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Abstract
A polyomino is a set of connected squares on a grid. In this work we address the class of poly-
ominoes with minimal perimeter for their area, and show a bijection between minimal-perimeter
polyominoes of certain areas.

1 Introduction

A polyomino is an edge-connected set of cells on the square lattice. The area of a polyomino
is the number of cells it contains. The problem of counting polyominoes dates back to
the 1950s when it was studied in parallel in the fields of combinatorics [8] and statistical
physics [6]. Let A(n) denote the number of polyominoes of area n. A general formula for A(n)
is still unknown. Klarner [10] showed the existence of the growth rate of A(n), denoting it
by λ := limn→∞

n
√
A(n). The exact value of λ is also unknown yet, and its best estimate,

4.06, is by Jensen [9]. The current best lower and upper bounds on λ are 4.0025 [3] and
4.6496 [11], respectively. Several works provide enumeration by area of special classes of
polyominoes, such as column-convex [7], convex [5], and directed [4] polyominoes.

The perimeter of a polyomino P consists of the empty cells adjacent to P . Asinowski et
al. [2] showed that a polyomino of area n has a perimeter of size at most 2n+ 2, and provided
formulae for the numbers of polyominoes with area n and perimeter 2n+ 2− k, for some
small values of k. In this paper, we shed some light on polyominoes with the minimum-size
perimeter for their area. Related works are by Altshuler et al. [1] and by Sieben [12], providing
a formula for the maximum area of a polyomino with a certain perimeter size. Sieben [12]
also gave a formula for the minimum perimeter size of a polyomino of area n. Both works
also characterized all polyominoes that have the maximum area for a given perimeter size.
In this paper, we study the number of polyominoes which have the minimum perimeter size
for their area, and show a bijection between some sets of minimal-perimeter polyominoes.

2 The Problem

2.1 Definitions
Let Q be a polyomino, and let P(Q) be the perimeter of Q. Define B(Q), the border of Q, to
be the set of cells of Q which have at least one empty neighboring cell. Given a polyomino Q,
its inflated polyomino, I(Q), is defined as I(Q) = Q ∪ P(Q). Notice that the border of I(Q)
is a subset of the perimeter of Q. Analogously, the deflated polyomino, D(Q), is defined as
D(Q) = Q \ B(Q), which is obtained by “shaving” the outer layer, i.e., the border cells from
the polyomino. Notice that the perimeter of D(Q) is a subset of the border of Q. Also note
that D(Q) is not necessarily a valid polyomino since the removal of the border of Q may
break it into disconnected pieces. Figure 1 demonstrates all the above definitions.

Following the notation of Sieben [12], we denote by ε(n) the minimum size of the perimeter
of all polyominoes of area n. Sieben showed that ε(n) =

⌈
2 +
√

8n− 4
⌉
. A polyomino Q of

area n will be called a minimal-perimeter polyomino if |P(Q)| = ε(n).
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(a) Polyomino Q (b) I(Q) (c) D(Q)

Figure 1 A polyomino Q, its inflated polyomino, and its deflated polyomino. The gray cells are
the polyomino cells, while the white cells are the perimeter. Border cells are marked with crosses.

(a) (b) (c) (d) (w) (x) (y) (z)

Figure 2 All possible patterns of excess cells. The gray cells are polyomino cells, while the white
cells are perimeter cells. Patterns (a–d) exhibit excess border cells and their surrounding perimeter
cells, while Patterns (w–z) exhibit excess perimeter cells and their surrounding polyomino cells.

2.2 The Relation between Border, Perimeter, and Excess
In this section we express the size of the perimeter of a polyomino, |P(Q)|, as a function
of the border size, |B(Q)|, and the number of excess cells as defined below. The excess of a
perimeter cell [2] is defined as the number of polyomino cells that are adjacent to it minus
one, and the total excess of a polyomino Q, eP , is defined as the sum of excess over all the
cells of the perimeter of Q. Similarly, the excess of a border cell is defined as the number of
perimeter cells adjacent to it minus one, and the border excess, denoted by eB , is defined as
the sum of excess over all the border cells. Let π = |P(Q)| and β = |B(Q)|.

I Observation 2.1. The following holds for any polyomino: π + eP = β + eB . Equivalently,

π = β + eB − eP . (1)

Equation (1) holds since both π + eP and β + eB are equal to the
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Figure 3
A sample
polyomino
with marked
patterns.

total length of the polygons forming the boundary of the polyomino. This
quantity can be calculated either by summing up over the perimeter cells,
where each cell contributes 1 plus its excess for a total of π + eP , or by
summing up over the border cells for a total of β + eB . Figure 2 shows all
possible patterns of border and perimeter excess cells, while Figure 3 shows
a sample polyomino with some cells tagged with the corresponding patterns.

