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Abstract
A drawing of a graph is called 1-planar if every edge is crossed at most once. A 1-planar drawing
is called independent-crossing planar (IC-planar) if no two pairs of crossing edges share a vertex.
A 1-planar drawing is called near-independent-crossing planar (NIC-planar) if any two pairs of
crossing edges share at most one vertex. The 1-planar, NIC-planar, and IC-planar graphs are the
graphs that admit a 1-planar, NIC-planar, and IC-planar drawing, respectively. The NIC-planar
graphs are a subset of the 1-planar graphs and a superset of the IC-planar graphs, which are
important beyond-planar graph classes. We constructively show that every n-vertex NIC-plane
graph admits a NIC-planar drawing with only right-angle crossings (RAC) and at most one bend
per edge on a grid of size O(n) × O(n). Our construction takes linear time. We also give an
overview of the relationships between several classes of 1-planar and RAC graphs.

1 Introduction

In graph theory and graph drawing, beyond-planar graph classes have experienced increasing
interest in recent years. A prominent example is the class of 1-planar graphs, that is,
graphs that admit a drawing where each edge is crossed at most once. 1-planar graphs were
introduced by Ringel [13] in 1965; Kobourov et al. [11] surveyed them recently. Another
example that has received considerable attention are RACk graphs, that is, graphs that
admit a poly-line drawing where all crossings are at right angles and each edge has at most k

bends. RACk graphs were introduced by Didimo et al. [7]. We investigate the relationships
between (certain subclasses of) 1-planar graphs and RACk graphs that admit drawings on a
polynomial-size grid. Known results and our contributions are summarized in Fig. 1.

Basic Terminology. A mapping Γ is called a drawing of the graph G = (V, E) if each
vertex v ∈ V is mapped to a point in R2 and each edge {u, v} is mapped to a simple open
Jordan curve in R2 such that the endpoints of this curve are Γ(u) and Γ(v). For convenience,
we will refer to the points and simple open Jordan curves of a drawing as vertices and edges.
The topologically connected regions of R2 \ Γ are called faces of Γ. The unbounded face of Γ
is called outer face; the other faces are inner faces. An equivalence class of drawings of a
graph G having the same set of faces and the same outer face is called an embedding of G.

A k-bend (poly-line) drawing is a drawing in which every edge is drawn as a connected
sequence of at most k + 1 line segments. The up to k inner vertices of an edge connecting
these line segments are called bend points or bends. A 0-bend drawing is called straight-line.
A drawing on the grid of size w×h is a drawing where every vertex, bend point, and crossing
point has integer coordinates in the range [0, w]× [0, h]. Recall that a drawing is 1-planar if
every edge is crossed at most once. A 1-planar drawing is called independent-crossing planar
(IC-planar) if no two pairs of crossing edges share a vertex. A 1-planar drawing is called
near-independent-crossing planar (NIC-planar) if any two pairs of crossing edges share at
most one vertex. A drawing is called right-angle-crossing (RAC ) if it is a poly-line drawing
and for each crossing point c, there are at most two edges that cross in c, there is no bend
point in c, and the line segments of the edges that cross in c intersect in a right angle. As
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Figure 1 Relationships between (beyond-)planar graphs and RAC graphs. Our main results are
the containment relationships indicated by the thick red arrows.

mentioned above, a drawing is called RACk if it is RAC and k-bend. The planar, 1-planar,
NIC-planar, IC-planar, and RACk graphs are the graphs that admit a crossing-free, 1-planar,
NIC-planar, IC-planar, and RACk drawing, respectively. More specifically, RACpoly

k is the
set of graphs that admit a RACk drawing on a grid of size polynomial in the number of
vertices. A plane, 1-plane, NIC-plane, and IC-plane graph is a graph given with a specific
planar, 1-planar, NIC-planar, and IC-planar embedding, respectively.

