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Abstract
We consider practical methods for the problem of finding a minimum-weight triangulation (MWT)
of a planar point set, a classic problem of computational geometry with many applications. While
Mulzer and Rote proved in 2006 that computing an MWT is NP-hard, Beirouti and Snoeyink
showed in 1998 that computing provably optimal solutions for MWT instances of up to 80,000
uniformly distributed points is possible, making use of clever heuristics that are based on geometric
insights. We show that these techniques can be refined and extended to instances of much bigger
size and different type, based on an array of modifications and parallelizations in combination with
more efficient geometric encodings and data structures. As a result, we are able to solve MWT
instances with up to 30,000,000 uniformly distributed points in less than 4 minutes to provable
optimality. Moreover, we can compute optimal solutions for a vast array of other benchmark
instances that are not uniformly distributed, including normally distributed instances (up to
30,000,000 points), all point sets in the TSPLIB (up to 85,900 points), and VLSI instances with
up to 744,710 points. This demonstrates that from a practical point of view, MWT instances
can be handled quite well, despite their theoretical difficulty.

1 Introduction

Triangulating a set of points in the plane is a classic problem in computational geometry: given
a planar point set S, find a maximal set of non-crossing line segments connecting the points
in S. Triangulations have many real-world applications, for example in terrain modeling,
finite element mesh generation and visualization. In general, a point set has exponentially
many possible triangulations and a natural question is to ask for a triangulation that is
optimal with respect to some optimality criterion. A natural criterion is to minimize the
total weight of the resulting triangulation. As Mulzer and Rote [11] showed, it is NP-hard to
compute a minimum-weight triangulation (MWT).

Practical approaches for computing an MWT are based on heuristics for including or
excluding edges with certain properties from any minimum-weight triangulation. Das and
Joseph [4] showed that every edge in an MWT has the diamond property. An edge e cannot
be in MWT(S) if both of the two isosceles triangles with base e and base angle π/8 contain
other points of S. Drysdale et al. [7] improved the angle to π/4.6. This can greatly reduce
the edge set and works exceedingly well on uniformly distributed point sets, for which only
O(n) edges remain in expectation. Dickerson et al. [5,6] proposed the LMT-skeleton heuristic,
based on a local criterion fulfilled by every edge in MWT(S). The LMT-skeleton algorithm
often yields a connected graph, and the remaining polygonal faces can be triangulated
with dynamic programming to obtain an MWT. Combining the diamond property and the
LMT-skeleton makes it possible to compute the MWT for large, well-behaved point sets.
Beirouti and Snoeyink [2] showed an efficient implementation of these two heuristics and
they reported that their implementation could compute the exact MWT of 40,000 uniformly
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(a) Points l and r induce a region DS such that
all edges e = st with t ∈ DS fail the diamond
test. DS is called a dead sector (dotted area).

(b) Simplified dead sector DS is bounded by two
rays and circle C. C is induced by the longer of
the two edges sl resp. sr and angle α.

Figure 1 Dead sectors.
distributed points in less than 5 minutes and even up to 80,000 points with the improved
diamond property.

We revisit diamond test and LMT-skeleton based on Beirouti’s and Snoeyink’s [2] ideas
and describe several improvements. Our bucketing scheme for the diamond test does not rely
on a uniform point distribution and filters more edges. For the LMT-skeleton we provide a
number of algorithm engineering modifications. These contain a data partitioning scheme for
parallelized implementation and other changes for efficiency. We also use an improvement
suggested by Aichholzer et al. [1]. Furthermore, we implemented, streamlined and evaluated
our implementation on various point sets. For the uniform case, we computed the MWT of
30,000,000 points in less than 4 minutes on commodity hardware; the limiting factor arose
from the memory of a standard machine, not from the runtime. We achieved the same
performance for normally distributed point sets. The third class of point sets were benchmark
instances from the TSPLIB [12] (based on a wide range of real-world and clustered instances)
and the VLSI library. These reached a size up to 744,710 points. This shows that from
a practical point of view, a wide range of huge MWT instances can be solved to provable
optimality with the right combination of theoretical insight and algorithm engineering.

2 Our Improvements and Optimizations

2.1 Diamond Property
For a uniformly distributed point set S with n points, the expected number of edges to pass
the diamond test is only O(n). More precisely, Beirouti and Snoeyink [2] state that the
number is less than 3πn/ sin(α), where α is the base angle for the diamond property. We
were able to tighten this value.

I Theorem 2.1. For a uniformly distributed point set, the expected number of edges that
pass the diamond test is less than 3πn/ tan(α).