Let #� be the number of excess cells of a certain type in a polyomino
as classified in the figure, where ‘�’ is one of the symbols a–d or w–z, as in
Figure 2. Counting eP and eB as functions of the different patterns of excess
cells, we see that eB = #a+2#b+3#c+#d and eP = #w+2#x+3#y+#z.
Substituting eB and eP in Equation (1), we obtain

π = β + #a+ 2#b+ 3#c+ #d−#w − 2#x− 3#y −#z.

Since Pattern (c) is a singleton cell, we can ignore it in the general formula. Thus, we have

π = β + #a+ 2#b+ #d−#w − 2#x− 3#y −#z.

2.3 Properties of Minimal-Perimeter Polyominoes
I Lemma 2.2. Any minimal-perimeter polyomino is simply connected (that is, it does not
contain holes).
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(c) Q (d) Q′

Figure 4 Examples for the first and second parts of the proof of Theorem 2.4.

Proof. The sequence ε(n) is monotone increasing in the wide sense1 [12]. Assume that there
exists a minimal-perimeter polyomino Q with a hole. Consider the polyomino Q′ that is
obtained by filling this hole. The area of Q′ is clearly larger than the area of Q, and its
perimeter size is smaller since we eliminated the perimeter cells inside the hole and did not
introduce new perimeter cells. This is a contradiction to ε(n) being monotone increasing. J

I Lemma 2.3. For a simply connected polyomino, we have #a+ 2#b−#w − 2#x = 4.

Proof. The boundary of a polyomino without holes is a simple polygon, thus, the sum of
its internal angles is (180(v − 2))°, where v is the complexity of the polygon. Notice that
Pattern (a) (resp., (b)) adds one (resp., two) 90°-vertex to the polygon. Similarly, Pattern (w)
(resp. (x)) adds one (resp., two) 270°-vertex. All other patterns do not involve vertices.
Let L = #a+ 2#b and R = #w + 2#x. Then, the sum of angles of the boundary polygon
implies that L · 90° +R · 270° = (L+R− 2) · 180°, that is, L−R = 4. The claim follows. J

I Theorem 2.4. (Stepping Theorem) For a minimal-perimeter polyomino (except the single-
ton cell), we have that π = β + 4.

Proof. Lemma 2.3 tells us that π = β+4+#d−#z. We will show that any minimal-perimeter
polyomino contains neither Pattern (d) nor Pattern (z).

Let Q be a minimal-perimeter polyomino. For the sake of contradiction, assume first
that there is a cell f ∈ P(Q) as part of Pattern (z). Assume w.l.o.g. that the two adjacent
polyomino cells are to the left and to the right of f . These two cells must be connected,
thus, the area below (or above) f must be bounded by polyomino cells. Let, then, Q′ be
the polyomino with the area below f , and the cell f itself, filled with polyomino cells. The
cell directly above f becomes a perimeter cell, the cell f ceases to be a perimeter cell, and
at least one perimeter cell in the area filled below f is eliminated, thus, |P(Q′)| < |P(Q)|
and |Q′| > |Q|, which is a contradiction to the sequence ε(n) being increasing. Thus, Q does
not contain perimeter cells that fit Pattern (z). Figures 4(a,b) demonstrate this argument.

Now assume for contradiction that Q contains a cell f , forming Pattern (d). Let Q′ be the
polyomino obtained from Q by removing f and then “pushing” together the two cells adjacent
to f . This is always possible since Q is of minimal perimeter, hence, by Lemma 2.2, it is
simply connected, and thus, removing f breaks Q into two separate polyominoes. Any two
separated polyominoes can be shifted by one cell without colliding, thus, the transformation
described above is valid. The area of Q′ is one less than the area of Q, and the perimeter of Q′
is smaller by at least two than the perimeter of Q, since the perimeter cells below and above f
cease to be part of the perimeter, and connecting the two parts does not create new perimeter
cells. From the formula of ε(n) we know that ε(n+ 1)− ε(n) ≤ 1 for n ≥ 2, but |Q|− |Q′| = 1
and |P(Q)| − |P(Q′)| = 2, hence, Q is not a minimal-perimeter polyomino, which contradicts
our assumption. Thus, there are no cells in Q that fit Pattern (d). Figures 4(c,d) demonstrate
this argument. This completes the proof. J

1 In the sequel we simple say “monotone increasing.”
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2.4 Inflating a Minimal-Perimeter Polyomino
In this section we reach our main results.

I Lemma 2.5. If Q is a minimal-perimeter polyomino, then |P(I(Q))| ≤ |P(Q)|+ 4.