Previous Work. In the diagram in Fig. 1, we give an overview of the relationships between
classes of 1-planar graphs and RACk graphs. Clearly, the planar graphs are a subset of the
IC-planar graphs, which are a subset of the NIC-planar graphs, which are a subset of the
1-planar graphs. It is well known that every plane graph can be drawn with straight-line
edges on a grid of quadratic size [6, 14]. Every IC-planar graph admits an IC-planar RAC0
drawing but not always in polynomial area [4]. Moreover, there are graphs in RACpoly

0
that are not 1-planar [8] and, therefore, also not IC-planar. The class of RAC0 graphs is
incomparable with the classes of NIC-planar graphs [1] and 1-planar graphs [8]. Bekos et
al. [2] showed that every 1-planar graph admits a 1-planar 1-bend RAC drawing, but their
recursive drawings may need exponential area. Brandenburg [3] claimed that every 1-planar
graph admits a 1-planar 1-bend RAC drawing where the vertices lie on a polynomial-size grid.
In a private communication, he later retracted his claim—therefore, this question remains
open. Every graph admits a RAC3 drawing in polynomial area [7]. This does not hold if a
given embedding of a planarization of the graph must be preserved [7].

Our Contributions. Our main result is as follows.

I Theorem 1. Every n-vertex NIC-planar graph G admits a NIC-planar 1-bend RAC drawing
on a grid of size (16n− 32)× (8n− 16). Given a NIC-planar embedding E of G, a drawing
that has these characteristics and respects E can be computed in O(n) time.

For IC-plane graphs, this reduces the number of bends compared to a recent result of
Liotta and Montecchiani [12] who showed that every IC-planar graph admits an IC-planar
RAC2 drawing on a grid of quadratic size. We have also shown (see Zink’s master’s thesis [15])
that every 1-plane graph admits a 1-planar RAC2 drawing in polynomial area and, by a small
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Figure 2 Modifications of crossings and computation of the biconnected canonical ordering.

modification of the algorithm by Bekos et al. [2], that not only every 1-planar, but even every
1-plane graph admits a 1-planar RAC1 drawing. We can also show, by a small modification
of the algorithm by Brandenburg et al. [4], that not only every IC-planar, but even every
IC-plane graph without so called B-configurations admits a IC-planar RAC0 drawing. Due
to space considerations, we omit these results here.

2 1-Bend RAC Drawings of NIC-Plane Graphs in Quadratic Area

Our algorithm takes an n-vertex NIC-plane graph (G, E) as input and returns a NIC-planar
RAC1 drawing of G on a grid of size O(n)× O(n) while maintaining E . We now describe
the algorithm. We omit a formal correctness proof due to lack of space.

Preprocessing. We first aim to make the NIC-plane input graph biconnected and planar so
that we can draw it using the algorithm by Harel and Sardas [9]. Around each crossing in E ,
we insert up to four dummy edges to obtain empty kites. A kite is a K4 that is embedded
such that (i) every vertex lies on the boundary of the outer face, (ii) there is exactly one
crossing, and (iii) this crossing doesn’t lie on the boundary of the outer face. A kite K as a
subgraph of a graph H is said to be empty if there is no edge of H\K that is on an inner
face of K or crosses edges of K. Whenever we insert a dummy edge, we may create a pair of
parallel edges. Then, we subdivide the original edge participating in this pair by a dummy
vertex (see the transition from Fig. 2a to 2b). Note that we never create parallel dummy
edges since G is NIC-planar. After this, we remove both crossing edges from each empty kite
and obtain empty quadrangles (see Fig. 2c). We store each such empty quadrangle in a list Q.
At the end of the preprocessing, we make the resulting plane graph biconnected via, e.g., the
algorithm of Hopcroft and Tarjan [10]. Let (G′, E ′) be the resulting plane biconnected graph.

