
On Optimal Polyline Simplification using the
Hausdorff and Fréchet Distance
Marc van Kreveld1, Maarten Löffler1, and Lionov Wiratma1,2

1 Dept. of Inform. and Computing Sciences, Utrecht University, the Netherlands
[m.j.vankreveld|m.loffler|l.wiratma]@uu.nl

2 Dept. of Informatics, Parahyangan Catholic University, Indonesia
lionov@unpar.ac.id

Abstract
We revisit the classical polygonal line simplification problem and study it using the Hausdorff

distance and Fréchet distance. We use these measures in its pure form, namely: for a given ε > 0,
choose a minimum size subsequence of the vertices of the input such that the Hausdorff or Fréchet
distance between the input and output polylines is at most ε.

We analyze how the Douglas-Peucker and Imai-Iri simplification algorithms perform compared
to the optimum possible. We prove that it is NP-hard to compute the optimal simplification
under (undirected) Hausdorff distance. Under the Fréchet distance, the optimal simplification
of a polygonal line consisting of n vertices can be computed in O(kn5) time and O(kn2) space,
where k is the output complexity of the simplification.

1 Introduction

Line simplification (a.k.a. polygonal approximation) is one of the oldest and best studied
applied topics in computational geometry. A simplification should have a similar shape as the
input, and hence we need a similarity or distance measure to specify when a simplification is
acceptable. The Hausdorff distance and the Fréchet distance are probably the best known
distance measures used for shape similarity in computational geometry.

Among the well-known simplification algorithms, the ones by Douglas and Peucker [4]
and by Imai and Iri [7] are frequently implemented and cited. For a given constant ε > 0,
both algorithms start with a polygonal line (henceforth polyline) as an input, specified by
a sequence of points 〈p1, . . . , pn〉, and compute a subsequence starting with p1 and ending
with pn, representing a simplified polyline which is within a distance of ε from the input.

The Douglas-Peucker algorithm [4] is a simple procedure that starts with a simplification
p1pn, determines the furthest vertex pk, and if it is further than ε, adds pk to the simplification.
This gives two subproblems with p1pk and pkpn that are solved recursively in the same way
and then merged. Hershberger and Snoeyink [6] provide an O(n logn) time implementation of
this algorithm. The Imai-Iri algorithm [7] takes a different approach. It determines for every
link pipj (i < j) if it lies within distance ε from the vertices pi+1, . . . , pj−1 and if so, deems it
valid. The graph G with all vertices p1, . . . , pn as nodes and all valid links as edges can then
be constructed, and a minimum link path from p1 to pn represents an optimal simplification.
By the implementation of Chan and Chin [3], this algorithm runs in O(n2) time.

The Imai-Iri algorithm is considered an optimal line simplification algorithm, because it
minimizes the number of vertices in the output. It also guarantees the Hausdorff distance
between the input and the simplification of at most ε. However, the simplification is not
optimal for the Hausdorff distance, because there are simple examples where a simplification
with fewer vertices have the Hausdorff distance at most ε to the input. This comes from the
fact that the algorithm uses the Hausdorff distance between a link pipj and the sub-polyline
〈pi, . . . , pj〉, and not an overall Hausdorff distance.
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

25:2

p1

p2 p3

p4
p5

p6p7 ε
p1 p3

p2

p4

ε

Figure 1 The Douglas-Peucker and Imai-Iri algorithms do not simplify the inputs for the Hausdorff
distance (left) or the Fréchet distance (right). The optimal simplifications are shown dotted in blue.

Note that we can easily adapt the Imai-Iri algorithm to guarantee the Fréchet distance of
at most ε: we deem a link pipj valid if its Fréchet distance to the sub-polyline 〈pi, . . . , pj〉
is at most ε [1]. This simple variation of the Imai-Iri algorithm does not yield the optimal
simplification within the Fréchet distance of ε, because it requires us to match a vertex pi in
the input to the vertex pi in the output in the parametrizations, if pi is used in the output.
This restriction on the parametrizations limits the simplification in undesirable ways.

The examples in Figure 1 show that under the Hausdorff distance (left) and Fréchet
distance (right) the Douglas-Peucker and Imai-Iri simplifications are both equal to P itself
and may use more vertices than an optimal simplification using these measures.

The discussion begs the following questions: How much worse do the known algorithms
and their variations perform in theory, when compared to the optimal Hausdorff and Fréchet
simplifications? What if the optimal Hausdorff and Fréchet simplifications use a smaller value
than ε? How efficiently can the optimal Hausdorff simplification and the optimal Fréchet
simplification be computed (when using the input vertices)?