Proof. Since Q is a minimal-perimeter polyomino, we know by Lemma 2.2 that I(Q) is
simply connected. For a hole to be formed in I(Q), the original polyomino Q must have
either Pattern (z) (two cells separated by a single perimeter cell), or two cells separated by
two perimeter cells, as in . The former case (Pattern (z)) is not possible, as is shown in
the proof of Theorem 2.4. We show, using the same technique, that the latter case is also
impossible.

Since I(Q) is simply connected, we have, by Lemma 2.3, that |P(I(Q))| = |B(I(Q))|+
4 + #d−#z. Since |B(I(Q))| ≤ |P(Q)|, all that remains to show is that Pattern (d) does
not occur in I(Q). Assume to the contrary that there is a cell f forming Pattern (d) in I(Q).
Since I(Q) is simply connected, removing f will break it into exactly two pieces, denoted
by Q1 and Q2. Both Q1 and Q2 must contain cells of the original Q since any cell in I(Q)
either belongs to Q or is adjacent to a cell of Q. However, this implies that Q is not connected,
which is a contradiction. Hence, Q cannot contain a pattern of type (d), as required. J

I Theorem 2.6. (Inheritance Theorem) If Q is a minimal-perimeter polyomino, then I(Q)
is a minimal-perimeter polyomino as well.

Proof. Let Q be a minimal-perimeter polyomino. Assume to the contrary that I(Q) is not a
minimal-perimeter polyomino, i.e., there exists a polyomino Q′ with the same area as I(Q),
such that |P(Q′)| < |P(I(Q))|. From Lemma 2.5 we know that |P(I(Q))| ≤ |P(Q)|+ 4, thus,
the perimeter of Q′ is at most |P(Q)|+3, and since Q′ is a minimal-perimeter polyomino, we
know by Theorem 2.4 that the size

(a) |Q| = 6 (b) |I(Q)| = 15 (c) |I(I(Q))| = 28

Figure 5 A demonstration of Theorem 2.6.

of its border is at most |P(Q)| − 1.
Consider now D(Q′). The area of Q′
is |Q|+ |P(Q)|, thus, the size of D(Q′)
is at least |Q|+1, and its perimeter size
is at most ε(n)− 1 (since the perime-
ter of D(Q′) is a subset of the border
of Q′). This is a contradiction to the sequence ε(n) being monotone increasing. Hence,
Q′ cannot exist, and I(Q) is a minimal-perimeter polyomino. Figure 5 demonstrates this
theorem. It shows a minimal-perimeter polyomino Q of area 6 and the two minimal-perimeter
polyominoes of areas 15 and 28 obtained by inflating Q twice. J

I Corollary 2.7. The minimum perimeter size of a polyomino of area n+ kε(n) + 2k(k − 1)
(for n 6= 1 and any k ∈ N) is ε(n) + 4k.

Proof. Inflating a minimal-perimeter polyomino of size n increases its area by ε(n). The
border size of the inflated polyomino is ε(n), thus, by Theorem 2.4, the new perimeter
size is ε(n) + 4. By induction, after the kth inflation, the perimeter size is ε(n) + 4k and
the increase in the area is ε(n) + 4(k − 1). Summing up the increase in area, we obtain∑k
i=1(ε(n) + 4(i− 1)) = kε(n) + 2k(k − 1), implying the claim. J

I Lemma 2.8. Let Q be a minimal-perimeter polyomino of area n+ ε(n) (for n ≥ 3). Then,
D(Q) is a valid (connected) polyomino.

Proof. Assume to the contrary that D(Q) is not connected and that it is composed of at
least two parts. Assume first that D(Q) is composed of exactly two parts, Q1 and Q2.
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Define the joint perimeter of the two parts, P(Q1, Q2), to be P(Q1) ∪ P(Q2). Since Q is a
minimal-perimeter polyomino of area n+ ε(n), we know that its perimeter size is ε(n) + 4
and its border size is ε(n), by Corollary 2.7 and Theorem 2.4, respectively. Thus, the size
of D(Q) is exactly n regardless of whether or not D(Q) is connected. Since Q1 and Q2
are the result of deflating Q, the polyomino Q must have an (either horizontal, vertical,
or diagonal) “bridge” of border cells which disappeared in the deflation. The width of the
bridge is at most 2, thus, |P(Q1) ∩ P(Q2)| ≤ 2. Hence, |P(Q1)|+ |P(Q2)| − 2 ≤ |P(Q1, Q2)|.
Since P(Q1, Q2) is a subset of B(Q), we have that |P(Q1, Q2)| ≤ ε(n). Therefore,

ε(|Q1|) + ε(|Q2|)− 2 ≤ ε(n). (2)

Recall that |Q1| + |Q2| = n. It is easy to observe

0 10 20 30
0

10

20

Figure 6 Values of ε(n).

that ε(|Q1|) + ε(|Q2|) is minimized when |Q1| = 1 and
|Q2| = n−1 (or vice versa). Had the function ε(n) (shown
in Figure 6) been 2 +

