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Abstract
Given a polygonal shape with holes, we investigate the topology of two types of skeletons (straight
skeleton, Voronoi diagram) and the evolution of the inward offsets they induce. It is shown that
both skeletons are homotopy equivalent to the shape and an O(n logn) algorithm to compute
the persistent homology of the filtration of the inset polygons w.r.t. to their reversed offsetting
process is given. We conclude with a brief discussion on possible applications.

1 Introduction

The straight skeleton and the Voronoi diagram of a polygonal shape capture certain topological
and geometrical information. For instance, the maximum inscribed circle of the shape has
its center at a vertex of of Voronoi diagram. In terms of homotopy both skeletons encode
the topology of the shape, but their geometry is different. The different geometry manifests
in different offset curves: Mitered offsets for straight skeletons and Minkowski offsets for
Voronoi diagrams. The evolution of offset curves again tells something about the topology of
the shape. The mathematical tool to investigate this observation is persistent homology.

Lieutier [8] showed that the medial axis of an open bounded set in Rd is homotopy
equivalent to its medial axis by an involved proof not based on constructing a deformation
retraction. Further related work concerns the homotopy of the medial axis, its stability,
and its relation to the Voronoi diagram of a point set. Halperin et al. [4] investigated the
outer (Minkowski) offset filtration of convex polyhedra in two and three dimensions, i.e.,
they generalize from (alpha filtrations of) point sets to sets of disjoint convex polyhedra and
presented an O(n logn) algorithm for the persistent homology.

Figure 1 The straight skeleton S(P ) in blue of a polygon with holes, P , in black. The wavefront
(a mitered offset curve) is shown as dotted lines.
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2 Topology of skeletons

Let P denote a polygon with holes in the plane, i.e., bdP forms a set of disjoint closed
polygonal curves. The straight skeleton S(P ) of P is defined by a wavefront propagation
process where the edges of P move inwards at unit speed. Two kind of structural changes
occur to the wavefront: (i) edges may collapse and vanish and (ii) reflex vertices may hit
another part of the wavefront and split it into parts.1 The line structure that is traced out
by the wavefront vertices was introduced in [1] as the straight skeleton S(P ) of P , see Fig. 1.
We call the area swept out by one edge f of P the straight-skeleton cell CS(f) of f .

The Voronoi diagram V (P ) of P is defined by a nearest-neighbor cell decomposition of P
by the faces of P , i.e., its vertices and edges. We follow [5] by defining the cone of influence
I(f) of a vertex f to be R2 and of an edge f to be the orthogonal strip spanned by f . Then
the Voronoi cell CV (f) is defined as the set of points in I(f) at least as close to f than to
any other face of P . We define the Voronoi diagram V (P ) of P as the line structure formed
by the boundaries of the Voronoi cells, restricted to P , see Fig. 2.

Figure 2 The Voronoi diagram V (P ) in blue of a polygon with holes, P , in black. Two cells
CV (f) and CV (f ′) of the faces f and f ′ shaded in gray.

Two remarks on the above definition: First, for our purpose we would like to emphasize
the notion of a Voronoi diagram of a polygon in analogy to S(P ) and in contrast to the typical
notion of the Voronoi diagram of a collection of sites (which could form a polygon). Secondly,
the two edges of V (P ) emanating at each reflex vertex are considered to be topologically
disjoint, i.e., the two distinct endpoints only geometrically overlap. Furthermore, we split
conic Voronoi edges at the apex, including those between two vertices of P , see [7]. This is
(i) algorithmically handy, e.g., when computing offset curves, and (ii) turns out to be natural
from a topological perspective.

Both, S(P ) and V (P ), capture geometrical and topological features of the underlying
shape P . For instance, they form a tree for simple polygons. Moreover, for each hole that
we punch into P both get a new (generator) cycle (in a group of cycles). That is, in terms of
homotopy theory, they both capture the topology of the shape:

I Theorem 2.1. Let P denote a polygon with holes in the plane. The following homotopy
equivalences hold:

P ' S(P ) ' V (P ).

