
Balanced Dynamic Loading and Unloading∗

Sándor P. Fekete1, Sven von Höveling1, Joseph S. B. Mitchell†2,
Christian Rieck1, Christian Scheffer1, Arne Schmidt1, and James R.
Zuber2

1 Department of Computer Science, TU Braunschweig, Germany.
{s.fekete, v.sven, c.rieck, c.scheffer, arne.schmidt}@tu-bs.de

2 Department of Applied Mathematics and Statistics, Stony Brook University,
Stony Brook, NY 11794, USA.
joseph.mitchell@stonybrook.edu, zuber139@gmail.com

Abstract
We consider dynamic loading and unloading problems for heavy geometric objects. The challenge
is to maintain balanced configurations at all times: minimize the maximal motion of the overall
center of gravity. While this problem has been studied from an algorithmic point of view, previous
work only focuses on balancing the final center of gravity; we give a variety of results for computing
schemes that minimize the maximal motion of the center of gravity during the entire process.

In particular, we consider the one-dimensional case and distinguish between loading and
unloading. In the unloading variant, the positions of the intervals are given, and we search for an
optimal unloading order of the intervals. We prove that the unloading variant is NP-complete
and give a 2.7-approximation algorithm. In the loading variant, we have to compute both the
positions of the intervals and their loading order. We give optimal approaches for several variants
that model different loading scenarios that may arise, e.g., in the loading of a container ship.

1 Introduction

Packing a set of objects is a classic challenge that has been studied extensively, from a variety
of perspectives. The basic question is: how can the objects be arranged to fit into a container?
Packing problems are important for many practical applications, such as loading items into
a storage space, or containers onto a ship. They are also closely related to scheduling and
sequencing, which may include additional temporal considerations. Packing and scheduling
are closely intertwined in loading and unloading problems, where the challenge is not just to
compute a good final configuration, but also to dynamically build this configuration, such
that intermediate states are both achievable and stable, e.g., when loading and unloading
container ships, for which maintaining balance throughout the process is crucial.

In this paper, we consider algorithmic problems of balanced loading and unloading. For
unloading, this means planning an optimal sequence for removing a given set of objects, one
at a time; for loading, this requires planning both the position and order of the objects.

The practical constraints of loading and unloading motivate a spectrum of relevant
scenarios. As ships are symmetric around their main axis, we focus on one-dimensional
settings, in which the objects correspond to intervals. Containers may be of uniform size,
but stackable up to a certain limited height; because sliding objects on a moving ship are
major safety hazards, stability considerations may prohibit gaps between containers.

∗ A full version of the paper is available at [2]. An extended abstract will appear in the 13th Latin
American Theoretical INformatics Symposium (LATIN 2018), April 16–19, 2018.

† Work of this author is partially supported by the National Science Foundation (CCF-1526406).

34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

18:2 Balanced Dynamic Loading and Unloading

1.1 Related Work
Previous work on cargo loading covers a wide range of specific aspects, constraints and
objectives. The general Cargo Loading Problem (CLP) asks for an optimal packing
of (possibly heterogeneous) rectangular boxes into a given bin, equivalent to the Cutting
Stock Problem [4]. Most of the proposed methods are heuristics based on (mixed) integer
programming and have been studied both for heterogeneous and homogeneous items.

Amiouny et al. [1] consider the problem of packing a set of one-dimensional boxes of
different weights and different lengths into a flat bin (so they are not allowed to stack these
boxes), in such a way that after placing the last box, the center of gravity is as close as
possible to a fixed target point. They prove strong NP-completeness by a reduction from
3-Partition and give a heuristic with a guaranteed accuracy within `max/2 of a given target
point, where `max is the largest box length.

Gehring et al. [3] consider the general CLP, in which (rectangular) items may be stacked
and placed in any possible position. Mongeau and Bes [5] consider a similar variant in which
the objective is to maximize the loaded weight. In addition, there may be other paramaters,
e.g., each item may have a different priority [8].