For α = π/4.6 less than 11.5847n edges are expected to pass the test, which is very close
to the values observed and achieved by our implementation; see Table 1 in Section 3. In
contrast, the value achieved by the implementation of Beirouti and Snoeyink is ≈ 14.3n [2].

2.2 Dead Sectors and Bucketing
Our bucketing scheme is based on the same idea of dead sectors (see Figure 1a) as described
by Beirouti and Snoeyink [2]. We simplify the shape of dead sectors: Instead of bounding
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a sector DS by two circles (as shown in Figure 1a), we only use a single big circle C with
center s at the expense of losing a small part of DS. This allows representing dead sectors
by just three numbers: an interval of two polar angles, and a squared radius δ; see Figure 1b.

The main ingredient for our bucketing scheme is a spatial search tree with support for
incremental nearest neighbor queries, such as a quadtree. Incremental nearest neighbor
search queries allow to traverse all nearest neighbors of a point in order of increasing distance.
Such queries can be implemented with a priority queue that stores all tree nodes encountered
during tree traversal together with the distances to their resp. bounding box (see Hjaltason
and Samet [10]). Pruning tree nodes whose bounding box lie in dead sectors is rather simple
as follows: consider a nearest neighbor query for point s: when we are about to push a new
node n into the priority queue, we compute the smallest polar angle interval I that encloses
the bounding box of n and discard n if I is contained in the dead sectors computed so far.

Because nearest neighbors and tree nodes are processed in order of increasing distance,
we can store sectors in two stages. On creation, they are inserted into a FIFO-queue; later
only the interval component is inserted in a search filter used by the tree. The queue can be
seen as a set of pending dead sectors with attached activation distance δ. As soon as we
process a point t with d(s, t) > δ we can insert the corresponding interval into our filter.

This leaves deciding which points are used to construct dead sectors. We store all points
encountered during an incremental search query in an ordered set N , sorted by their polar
angle with respect to s. Each time we find a new point t, we insert it into N ; dead sectors
are computed with the predecessor and the successor of t in N . Computing δ for new sectors
only requires multiplying the current squared distance to t with a precomputed constant.
The diamond property of edge st is tested against a subset of N .

If we apply the above procedure to every single point, we generate each edge twice,
once on each of the two endpoints. Therefore, we output only those edges e = st such
that s < t, i.e., s is lexicographically smaller than t. As a consequence, we can exclude
a part of the left half-space right from the beginning by inserting an initial dead sector
DS0 = (1/2π + α, 3/2π − α) at distance 0. Points in the two wedges (1/2π, 1/2π + α] and
[3/2π − α, 3/2π] are specially treated because they are still useful to generate dead sectors
for the right half-space.

2.3 LMT-Skeleton
For “nicely” distributed point sets, a limiting factor of the heuristic is the space required
to store the half-edge data structure in memory. We reduce storage overhead by storing
all edges in a single array sorted by source vertex (also known as a compressed sparse row
graph). All outgoing edges of a single vertex are still radially sorted. In addition to the
statuses possible, certain, impossible, we store whether an edge lies on the convex hull.

In essence our implementation is still the same as the one given by Beirouti and Snoeyink
[2], however, with some optimizations applied. We refer to the central while loop in their
implementation as the LMT-Loop. First, the convex hull edges are implicitly given during
initialization of their half-edge structure and can be marked as such without any additional
cost. Determining the convex hull edges beforehand allows to remove the case distinction
inside the LMT-Loop, i.e., it removes all intersection tests that are applied to impossible edges.
Secondly, sorting the stack by edge length destroys spatial ordering and the loss of locality
of reference outweighs all gains on modern hardware. Without sorting, it is actually not
necessary to push all edges onto the stack upfront. Lastly, with proper partitioning of the
edges, the LMT-Loop can be executed in parallel – described in more detail in Section 2.4.

Additionally, we incorporated an improvement to the LMT-skeleton suggested by Aich-
holzer et al. [1]. Because the improved LMT-skeleton is computationally much more expensive,
we apply it only to edges surviving an initial round of the normal LMT-heuristic.
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Number of visited neighbors per point
n Edges Mean SD Min Max DS = 2π