Organization and results. In Section 2 we show that the optimal simplification has fewer
vertices than the Imai-Iri output, both under the Hausdorff and the Fréchet distance (we
ignore the Douglas-Peucker method from now on because it never yields fewer vertices than
the Imai-Iri method). In particular, we analyze how much worse the output of the Imai-Iri
algorithm can be for the two measures. In Section 3 we show that the optimal simplification
under the undirected Hausdorff distance is NP-hard to compute. In Section 4 we show that
simplification can be done optimally in polynomial time for the Fréchet distance.

2 Approximation Quality of Imai-Iri Simplification

We denote the simplification by the Imai-Iri algorithm under the Hausdorff distance as
IIH(P, ε), and will leave out the arguments P and/or ε if they are understood. We refer to
the simplification from the adapted Imai-Iri algorithm using the Fréchet distance as IIF (P, ε).
We denote the optimal simplification using the Hausdorff distance by OPTH(P, ε), and using
the Fréchet distance by OPTF (P, ε). The example in Figure 1 shows that to let IIH use as
few vertices as OPTH , we must use 2ε instead of ε when the example is stretched horizontally.
For the Fréchet distance, the enlargement factor needed in the example approaches

√
2 if we

put p1 far to the left. In this section we analyze how the approximation enlargement factor
relates to the number of vertices in the Imai-Iri simplification and the optimal ones.

Hausdorff Distance To show that IIH may use many more vertices than OPTH , even if
we enlarge ε, we give a construction where this occurs in Figure 2 that applies for both the
directed and undirected Hausdorff distance.

M. van Kreveld, M. Löffler and L. Wiratma 25:3

ε

pnp1

p2

p3

pn−1

pn−2

ε

p11p1

p2

p3

p10

p9

Figure 2 The Imai-Iri algorithm may not be able to simplify 〈p1, . . . , pn〉 at all. The optimal
Hausdorff simplification (dotted, blue) has three vertices. Right, an example input with 11 vertices.

ε

ε
p1

p3

p4

p10

p9 p8 p6
p5

p7

p2
P

OPTF

p1

p4

p2 p3

p5

p4

Figure 3 The optimal simplification can skip p2 and p3; in the parametrizations witnessing the
Fréchet distance, OPTF “stays two vertices behind” on the input until the end. Right, the free
space diagram of P and OPTF .

An optimal simplification is 〈p1, pi, pn〉 where i is any even number between 1 and n.
Since the only valid links are the ones connecting two consecutive vertices of P , IIH is P
itself. If the triangle is large enough with respect to ε, this remains true even if we give the
Imai-Iri algorithm a much larger error threshold than ε.

I Theorem 2.1. For any c > 1, there exists a polyline P with n vertices and an ε > 0 such
that IIH(P, cε) has n vertices and OPTH(P, ε) has 3 vertices.

Fréchet Distance We give another input polyline P in Figure 3 to show that IIF does
not approximate OPTF even if IIF is allowed to use ε that is larger by a constant factor.
Our main construction has ten vertices placed in such a way that IIF has all ten vertices,
while OPTF has only eight of them, see Figures 3. We can append multiple copies of this
construction together with a suitable connection in between. We obtain:

I Theorem 2.2. There exist constants c1 > 1, c2 > 1, a polyline P with n vertices, and an
ε > 0 such that |IIF (P, c1ε)| > c2|OPTF (P, ε)|.

By a result of Agarwal et al. [1], we know that the theorem is not true for c1 ≥ 4.

3 Algorithmic Complexity of Optimal Simplification using the
Hausdorff Distance

The results in the previous section lead us to the following question: Is it possible to compute
the optimal Hausdorff or Fréchet simplification in polynomial time?

We first consider the undirected (or bidirectional) Hausdorff distance; that is, we require
both the maximum distance from the initial polyline P to the simplified polyline Q and the
maximum distance from Q to P to be at most ε.

EuroCG’18

25:4

P
p

A
Q

Figure 4 The construction: A is the arrangement of a set of segments S. We build an input path
P that “paints” over S completely, and we are looking for an output path Q that corresponds to a
Hamiltonian cycle. In this case, there is no Hamiltonian cycle, and the path gets stuck.

I Theorem 3.1. Given a polyline P = 〈p1, p2, . . . , pn〉 and a value ε, the problem of computing
a minimum length polyline Q defined by a subsequence of the vertices of P such that the
undirected Hausdorff distance between P and Q is at most ε is NP-hard.