While all of this work is related to our problem, it differs in not requiring the center of
gravity to be under control for each step of the loading or unloading process. A problem in
which a constraint is imposed at each step of a process is Compact Vector Summation
(CVS), which asks for a permutation of a set of k-dimensional vectors in order to control their
sum, keeping each partial sum within a bounded k-dimensional ball. See Sevastianov [6, 7]
for a summary of results in CVS and its application in job scheduling.

2 Preliminaries

An item is a unit interval I := [m− 1
2 ,m+ 1

2] with midpoint m. A set {I1, . . . , In} of n items
with midpoints m1, . . . ,mn is valid if mi = mj or |mi −mj | ≥ 1 holds for all i, j = 1, . . . , n.
The center of gravity C (I1, . . . , In) of a valid set {I1, . . . , In} of items is defined as 1

n

∑n
i=1 mi.

Given a valid set {I1, . . . , In} of items, we seek orderings in which each item Ij is removed
or placed such that the maximal deviation for all points in time j = 1, . . . , n is minimized.
Formally, for j = 1, . . . , n and a permutation π : j 7→ πj , let Cj := C

(
Iπj , . . . , Iπn

)
.

The Unloading Problem (Unload) seeks to minimize the maximal deviation during
an unloading process of I1, . . . , In. In particular, given an input set {I1, . . . , In} of items, we
seek a permutation π such that maxi,j=1,...,n |Ci − Cj | is minimized.

In the Loading Problem (Load) we relax the constraint that the positions of the
considered items are part of the input. In particular, we seek an ordering and a set of
midpoints for the containers such that the containers are disjoint and the maximal deviation
for all points in time of the loading process is minimized; see Section 4 for a formal definition.

3 Unloading

We show that the problem Unload is NP-complete and give a polynomial-time 2.7-
approximation algorithm for Unload. We first show that there is a polynomial-time
reduction from the discrete version of Unload, the Discrete Unloading Problem
(dUnload), to Unload; this leads to a proof that Unload is NP-complete, followed by a
2.7-approximation algorithm for Unload.

In the Discrete Unloading Problem (dUnload), we consider a discrete set X :=
{x1, . . . , xn} of points. The center of gravity C (X) of X is defined as 1

n

∑n
i=1 xi. For

Fekete, von Höveling, Mitchell, Rieck, Scheffer, Schmidt, and Zuber 18:3

j = 1, . . . , n and a permutation π : j 7→ πj , let Cj = C
(
xπ1,...,xπj

)
. Again, we seek a

permutation such that maxi,j=1,...,n |Ci − Cj | is minimized.

I Lemma 3.1. Unload and dUnload are polynomial-time equivalent.

3.1 NP-Completeness of the Discrete Case
We can establish NP-completeness of the discrete problem dUnload.

I Theorem 3.2. dUnload is NP-complete.

The proof of Theorem 3.3 is based on a reduction of 3-Partition and omitted for lack
of space, just like any other formal proof; see the full version of this paper [2]. Because of
the polynomial-time equivalence of dUnload and Unload, we conclude the following.

I Corollary 3.3. Unload is NP-complete.

3.2 Lower Bounds and an Approximation Algorithm
When unloading a set of items, their positions are fixed, so (after reversing time) unloading
is equivalent to a loading problem with predetermined positions. For easier and uniform
notation throughout the paper, we use this latter description.

In order to develop and prove an approximation algorithm for dUnload, we begin by
examining lower bounds on the span, R − L, of a minimal interval, [L,R], containing the
centers of gravity at all stages in an optimal solution.

Without loss of generality, we assume that the input points xi sum to 0 (i.e.,
∑
i xi = 0),

so that the center of gravity, Cn, of all n input points is at the origin. We let R = maxi Ci
and L = mini Ci. Our first simple lemma leads to a first (fairly weak) bound on the span.