1 See [7] for a survey on straight skeletons including a taxonomy on the different wavefront events.
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It suffices to show that S(P ) and V (P ) are each deformation retracts of P .

I Lemma 2.2. S(P ) is a deformation retract of P .

Proof. Consider the cell decomposition of P induced by S(P ). The cell CS(f) of an edge f
is a topological disk [7]. Let us denote by S(P, f) = S(P ) ∩ CS(f) the boundary of CS(f)
without f , which is a connected part of bdCS(f). The topological disk CS(f) can be trivially
deformation retracted to S(P, f). We can even require that the deformation retraction stays
constant on S(P, f). This allows us to plug together the per-cell deformation retractions to
a deformation retraction of P =

⋃
f C(f) to

⋃
f S(P, f) = S(P ). J

Note that the above proof also applies to straight-skeletons of positively weighted straight
skeletons. However, in the presence of negative weights Thm. 2.1 fails as S(P ) of a simple
polygon P may have cycles as shown in [2].

I Lemma 2.3. V (P ) is a deformation retract of P .

We could use the more general result of Lieutier [8] for the medial axis, augment it with
certain line segments to obtain V (P ) and argue that the homotopy type did not change.
However, the simple proof scheme of Lem. 2.2 basically applies here, too. Moreover, Voronoi
cells of circular arcs meet the above topological requirements as well [6], and hence Lem. 2.3
also applies to shapes P bounded by straight-line segments and circular arcs.

There is only a technicality at reflex vertices (for both approaches), where we remind
the reader that the two emanating Voronoi edges are considered topologically disjoint. The
topological space V (P ) could be obtained by glueing together Voronoi edges, but we do not
glue at reflex vertices of P . Put in different words, let us consider P ′ as the Minkowski-
difference2 P 	Bε of P by an ε > 0, where Bε denotes the o-centered ball of radius ε. Then
V (P ′) = V (P )∩P ′, i.e., V (P ) is V (P ′) with little line segments attached at the tips of V (P ′).
The shape P ′ is structurally the same as P , only the reflex vertices of P are replaced by tiny
circular arcs of radius ε. We consider V (P ) and V (P ′) to be topologically identical, only the
tips of V (P ′) are geometrically perturbed. In particular, we consider V (P, f) = V (P )∩CV (f)
being a topological line instead of a circle at reflex vertices.

I Corollary 2.4. P , S(P ), and V (P ) are homologous and, by the theorem of Euler-Poincaré,
have the same Euler characteristics.

3 Persistence of offset curves

3.1 Mitered and Minkowski offsets
A skeleton and its offset curves are dual in the following sense: We can easily compute offset
curves from the skeleton and, vice versa, the skeleton can be obtained from the evolution of
offset curves. For the latter direction this is the original definition of straight skeletons, where
the wavefront propagation is the evolution of the offset curves. The definition of Voronoi
diagrams based the evolution of the offset curves is related to the so-called grassfire model.

For the former direction, the computation of mitered offset curves by means of straight
skeletons resp. Minkowski offset curves by means of Voronoi diagrams are one of many

2 For sets A, B in a vector space let A⊕B = {x + y : x ∈ A, y ∈ B} denote the Minkowski-sum and let
A	B = {x : {x} ⊕B ⊆ A} = (Ac ⊕ (−B))c denote the Minkowski-difference.
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applications of skeletons, e.g. in GIS (buffer zone computation) or CAD/CAM (tool-path
planing in NC-machining), cf. [5, 7].

Let us denote by QV (r) the polygon P inset by radius r according Minkowski offset-
ting, i.e., QV (r) = P 	 Br. Similarly, denote by QS(r) the polygon P inset by radius
r according to mitered offsetting. The so-called roof model projects the evolution of off-
set curves in three-space with the third dimension being time, see Fig. 3. We denote by
RV (P ) =

⋃
r≥0 bdQV (r)×{r} and likewise for RS(P ). In the following we write Q∗(r) resp.