101 36.16 ±2.63 9 ±0 0 ±0 9 ±0 9 ±0 0 ±0
102 882.8 ±27.69 55.6 ±3.1 16.6 ±2.04 23.72 ±4.82 98.56 ±1.27 30.4 ±4.61
103 10,731.7 ±159.9 72.52 ±1.56 23.16 ±1.3 22.68 ±4.55 173 ±14.61 737.84 ±10.91
104 1.1316 · 105 ±471.24 77.64 ±0.69 26.64 ±0.73 19.08 ±2.3 363.72 ±20 9,126.08 ±18.74
105 1.15 · 106 ±1,538.64 72.84 ±0.29 23.76 ±0.47 15.96 ±1.61 846.24 ±24.4 97,200.9 ±40.29
106 1.1562 · 107 ±4,737.67 74 ±0.51 25.76 ±0.39 13.28 ±1.31 2,884.96 ±38.53 9.9117 · 105 ±61.86
107 1.1579 · 108 ±19,254 77 ±0.6 27.24 ±0.79 11.88 ±0.99 9,567.52 ±78.84 9.9721 · 106 ±100.61
108 1.1585 · 109 ±56,063.1 72 ±0.94 24.08 ±0.69 10.6 ±0.49 25,017.8 ±107.4 9.9911 · 107 ±239.64

Table 1 Diamond test on uniformly distributed points. The table shows statistics for 25 different
instances. The extreme values are assumed by points at the point set boundary.

2.4 Parallelization
Because the LMT-heuristic performs only local changes, most edges can be processed in
parallel without synchronization. Problems occur only if adjacent edges are processed
concurrently (for the improved LMT-skeleton this is unfortunately not true, because marking
an edge impossible affects a larger neighborhood of edges). To parallelize the normal LMT-
heuristic, we implemented a solution based on data partitioning without explicit locking.

We recursively cut the vertices V into two disjoint sets V = V1 ∪ V2 and process only
those edges with both endpoints in V1 (resp. V2) in parallel. Define X as the cut set
{{s, t} ∈ E | s ∈ V1, t ∈ V2}, i.e., all edges with one endpoint in V1 and the other in V2.
While edges in E(V1) resp. E(V2) are processed in parallel by two threads, edges in X are
accessed read-only by both threads and are handled after both threads join. This way we
never process two edges with a common endpoint in parallel. To avoid a serial scan at
the top, we push the actual work of computing X down to the leaves in the recursion tree.
Scanning of the half-edge array starts at the leave nodes: processing of half-edges that belong
to some cut set is postponed, instead they are passed back to the parent node. The parent
in turn scans the edges it got from its two children, processes all edges it can and passes
up the remaining ones. In other words, the final cut set X bubbles up in the tree, while all
intermediate cuts are never explicitly computed. This way, partitioning on each level of the
recursion tree only takes constant time, while the actual work is fully parallelized at the leaf
level. After the LMT-heuristic completes, we are left with many polygonal faces that still
need to be triangulated. Our implementation traverses the graph formed by the edges with
one producer thread in order to collect all faces and multiple consumer threads to triangulate
them with dynamic programming.

3 Computational Results

Computations were performed on a machine with an Intel i7-6700K quad-core and 64GB
memory. The code was written in C++ and compiled with gcc 5.4.0.

3.1 Uniformly and Normally Distributed Point Sets
Table 1 shows results of our diamond test implementation on uniformly distributed point
sets with sizes ranging from 10 to 108 points. The table shows the mean values and the
standard deviation of 25 different instances. Each instance was generated by choosing n
points uniformly from a square centered at the origin. The diamond test performs one
incremental nearest neighbor query for each point in order to generate the edges that pass
the test. The last column shows the number of queries where all nodes in the spatial tree
were discarded because dead sectors covered the whole search space. The numbers show that
this is the regular case; the exceptional cases occur at points near the point set “boundary”.
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Possible edges after Certain edges after
n Diamond LMT LMT+ LMT LMT+ Simple Polygons

1 · 101 36.76 ±2.78 3.8 ±3.84 3.72 ±3.62 19.32 ±2.22 19.32 ±2.22 0.68 ±0.61
1 · 102 871.92 ±46.37 84.04 ±20.14 74.56 ±18.1 251.48 ±7.12 252.28 ±7.12 10.52 ±2.55
1 · 103 10,687.4 ±146.68 1,150.32 ±98.05 1,031.96 ±86.46 2,540 ±32.33 2,548.04 ±31.41 128 ±9.2
1 · 104 1.1322 · 105 ±661.16 12,637 ±281.25 11,271.76 ±251.6 25,193.44 ±73.29 25,287.56 ±76.43 1,367.08 ±24.65
1 · 105 1.1503 · 106 ±1,696.31 1.2941 · 105 ±1,198.41 1.1523 · 105 ±973.14 2.5129 · 105 ±322.29 2.5227 · 105 ±306.72 13,819.44 ±67.93
1 · 106 1.1563 · 107 ±5,459.02 1.3044 · 106 ±2,708.78 1.1617 · 106 ±2,486.36 2.5098 · 106 ±847.61 2.5194 · 106 ±860.53 1.3904 · 105 ±232.43
1 · 107 1.1579 · 108 ±17,587.01 1.3074 · 107 ±11,021.75 1.1645 · 107 ±8,825.57 2.5088 · 107 ±2,774.11 2.5184 · 107 ±2,727.23 1.3931 · 106 ±607.95
3 · 107 3.4747 · 108 ±28,678.6 3.9239 · 107 ±18,919.14 3.4949 · 107 ±15,068.66 7.5258 · 107 ±4,637.8 7.5547 · 107 ±4,563.03 4.1797 · 106 ±969.6