I Lemma 3.4. Let (x1, x2, x3, . . .) be any sequence of real numbers, with
∑
i xi = 0. Let

Cj = (
∑j
i=1 xi)/j be the center of gravity of the first j numbers, and let R = maxi Ci and

L = mini Ci. Then, |R− L| ≥ |xi|i , for all i = 1, 2,

I Corollary 3.5. For any valid solution to dUnload, the minimal interval [L,R] containing
the center of gravity at every stage must have length |R − L| ≥ |ui|i where ui is the input
point with the i-th smallest magnitude.

We note that the naive lower bound given by Corollary 3.5 can be far from tight: Consider
the sequence 1, 2, 3, 4, 5, 6, 7,−7,−7,−7,−7. In the optimal order, the first −7 is placed
fourth, after 2, 1, 3. The optimal third and fourth centers, {2,− 1

4} are the largest magnitude
positive and negative centers seen, and show a span 2.25 times greater than the naive bound
of 1. By placing the first −7 in the third position, R ≥ 3

2 , and L ≤ −
4
3 . By placing it fifth,

R ≥ 5
2 . Our observation is that failing to place our first −7 if the cumulative sum is > 7

would needlessly increase the span.
This generalizes to the sequence (x1 = 1, x2 = 2, . . . , xk = k, xk+1 = −k, xk+2 =

−k, . . . , xN), with an appropriate xN to make
∑
xi = 0. If we place positive weights in

increasing order until, the current center of mass Cj ≥ k
j , placing −k instead of a positive

point at position j would decrease the center of gravity well below k
j . The first negative point

should be placed when minj j
2−j
2 ≥ k, which is when j ≈

√
2k. In this example, our optimal

center of gravity span is at least k
j ≈

√
k
2 , not the 1 from the naive bound of Corollary 3.5.

We now describe our heuristic, H, which leads to a provable approximation algorithm. It
is convenient to relabel and reindex the input points as follows. Let (P1, P2, . . .) denote the

EuroCG’18

18:4 Balanced Dynamic Loading and Unloading

positive input points, ordered (and indexed) by increasing value. Similarly, let (N1, N2, . . .)
denote the negative input points, orders (and indexed) by increasing magnitude |Ni| (i.e.,
ordered by decreasing value).

The heuristic H orders the input points as follows. The first point is simply the one
closest to the origin (i.e., of smallest absolute value). Then, at each step of the algorithm,
we select the next point in the order by examining three numbers: the partial sum, S, of all
points placed in the sequence so far, the smallest magnitude point, α, not yet placed that
has the same sign as S, and the smallest magnitude point, β, not yet placed that has the
opposite sign of S. If S+α+β is of the same sign as S, then we place β next in the sequence;
otherwise, if S+α+β has the opposite sign as S, then we place α next in the sequence. The
intuition is that we seek to avoid the partial sum from drifting in one direction; we switch
to the opposite sign sequence of input points in order to control the drift, when it becomes
expedient to do so, measured by comparing the sign of S with the sign of S + α+ β, where
α and β are the smallest magnitude points available in each of the two directions. We call
the resulting ordering the H-permutation. The H-permutation puts the j-th largest positive
point, Pj , in position π+

j in the order, and puts the j-th largest in magnitude negative point,
Nj , in position π−j in the order, where

π+
j = j + max

k
{k :

k∑
i=1
|Ni| ≤

j∑
l=1

Pl} and π−j = j + max
k
{k :

k∑
i=1

Pi <

j∑
l=1
|Nl|}.

We obtain an improved lower bound based on our heuristic, H, which orders the input
points according to the H-permutation.

I Lemma 3.6. A lower bound on the optimal span of dUnload is given by |R− L| ≥ Pi
π+
i

and |R− L| ≥ |Ni|
π−
i

.

I Claim 1. For any input set to the discrete unloading problem, where si is a member of S,
the set of all terms with the same sign sorted by magnitude, a permutation π that minimizes
the maximum value of the ratio |si|πi must satisfy πk < πi, for all k < i.

I Theorem 3.7. The H-permutation minimizes the maximum (over i) value of the ratio
|xi|
πi

, and thus yields a lower bound on |R− L|.