Our proof uses a reduction from Hamiltonian cycle in segment intersection graphs. Since
deciding if a Hamiltonian cycle exists is NP-complete in planar graphs [5], and planar graphs
are included in segment intersections graphs [2], it follows that Hamiltonian cycle in segment
intersections graphs is NP-complete. Let S be a set of n line segments in R2, and assume
all intersections are proper (if not, extend the segments slightly). Let G be its intersection
graph. Assume that G is connected; otherwise, there is no Hamiltonian cycle in G.

We first construct an initial polyline P as follows (see Figure 4). Let A be the arrangement
of S, let p be some endpoint of a segment in S, and let π be any path on A that starts
and finishes at p and visits all vertices and edges of A. Then P is simply 3n+ 1 copies of
π appended to each other. We now set ε to a sufficiently small value. Then, an output
polyline Q with Hausdorff distance at most ε to P must also visit all vertices and edges of A,
and stay close to A. If ε is sufficiently small, there will be no benefit for Q to ever leave A.

I Lemma 3.2. A solution Q of length 3n+ 1 exists iff G admits a Hamiltonian cycle.

Proof. Clearly, any simplification Q will need to visit the 2n endpoints of the segments in S,
and—since it starts and ends at the same point p—will need to have length at least 2n+ 1.
Furthermore, Q will need to have at least two internal vertices on every segment s ∈ S: once
to enter and once to leave the segment (we cannot enter or leave a segment at an endpoint
since all intersections are proper intersections). This means the theoretical minimum number
of vertices possible for Q is 3n+ 1.

Now, if G admits a Hamiltonian cycle, it is easy to construct a simplification with 3n+ 1
vertices. We start at p, an endpoint of the segment s1, and collect the other endpoint. Then
we follow the Hamiltonian cycle to segment s2; by definition s1s2 is an edge in G so their
corresponding segments intersect, and we use the intersection point to leave s1 and enter s2.
We proceed in this fashion until we reach sn, which intersects s1, and finally return to p.

On the other hand, any solution with 3n+ 1 vertices must necessarily be of this form and
therefore imply a Hamiltonian cycle: in order to have only 3 vertices per segment the vertex
at which we leave s1 must coincide with the vertex at which we enter some other segment,
which we call s2, and we must continue until we visited all segments and return to p. J

For completeness, we also state the results for simplification using the directed Hausdorff
distance, in both directions. If we require the distance from the input to the simplification

M. van Kreveld, M. Löffler and L. Wiratma 25:5

to be at most ε, then an optimal simplification using the (directed) Hausdorff distance is
NP-hard to compute. However, if we require the distance from the simplification to the input
to be at most ε, an optimal simplification can be computed in polynomial time. We give the
proofs in the full paper.

4 Algorithmic Complexity of Optimal Simplification using the
Fréchet Distance

In this section, we show that for a given polyline P = 〈p1, p2, ..., pn〉 and an error ε, the
optimal simplification Q = OPTF (P, ε) can be computed in polynomial time using a dynamic
programming approach. First, we define π, a parameterization of P as a continuous mapping:
π : [0, 1]→ R2 where π(0) = p1 and π(1) = pn. We also write P [s, t] for 0 ≤ s ≤ t ≤ 1 to be
the subcurve of P starting at π(s) and ending at π(t), also writing P [t] = P [0, t] for short.

For the dynamic programming approach to work, we might imagine to store, for each
vertex pi and value k, the point π(α) which is the farthest along P such that a simplification of
〈p1, ..., pi〉 using k links has Fréchet distance at most ε to P [α]. However, this is not sufficient
to ensure that we find an optimal solution (see the full paper for details). Instead, we argue
that if we maintain the set of all points at P that can be “reached” by a simplification up to
each vertex, then we can make dynamic programming work. We now make this precise and
argue that the complexity of these sets of reachable points is never worse than linear.

We say that a point π(t) can be reached by a (k, i)-simplification for 0 ≤ k < i ≤ n if
there exists a simplification of 〈p1, . . . , pi〉 using k links which has Fréchet distance at most
ε to P [t]. We let ρ(k, i, t) = true in this case, and false otherwise. With slight abuse of
notation we also say that t itself is reachable, and that an interval I is reachable if all t ∈ I
are reachable (by a (k, i)-simplification).

I Observation 4.1. A point π(t) can be reached by a (k, i)-simplification if and only if there
exist a 0 < h < i and a 0 ≤ s ≤ t such that π(s) can be reached by a (k − 1, h)-simplification
and the segment phpi has Fréchet distance at most ε to P [s, t].

