 ≥ r2, having lens angle
at least 2π/3. Then, there is a set P of four points such that any disk F of radius at least r1 that
intersects both D1 and D2 contains a point of P .

Proof. Let ` be the line through c1 and c2. Let E be the disk of radius r1 and center c ∈ ` that
satisfies the conditions (i) and (ii) of Lemma 2.2. Let P be the point set {c1, c, p, q} specified in
the proof of Lemma 2.3, with respect to D1 and E (see Figure 1, Right). We claim that

D1 ∩ F 6= ∅ ∧ D2 ∩ F 6= ∅ ⇒ E ∩ F 6= ∅. (*)

Once (*) is established, we are done by Lemma 2.3. If D2 ⊆ E, then (*) is immediate, so assume
that D2 6⊆ E. By Lemma 2.2, c lies between c1 and c2. Let k be the line through c perpendicular
to `, and let k+ be the open halfplane bounded by k with c1 ∈ k+ and k− the open halfplane

EuroCG’18
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bounded by k with c1 6∈ k−. Since |c1c| =
√

3r1 > r1, we have D1 ⊂ k+ (see Figure 2, Right).
Recall that F has radius at least r1 and intersects D1 and D2. We distinguish two cases: (i)
there is no intersection of F and D2 in k+, and (ii) there is an intersection of F and D2 in k+.

For case (i), let x be any point in D1 ∩ F . Since we know that D1 ⊂ k+, we have x ∈ k+.
Moreover, let y be any point in D2 ∩F . By assumption (i), y is not in k+, but it must be in the
infinite strip defined by the two tangents of D1 and E. Thus, the line segment xy intersects the
diameter segment k∩E. Since F is convex, the intersection of xy and k∩E is in F , so E∩F 6= ∅.

For case (ii), let x be any point in D2 ∩ F ∩ k+. Consider the triangle ∆xcc2. Since x ∈ k+,
the angle at c is at least π/2 (Figure 2, Right). Thus, |xc| ≤ |xc2|. Moreover, since x ∈ D2, we
know that |xc2| ≤ r2 ≤ r1. Hence, we have |xc| ≤ r1 so x ∈ E and (*) follows, as x ∈ E ∩F . J

3 Stabbing disks in linear time

Let D be a set of n pairwise intersecting disks. For r > 0, we define
⋂
≤r D to be the intersection

of all disks in D with radius at most r. The set
⋂

<r D is defined analogously. Moreover, let
X be a non-empty intersection of finitely many disks. Then, V(X) is the set of vertices on the
boundary of X.

I Lemma 3.1. For a set D of n pairwise intersecting disks, we can decide in linear time if the
intersection

⋂
D is empty. In the same time, we can compute a point in

⋂
D, if it exists, or a

non-Helly triple Di, Dj , Dk with ri, rj ≤ rk, such that
⋂

<rk
D 6= ∅, otherwise.

Proof. Consider a subset D′ of D and assume first that
⋂
D′ = ∅. In this case, there exists a

disk Dk ∈ D′ with radius rk such that
⋂

<rk
D′ 6= ∅ and

⋂
≤rk
D′ = ∅. We set ind(D′) = k and

rad(D′) = rk. Next, assume that
⋂
D′ 6= ∅. In this case, we set ind(D′) =∞ and rad(D′) =∞.

Now, for D′ ⊆ D, we define w(D′) =
(

rad(D′),−min
{
d(v,Dind(D′)) | v ∈ V(

⋂
<rad(D′)D

′)
})

. If
ind(D′) =∞ we set d(v,D∞) = vy, the y-coordinate of v. Chan has observed that the problem
(D, w) is LP-type [1, 9]. The combinatorial dimension of (D, w) is 3, and therefore, the violation
test can be done in constant time. Furthermore, for a basis B of (D, w) , let vio(B) be the
set of disks in D that violate B, i.e., for all D ∈ vio(B), we have w(B ∪ {D}) < w(B). Then,
(D,R = {vio(B) | B is a basis in D}) is the underlying range space for the LP-type problem, and
one can check that it has constant VC-dimension. Thus, we can use the deterministic algorithm
by Chazelle and Matoušek [2] to compute w(D) and a corresponding basis B in O(n) time. One
can show that B is either a non-Helly triple for D with the desired properties, or that B yields a
stabbing point for D. J

I Theorem 3.2. Given a set D of n pairwise intersecting disks in the plane, we can find in linear
time a set S of five points such that every disk of D contains at least one point of S.