For the worst-case ratio, we get the following.

I Theorem 3.8. The H heuristic yields an ordering having span R− L at most 2.7 times
larger than the H-lower bound.

I Corollary 3.9. There is a polynomial-time 2.7-approximation algorithm for Unload.

4 Loading

We consider loading problems, where the positions of the objects are part of the optimization.
Therefor some additional definitions are necessary:

An item is given by a real number `. By assigning a position m ∈ R to an item, we obtain
an interval I with length ` and midpoint m. For n ≥ 1, we consider a set {`1, . . . , `n} of n
items and assume `1 ≥ · · · ≥ `n. Furthermore, {`1, . . . , `n} is uniform if ` := `1 = ... = `n.

A state is a set {(I1, h1), . . . , (In, hn)} of pairs, each one consisting of an interval Ij and
an integer hj ≥ 1, the layer in which Ij lies. A state satisfies the following: (1) Two different

Fekete, von Höveling, Mitchell, Rieck, Scheffer, Schmidt, and Zuber 18:5

intervals that lie in the same layer do not overlap and (2) for j = 2, . . . , n, an interval in
layer j is a subset of the union of the intervals in layer j − 1.

A state {(I1, h1), . . . , (In, hn)} is plane if all intervals lie in the first layer.
To simplify the following notations, we let mj denote the midpoint of the interval Ij , for

j = {1, . . . , n}. The center of gravity C (s) of a state s = {(I1, h1), . . . , (In, hn)} is defined
as 1

M

∑n
j=1 `jmj , where M is defined as

∑n
j=1 `j .

A placement p of n items `1, . . . , `n is a sequence 〈Iπ1 , . . . , Iπn〉 such that (1) there is a
permutation π with `i = |Iπi | for all i ∈ {1, . . . , n} and (2) {(Iπ1 , hπ1), . . . , (Iπj , hπj)} is a
state, the j-th state sj , for each j = 1, . . . , n. The 0-th state s0 is defined as ∅ and its center
of gravity C (s0) is defined as 0.

I Definition 4.1. The loading problem (Load) is defined as follows: Given a set of n
items, determine a placement p such that the n+1 centers of gravity of the n+1 states of p lie
close to 0. In particular, the deviation ∆(p) of a placement p is defined as maxj=0,...,n |C (sj) |.
We seek a placement of S with minimal deviation among all possible placements for S.

We say that stacking is not allowed if we require that all intervals are placed in layer 1.
Otherwise, we say that stacking is allowed. For a given integer µ ≥ 1 we say that µ is the
maximum stackable height if we require that all used layers are no larger than µ.

Note that in the loading case, minimizing the deviation is equivalent to minimizing the
diameter, i.e., minimizing the maximal distance between the smallest and largest extent of
the centers.

4.1 Optimally Loading Unit Items With Stacking
Now we consider the case where you have given a set of unit items which has to be loaded and
you are allowed to stack these items up the a certain height. A simple and straightforward
strategy for this scenario is to build a stack of maximum height first (call this stack S0)
and place items as close as possible to S0 on alternating sides afterwards. By selecting the
position of S0 carefully, this strategy guarantees the following:

I Theorem 4.2. There is a polynomial-time algorithm for loading a set of unit items so that
the deviation of the center of gravity is in [0, 1

1+µ], where µ is the maximum stackable height.

Furthermore it can be shown by a contradiction argument that there is no strategy that
can guarantee a smaller deviation of the center of gravity than the strategy described above.

I Theorem 4.3. The strategy given in Theorem 4.2 is optimal for n > µ, i.e., there is no
strategy such that the center of gravity deviates in [0, 1

1+µ).

Combining Theorem 4.2 and Theorem 4.3 shows that our approach is optimal.

I Corollary 4.4. With the given strategy for a uniform system where each item has length `,
the center of gravity deviates in [0, `

1+µ], which is optimal.