Drawing Step. Now, we draw a graph that we obtain from (G′, E ′). We use the algorithm
by Harel and Sardas [9], which is a generalization of the algorithm of Chrobak and Payne [5],
which in turn is based on the shift algorithm of de Fraysseix et al. [6]. The algorithm of Harel
and Sardas consists of two phases. Given a plane biconnected graph H, in the first phase a
biconnected canonical ordering Π of the vertices in the plane input graph is computed. In
the second phase, H is drawn according to Π on a grid of size (2|V (H)| − 4)× (|V (H)| − 2).
Biconnected canonical orderings are a generalization of canonical orderings that assume only
biconnectivity (instead of triconnectivity). Unlike the classical shift algorithm, the algorithm
of Harel and Sardas computes the (biconnected) canonical ordering bottom-up, which we will
exploit here. Let Πk = (v1, . . . , vk) be a partial biconnected canonical ordering of H after
step k, and let Hk be the plane subgraph of H induced by Πk. We say that a vertex u is
covered by vk if u is on the boundary of the outer face of Hk−1, but not on that of Hk.

We perform the following additional operations when we compute the biconnected
canonical ordering. Whenever we reach an empty quadrangle q = (a, b, c, d) in the list Q for
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Figure 3 The three cases of the drawing step (a)–(c) and the reinsertion step (d)–(f) in our
algorithm. For orientation, lines with slope 1 or −1 are dashed violet.

the first time, i.e., when the first vertex of q—say a—is added to the biconnected canonical
ordering, we insert an edge inside q from a to the vertex opposite a in q, that is, to c. We call
the resulting structure a divided quadrangle (see Fig. 2d). In two special cases, we perform
further modifications of the graph. They will help us to guarantee a correct reinsertion of
the crossing edges in the next step of the algorithm. Namely, when we encounter the last
vertex vlast ∈ {b, c, d} of q, we distinguish three cases.
Case 1: vlast = c (see Fig. 3a).

In this case, we perform no extra operation.
Case 2: vlast ∈ {b, d}, and the other of these two vertices is covered by c (see Fig. 3b).

We insert a dummy vertex vshift, which we call shift vertex, into the current biconnected
canonical ordering directly before vlast and make it adjacent to a and c. Later, we will
remove vshift, but for now it forces the algorithm of Harel and Sardas to shift a and c away
from each other before vlast is added.
Case 3: vlast ∈ {b, d}, and neither b nor d is covered by c (see Fig. 3c).

Let {vlower} = {b, d}\vlast. We subdivide the edge {a, vlower} via a dummy vertex vdummy.
If {a, vlower} is an original edge of the input graph, this edge will be bent at vdummy in the
final drawing. We insert vdummy into the current biconnected canonical ordering directly
before vlower. To obtain a divided quadrangle again, we insert the dummy edge {a, vlower},
which we will remove before we reinsert the crossing edges. This will give us some extra
space inside the triangle (a, vdummy, vlower) for a bend point.

We draw the resulting plane biconnected n̂-vertex graph (Ĝ, Ê) according to its biconnected
canonical ordering Π̂ via the algorithm by Harel and Sardas and obtain a crossing-free
drawing Γ̂. We do not modify the actual drawing phase.

Postprocessing (Reinserting the Crossing Edges). We refine the underlying grid of Γ̂
by a factor of 2 in both dimensions. Let q = (a, b, c, d) be a quadrangle in Q, where a is the
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first and vlast the last vertex in Π̂ among the vertices in q. From q, we first remove the chord
edge {a, c} and obtain an empty quadrangle. Then, we distinguish three cases for reinserting
the crossing edges that we removed in the preprocessing. These are the same cases as in the
description of the modified computation of the biconnected canonical ordering above.
Case 1: vlast = c (see Fig. 3a).

Since c is adjacent to a, b, and d in Ĝ, it has the largest y-coordinate among the vertices
in q. Assume that y(d) is smaller or equal to y(b) since the other case is symmetric. An
example of a quadrangle in this case before and after the reinsertion of the crossing edges
is given in Figs. 3a and 3d, respectively. We will have a crossing point at (x(a), y(d)). To
this end, we insert the edge {a, c} with a bend at e{a,c} = (x(a), y(d) + 1) and we insert the
edge {b, d} with a bend at e{b,d} = (x(a) + 1, y(d)).
Case 2: vlast ∈ {b, d}, and the other of these two vertices is covered by c (see Fig. 3b).