Table 2 LMT-skeleton statistics on uniformly distributed point sets.
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Figure 2 LMT-skeleton runtime on uniformly distributed point sets.

Table 2 shows statistics for the LMT-heuristic on uniformly distributed point sets. The
instance sizes range from 10 points up to 30,000,000 points. For each size 25 different
instances were generated. For the largest instances, the array storing the half-edges consumes
nearly 39 GB of memory on its own. The serial initialization of the half-edge data structure,
which basically amounts to radially sorting edges, takes longer than the parallel LMT-Loop on
uniformly and normally distributed points. The improved LMT-skeleton by Aichholzer et al.
is denoted LMT+ in the tables. The resulting skeleton was almost always connected in the
computations and the number of remaining simple polygons that needed to be triangulated is
shown in the last column. Only one instance of size 3 · 107 contained one small disconnected
polygon. As we can see, the LMT-skeleton eliminates most of the possible edges with only
≈ 11% remaining. The certain edges amount to ≈ 83% of the complete triangulation. The
improved LMT-skeleton reduces the amount of possible edges by another 10%, but it provides
hardly any additional certain edges.

The results on normally distributed point sets are basically identical. Point coordinates
were generated by two normally distributed random variables X,Y ∼ N (µ, σ2), with mean
µ = 0 and standard deviation σ ∈ {1, 100, 100000}. The tables are given in the full version.

3.2 TSPLIB + VLSI
In addition to uniformly and normally distributed instances, we ran our implementation on
instances found in the well-known TSPLIB [12], which contains a wide variety of instances
with different distributions. The instances are drawn from industrial applications and from
geographic problems. All 94 instances have a connected LMT-skeleton and can be fully
triangulated with dynamic programming to obtain the minimum-weight triangulation. The
total time it took to solve all instances of the TSPLIB was approximately 8.5 seconds.

Additional point sets can be downloaded at http://www.math.uwaterloo.ca/tsp/vlsi/.
This collection of 102 TSP instances was provided by Andre Rohe, based on VLSI data sets
studied at the Universität Bonn. The LMT-heuristic is sufficient to solve all instances, except
lra498378, which contains two disconnected polygonal faces. Our implementation of the
improved LMT-skeleton performs exceedingly bad on some of these instances; see Table 3.
These instances contain empty regions with many points on the “boundary”. Such regions are
the worst-case for the heuristics because most edges inside them have the diamond property,
which in turn leads to vertices with very high degree.

EuroCG’18
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Table 3 VLSI instances with long runtime.

Time in ms
Instance Total DT LMT-Init LMT-Loop LMT+ Dyn. Prog.
ara238025 15,325 4,954 446 496 9,279 148
lra498378 382,932 44,267 1,238 7,532 329,292 599
lrb744710 484,430 7,952 1,377 2,661 471,564 872
sra104815 1,937 559 191 198 922 65

4 Conclusion

We have shown that despite of the theoretical hardness of the MWT problem, a wide range
of large-scale instances can be solved to optimality.

Difficulties for other instances arise from two sources. (1) Instances with almost regular
k-gons with one or more points near the center can lead to highly disconnected LMT-
skeletons (see Belleville et al. [3]) and require exponential time algorithms to complete the
MWT. Preliminary experiments suggest that such configurations are best solved with integer
programming. The instance by Belleville et al. can be solved with CPLEX in less than a
minute, while the dynamic programming implementation of Grantson et al. [8] cannot solve
it within several hours. (2) Instances containing empty regions with many points on their
“boundary”, such as empty k-gons and circles may be solvable in polynomial time, but trigger
the worst-case behavior of the heuristics. Dealing with both is left for future work.

Acknowledgments. I want to thank Sándor Fekete and Victor Alvarez for useful discussions
and suggestions that helped to improve the presentation of this paper.
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