4.2 Optimally Loading Without Stacking but With Minimal Space
Assume that the height of the ship to be loaded does not allow stacking items. This makes
it necessary to ensure that the space consumption of the packing is minimal. We restrict
ourselves to plane placements such that each state is connected. For simplicity, we assume
w.l.o.g. that `1 ≥ · · · ≥ `n holds. First one can simply argue that ∆(p) ≥ `2

4 holds for an
arbitrary connected plane placement p of S. Subsequently we give an algorithm that realizes
this lower bound.

EuroCG’18

18:6 Balanced Dynamic Loading and Unloading

A fundamental key for this subcase is that the center of gravity of a connected plane
state is the midpoint of the induced overall interval.

I Observation 1. Let s be a plane state such that the union of the corresponding intervals
is an interval [a, b] ⊂ R. Then C (s) = a+b

2 .

The algorithm works as follows. First, sort the items by decreasing value and place the
item `1 at position `2

4 . After that, place all other items successively on alternating sides such
that there are no gaps in the each intermediate placement. This approach yields a deviation
of the center of gravity in [− `2

4 ,
`2
4].

I Lemma 4.5. For each plane placement p of S, we have ∆(p) ≥ `2
4 .

I Lemma 4.6. We can compute a placement p of S such that ∆(p) ≤ `2
4 .

The combination of Lemma 4.5 and Lemma 4.6 implies that our approach for connected
placements is optimal.

I Corollary 4.7. Given an arbitrary system, there is a polynomial-time algorithm for optimally
loading a general set of items without stacking and under the constraint of minimal space
consumption for all intermediate stages.

5 Conclusion

We have introduced a new family of problems that seek to balance objects, controlling the
variation of their center of gravity during the loading and unloading of the objects. We have
provided hardness results and optimal or constant-factor approximation algorithms.

There are various related challenges. These include sequencing problems with multiple
loading and unloading stops (which arise in vehicle routing or tour planning for container
ships); variants in which items can be shifted in a continuous fashion; batch scenarios in
which multiple items are loaded or unloaded at once (making it possible to maintain better
balance, but also increasing the space of possible choices); and higher-dimensional variants,
possibly with inhomogeneous space constraints. All these are left for future work.

References
1 Samir V. Amiouny, John J. Bartholdi, John H. Vande Vate, and Jixian Zhang. Balanced

loading. Operations Research, 40(2):238–246, 1992.
2 S. P. Fekete, S. von Höveling, J. S. B. Mitchell, C. Rieck, C. Scheffer, A. Schmidt, and J. R.

Zuber. Don’t Rock the Boat: Algorithms for Balanced Dynamic Loading and Unloading.
CoRR, abs/1712.06498, 2017. http://arxiv.org/abs/1712.06498.

3 Hermann Gehring, K Menschner, and M Meyer. A computer-based heuristic for packing
pooled shipment containers. Eur. J. Oper. Res., 44(2):277–288, 1990.

4 PC Gilmore and Ralph E Gomory. Multistage cutting stock problems of two and more
dimensions. Operations research, 13(1):94–120, 1965.

5 Marcel Mongeau and Christian Bes. Optimization of aircraft container loading. IEEE
Transactions on Aerospace and Electronic Systems, 39(1):140–150, 2003.

6 Sergey Sevastianov. On some geometric methods in scheduling theory: a survey. Discrete
Applied Mathematics, 55(1):59–82, 1994.

7 Sergey Sevastianov. Nonstrict vector summation in multi-operation scheduling. Annals of
Operations Research, 83:179–212, 1998.

8 Wouter Souffriau, Peter Demeester, G Vanden Berghe, and Patrick De Causmaecker. The
aircraft weight and balance problem. Proceedings of ORBEL, 22:44–45, 1992.

	Introduction
	Related Work

	Preliminaries
	Unloading
	NP-Completeness of the Discrete Case
	Lower Bounds and an Approximation Algorithm

	Loading
	Optimally Loading Unit Items With Stacking
	Optimally Loading Without Stacking but With Minimal Space

	Conclusion