Proof. Follows directly from the definition of the Fréchet distance. J

Observation 4.1 immediately suggests a dynamic programming algorithm: for every k
and i we store a subdivision of [0, 1] into intervals where ρ is true and intervals where ρ is
false, and we calculate them for increasing values of k. We simply iterate over all possible
values of h, calculate which intervals can be reached using a simplification via h, and then
take the union over all those intervals. For this, the only unclear part is how to calculate
these intervals. We argue that, for any given k and i, there are at most n − 1 reachable
intervals on [0, 1], each contained in an edge of P . Indeed, every (k, i)-reachable point π(t)
must have distance at most ε to pi, and since the edge e of P that π(t) lies on intersects
the disk of radius ε centered at pi in a line segment, every point on this segment is also
(k, i)-reachable. We denote the farthest point on e which is (k, i)-reachable by t̂.

Furthermore, we argue that for each edge of P , we only need to take the farthest reachable
point into account during our dynamic programming algorithm.

I Lemma 4.2. If k, h, i, s, and t exist such that ρ(k − 1, h, s) = ρ(k, i, t) = true, and phpi

has Fréchet distance ≤ ε to P [s, t], then phpi also has Fréchet distance ≤ ε to P [ŝ, t̂].

Proof. By the above argument, P [s, ŝ] is a line segment that lies completely within distance
ε from ph, and P [t, t̂] is a line segment that lies completely within distance ε from pi.

EuroCG’18

25:6

We are given that the Fréchet distance between phpi and P [s, t] is at most ε; this means
a mapping f : [s, t] → phpi exists such that |π(x) − f(x)| ≤ ε. Let q = f(s′). Then
|ph − π(ŝ)| ≤ ε and |q − π(ŝ)| ≤ ε, so the line segment phq lies fully within distance ε from ŝ.

Therefore, we can define a new ε-Fréchet mapping between P [ŝ, t̂] and phpi which maps
ŝ to the segment phq, the curve P [ŝ, t] to the segment qpi (following the mapping given by
f), and the segment π(t)π(t̂) to the point pi. J

Now, we can compute the optimal simplification by maintaining a k× n× n table storing
ρ(k, i, t̂), and calculate each value by looking up n2 values for the previous value of k, and
testing in linear time for each combination whether the Fréchet distance between the new
link and P [ŝ, t̂] is within ε or not.

I Theorem 4.3. Given a polyline P = 〈p1, ..., pn〉 and a value ε, we can compute the optimal
polyline simplification of P that has Fréchet distance at most ε to P in O(kn5) time and
O(kn2) space, where k is the output complexity of the optimal simplification.

5 Future Work

A number of challenging open problems remain. First, we would like to know whether
the problem of computing an optimal simplification using the Hausdorff distance remains
NP-hard when the simplification may not have self-intersections. Second, we are interested
in the computational status of the optimal simplification when the simplification need not
use the vertices of the input. Finally, we may consider optimal polyline simplifications using
the weak Fréchet distance.

Acknowledgements. M.v.K is supported by the Netherlands Organisation for Scientific
Research (NWO). M.L. is supported by the Netherlands Organisation for Scientific Research
(NWO). L.W. is supported by the Ministry of Research, Technology and Higher Education
of Indonesia (138.41/E4.4/2015).

References
1 Pankaj K. Agarwal, Sariel Har-Peled, Nabil H. Mustafa, and Yusu Wang. Near-linear time

approximation algorithms for curve simplification. Algorithmica, 42(3):203–219, 2005.
2 Jérémie Chalopin and Daniel Gonçalves. Every planar graph is the intersection graph of

segments in the plane: Extended abstract. In Proceedings 41st Annual ACM Symposium
on Theory of Computing, STOC ’09, pages 631–638, New York, NY, USA, 2009. ACM.

3 W.S. Chan and F. Chin. Approximation of polygonal curves with minimum number of
line segments or minimum error. International Journal of Computational Geometry &
Applications, 06(01):59–77, 1996.

4 David Douglas and Thomas Peucker. Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. Cartographica, 10(2):112–122, 1973.

5 M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph prob-
lems. Theoretical Computer Science, 1(3):237 – 267, 1976.

6 John Hershberger and Jack Snoeyink. AnO(n logn) implementation of the Douglas-Peucker
algorithm for line simplification. In Proceedings 10th Annual Symposium on Computational
Geometry, SCG ’94, pages 383–384, New York, NY, USA, 1994. ACM.

7 Hiroshi Imai and Masao Iri. Polygonal approximations of a curve - formulations and al-
gorithms. In Godfried T. Toussaint, editor, Computational Morphology: A Computational
Geometric Approach to the Analysis of Form. North-Holland, Amsterdam, 1988.

	Introduction
	Approximation Quality of Imai-Iri Simplification
	Algorithmic Complexity of Optimal Simplification using the Hausdorff Distance
	Algorithmic Complexity of Optimal Simplification using the Fréchet Distance
	Future Work