Assume that y(d) > y(b); the other case is symmetric. An example of a quadrangle
in this case before and after the reinsertion of the crossing edges is given in Figs. 3b
and 3e, respectively. Here, we remove vshift in addition to removing the edge {a, c}. We
define the crossing point pcross = (xcross, ycross) as the intersection point of the lines with
slope 1 and −1 through c and b, respectively. The coordinates of this crossing point are
xcross = (x(c)− y(c) + x(b) + y(b))/2 and ycross = (−x(c) + y(c) + x(b) + y(b))/2. Despite
the fact that both coordinates are the result of a division by 2, both are integers—recall
that we refined the grid by a factor of 2 in each dimension. We place the two bend points
onto the same lines at the closest grid points that are next to pcross. In other words, we
draw the edge {a, c} with a bend point at e{a,c} = (xcross − 1, ycross − 1) and we insert the
edge {b, d} with a bend point at e{b,d} = (xcross − 1, ycross + 1). We do not intersect or touch
the edge {a, d} because we shifted a far enough away from c by the extra shift due to vshift.
Moreover, the points e{a,c} and pcross on the line with slope 1 through c are inside the empty
quadrangle q since b is covered by c (then b is below the line with slope 1 through c) and
y(b) is at most equal to y(e{a,c}).
Case 3: vlast ∈ {b, d}, and neither b nor d is covered by c (see Fig. 3c).

Assume that y(d) > y(b); again, the other case is symmetric. An example of a quadrangle
in this case before and after the reinsertion of the crossing edges is given in Figs. 3c and 3f,
respectively. Note that the edge {a, b} is the dummy edge which we inserted during the
computation of Π̂ and next to this edge, there is the path (a − vdummy − b). This path is
the former edge {a, b}. We will reinsert the edges {a, c} and {b, d} such that they cross in
(x(c), y(b)). We will bend the edge {b, d} on the line with slope 1 through c at y = y(b)
because from this point we always “see” d inside q. So, we define xbend := x(c)−∆y with
∆y := y(c)−y(b). First, we remove the dummy edge {a, b}. Second, we insert the edge {a, c}
with a bend point at e{a,c} = (x(c), y(b)− 1). Third, we insert the edge {b, d} with a bend
point at e{b,d} = (xbend, y(b)). Note that e{a,c} might be below the straight line segment ab

since a could have been shifted away from c several times. However, e{a,c} cannot be on
or below the path (a− vdummy − b) because y(vdummy) < y(e{a,c}) and the slope of the line
segment vdummyb is either greater than 1 or negative. Therefore, the crossing edges {a, c}
and {b, d} lie completely inside the pentagon (a, vdummy, b, c, d).

After we have reinserted the crossing edges into each quadrangle of Q, we remove all
dummy edges and transform the remaining dummy vertices to bend points. The result-
ing drawing Γ is a RAC1 drawing that preserves the embedding of the NIC-plane input
graph (G, E). Our algorithm runs in linear time. Since the shift algorithm draws Γ̂ on a grid
of size (2n̂− 4)× (n̂− 2), which we refined by a factor of 2, and n̂ ≤ 4n− 6, Γ lies on a grid
of size at most (16n− 32)× (8n− 16).
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3 Conclusion and Open Questions

We have presented an algorithm for drawing any NIC-plane graph on a small grid with
right-angle crossings and at most one bend per edge. Our algorithm is based on the shift
algorithm for 2-connected graphs by Harel and Sardas [9]. Before and while we execute their
algorithm, we modify the graph (incl. removing the crossing edges) to obtain faces with nice
properties into which we reinsert the crossing edges afterwards.

The diagram in Fig. 1 leaves some open questions. Does every 1-planar graph admit a
1-planar 1-bend RAC drawing in polynomial area? Can every graph in RAC0 be drawn in
polynomial area if we allow one or two bends per edge? What is the relationship between
RAC1 and RACpoly

2 ?
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