√
8n− 4 (without rounding up), this

would be obvious. But since ε(n) =
⌈
2 +
√

8n− 4
⌉
, it

is a step function (with an infinite number of intervals),
where the gap between all successive steps is exactly 1,
except the gap between the two leftmost steps which is 2.
This guarantees that despite the rounding, the minimum
of ε(|Q1|) + ε(|Q2|) occurs as claimed. Substituting this into Equation (2), and using the fact
that ε(1) = 4, we see that ε(n− 1) + 2 ≤ ε(n). However, we know [12] that ε(n)− ε(n− 1) ≤ 1
for n ≥ 3, which is a contradiction. Thus, D(Q) cannot split into two parts unless it splits
into two singleton cells, which is indeed the case for a minimal-perimeter polyomino of size 8.

The same method can be used to show that D(Q) cannot be composed of more then
two parts. Note that this proof does not hold for polyominoes of area which is not of the
form n+ ε(n), but it suffices for the proof of Theorem 2.10 below. J

I Lemma 2.9. Let Q1, Q2 be two different minimal-perimeter polyominoes. Then, regardless
of whether or not Q1, Q2 have the same area, I(Q1) and I(Q2) are different as well.

Proof. Assume to the contrary that Q = I(Q1) = I(Q2). By definition, this means that
Q = Q1 ∪ P(Q1) = Q2 ∪ P(Q2). Furthermore, since Q1 6= Q2, and since a cell can belong to
either a polyomino or to its perimeter, but not to both, it must be that P(Q1) 6= P(Q2). The
border of Q is a subset of both P(Q1) and P(Q2), that is, B(Q) ⊂ P(Q1) ∩ P(Q2). Since
P(Q1) 6= P(Q2), we have that either |B(Q)| < |P(Q1)| or |B(Q)| < |P(Q2)|; assume w.l.o.g.
the former case. Now consider the polyomino D(Q). Its area is |Q| − |B(Q)|. The area of Q
is |Q1|+ |P(Q1)|, thus, |D(Q)| > |Q1|, and since the perimeter of D(Q) is a subset of the
border of Q, we conclude that |P(D(Q))| < |P(Q1)|. However, Q1 is a minimal-perimeter
polyomino, which is a contradiction to ε(n) being monotone increasing. J

I Theorem 2.10. (Chain Theorem) Let Mn be the set of minimal-perimeter polyominoes of
area n. Then, for n ≥ 3, we have that |Mn| =

∣∣Mn+ε(n)
∣∣.

Proof. By Theorem 2.6, if Q ∈ Mn, then I(Q) ∈ Mn+ε(n), and hence, by Lemma 2.9, we
have that |Mn| ≤

∣∣Mn+ε(n)
∣∣. Let us now show the opposite relation, namely, that |Mn| ≥∣∣Mn+ε(n)

∣∣. The combination of the two relations will imply the claim.
Let I(Mn) = {I(Q) | Q ∈Mn}. For Q ∈ Mn+ε(n), our goal is to show that Q ∈ I(Mn).

Since Q ∈ Mn+ε(n), we have by Corollary 2.7 that |P(Q)| = ε(n) + 4. Moreover, by
Theorem 2.4, we have that |B(Q)| = ε(n), thus, |D(Q)| = n and |P(D(Q))| ≥ ε(n). Since the
perimeter of D(Q) is a subset of the border of Q, and |B(Q)| = ε(n), we conclude that the
perimeter of D(Q) and the border of Q are the same set of cells. Thus, I(D(Q)) = Q. Since
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 7 A demonstration of Theorem 2.10.

|P(D(Q))| = ε(n), we have that D(Q) is a minimal-perimeter polyomino, thus, Q ∈ I(Mn)
as required. Hence, Mn+ε(n) ⊆ I(Mn), implying that

∣∣Mn+ε(n)
∣∣ ≤ |I(Mn)| = |Mn|.

Figure 7 shows, for example, all minimal-perimeter polyominoes of area 7. When they
are inflated, they become the entire set of minimal-perimeter polyominoes of area 17. J

I Corollary 2.11. For n ≥ 3 and any k ∈ N, we have that |Mn| =
∣∣Mn+kε(n)+2k(k−1)

∣∣.
Proof. The claim follows from applying Theorem 2.10 repeatedly on Mn. J

3 Future work

We have shown that inflating a set of minimal-perimeter polyominoes of a certain area
creates a new set, of the same cardinality, of minimal-perimeter polyominoes of some other
area. This creates chains of sets of minimal-perimeter polyominoes of the same area. In the
future we would like to characterize the roots of these chains and to determine how many
minimal-perimeter polyominoes the sets of each chain contains.
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