Proof. Using Lemma 3.1, we decide if ∩D is empty. If not, we return a point in the common
intersection. Otherwise, the lemma gives us a non-Helly tripe with smallest maximum radius rk.
For the disks D` ∈ D with r` < rk, we can obtain in linear time a stabbing point s by using
Helly’s theorem and Lemma 3.1. Next, by Lemma 2.1, there are two disks D′ and D′′ among
Di, Dj and Dk whose lens angle is at least 2π/3. Let P be the set of four points, as described
in the proof of Lemma 2.4, that stabs any disk of radius at least rk that intersects both D′ and
D′′. Then S = {s} ∪ P is a set of five points that stabs all disks of D. J

4 13 pairwise intersecting disks that cannot be stabbed by 3 points

The construction begins with an inner disk A, say of radius 1, and three larger disks D1, D2, D3
of equal size, so that A is tangent to all three disks, and each pair of the disks are tangent to
each other. Denote the contact point of A and Di by ξi, for i = 1, 2, 3.
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We add six very large disks as follows. For i = 1, 2, 3, we draw the two common outer tangents
to A and Di, and denote by T−i and T+

i the halfplanes that are bounded by these tangents and
are openly disjoint from A. For concreteness, the labels T−i and T+

i are such that the points of
tangency between A and T−i , Di, and T+

i , appear along ∂A in this counterclockwise order. One
can show that the nine points of tangency between A and the other disks and halfplanes are all
distinct (see Figure 3). We regard the six halfplanes T−i , T+

i , for i = 1, 2, 3, as disks; in the end,
we can apply a suitable inversion to turn the disks and halfplanes into actual disks, if so desired.

Figure 3 Each common tangent ` represents a very large disk tangent to the disks to which ` is
tangent. The nine points of tangency are all distinct.

Finally, we construct three additional disks A1, A2, A3. To construct Ai, we slightly expand
A into a disk A′i of radius 1 + ε1, while keeping it touching Di at ξi. We then roll A′i clockwise
along Di, by a tiny angle ε2 � ε1 to obtain Ai.

This completes the construction, giving 13 disks. For sufficiently small ε1 and ε2, we can
ensure the following properties for each Ai: (i) Ai intersects all other 12 disks, (ii) the nine
intersection regions Ai ∩Dj , Ai ∩ T−j , Ai ∩ T+

j , for j = 1, 2, 3, are pairwise disjoint. (iii) ξi /∈ Ai.

I Lemma 4.1. The 13 disks in the construction cannot be stabbed by three points.

Proof. Consider any set of three points and suppose they form a stabbing set. Let A∗ be the
union A ∪ A1 ∪ A2 ∪ A3. If p is a stabbing point in A∗, then typically p will stab all these four
disks (unless p lies at certain peculiar locations), but, by construction, it stabs at most one of
the nine remaining disks. It is thus impossible for all three stabbing points to lie in A∗, but at
least one of them must lie there.

Assume first that A∗ contains two stabbing points. As just argued, there are at most two of
the remaining disks that are stabbed by these points. The following cases can then arise.
(a) The stabbed disks are both halfplanes. Then D1, D2, D3 form a non-Helly triple, i.e. they

do not have a common intersection, and none of them is stabbed. Since a non-Helly triple
must be stabbed by at least two points, an unstabbed disk remains.

(b) The stabbed disks are both among D1, D2, D3. Then the six unstabbed halfplanes form many
non-Helly triples 1, e.g., T−1 , T−2 , and T−3 , and again a disk remains unstabbed.

(c) One stabbed disk is D1, D2, or D3, and the other is a halfplane. Then, there is (at least)
one disk Di such that it, and the two associated halfplanes T−i , T+

i are all unstabbed. (Di is

1 Note that it is easy to extend the definition of non-Helly triples to halfplanes.

EuroCG’18
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a disk that is not stabbed by either of the two initial points, and neither of its two tangent
halfplanes is stabbed.) Then Di, T−i , and T+

i form an unstabbed non-Helly triple.
Assume then that A∗ contains only one stabbing point p, so at most one of the nine remaining
disks is stabbed by p. Since p is the only point that stabs all three disks A1, A2, A3, it cannot
be any of ξ1, ξ2, ξ3, so the other disk that it stabs (if there is such a disk) must be a halfplane.
That is, p does not stab any of D1, D2, D3. Since D1, D2, D3 form a non-Helly triple, they
require two points to stab them all. Moreover, since we only have two points at our disposal, one
of them must be the point of tangency of two of these disks, say of D2 and D3. This point stabs
only two of the six halfplanes (concretely, they are T−1 and T+

1 ). But then D1, T+
2 , and T−3 form

an unstabbed non-Helly triple. J

5 Conclusion

We presented a simple algorithm for the computation of five stabbing points for a set of pair-
wise intersecting disks by solving a corresponding LP-type problem. Nevertheless, the question
remains open how to use the proofs of Danzer or Stachó (or any other technique) for an efficient
construction of four stabbing points. Since eight disks can always be stabbed by three points [10],
it remains open whether nine disks can be stabbed by three points or not. Furthermore, it would
be interesting to find a simpler construction of ten pairwise intersecting disks that cannot be
stabbed by three points.

Acknowledgments. We would like to thank Timothy Chan for pointing us to the direct LP-
type algorithm described in Lemma 3.1.
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