R∗(P ) when we refer to both QV (r) and QS(r) resp. RV (P ) and RS(P ). Aichholzer and
Aurenhammer [1] showed the following property for RS(P ), which is also true for RV (P ):

I Lemma 3.1. R∗(P ) does not possess local minima, except all points of bdP × {0}.

Proof. Assume R∗(P ) would possess a local minimum at q ∈ intP at level t > 0. Then
P \Q∗(t+ ε) possesses an arbitrarily small component around q for small enough ε > 0. This
basically means that offset curves pop up without being emanated from bdP . J

Figure 3 The straight-skeleton roof model RS(P ) of P . The vertices, crests and ridges of RS(P )
projected onto R2 × {0} give S(P ) again. Offset curves are lifted to isolines on RS(P ).

3.2 Computing persistent homology of offset curve filtrations
Persistent homology is a mathematical framework that investigates the evolution of homology
groups in a so-called filtration of topological spaces. In the following we apply this framework
to a growing sequence of nested sets, where the growth is given by the offset curves with a
decreasing offset radius. This gives insight into the topology of the underlying shape that
goes beyond the homotopy type of P because the topological changes in the offset curves
pull in geometric information from the offsetting process itself.

Let us consider r to decrease from a large enough r0 to 0, while Q∗(r) grows from the
empty set to P . We ask for the persistent homology groups (over Z2) of this offset filtration
of P . Using the roof model R∗(P ) we can apply the water shed picture [3] here: Assume the
sea has level r0 and then continuously lowers to level 0. At local maxima of R∗(P ) islands
pop up (0-dimensional homology classes are born), at certain other levels islands merge with
others (0-dimensional homology classes die) or atolls are formed (1-dimensional homology
classes are born). However, from Lem. 3.1 follows this:

I Lemma 3.2. In an offset filtration 1-dimensional homology classes never die.
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3.2.1 Direct approach on a simplicial complex
A straightforward approach to compute persistent homology could be to apply the boundary
matrix algorithm [3]. To do so, we switch to the setting of a filtration on a simplicial
complex. First, we consider a finite filtration: Note that the topological changes of Q∗(r)
only occur at levels of R∗(P ) where the isoline touches a roof vertex. Let us denote by
r1 > r2 > · · · > rk = 0 the sequence of levels at which the vertices of R∗(P ) sit, which gives
us the nested sets Q∗(r1) ⊂ · · · ⊂ Q∗(rk). (We may add a level r0 > r1 in order to start with
the empty set Q∗(r0).) Next we construct a simplicial complex C that covers P by (i) adding
the offset curves bdQ∗(r1), . . . ,bdQ∗(rk) to the skeleton and (ii) triangulating the onion
layers Q∗(ri+1) \ intQ∗(ri) for 1 ≤ i ≤ k − 1. Note that in step (i), we split skeleton edges
at the intersection points with the offset curves and in step (ii), we only need a topological
triangulation, i.e., edges do not need to be straight. Then we define a simplicial function
C → [0,∞) by assigning each simplex of C the level of its lowest point in R∗(P ). We take the
super-level set filtration according to this simplicial function, which corresponds to the offset
filtration initially presented, i.e., it contains triangulations of all Q∗(ri) as subcomplexes.

The boundary matrix reduction runs in O(m3) time where m ∈ O(kn) ⊆ O(n2) is the
size of C. The construction of C involves the computation of k offset curves, each taking O(n)
time after the skeleton has been computed, and the triangulation in O(m logm) time.

3.2.2 A skeleton-based algorithm
Note that the Voronoi diagram of QV (r) is V (P ) ∩QV (r) and similarly S(QS(r)) = S(P ) ∩
QS(r) for straight skeletons. So QV (r) is homotopy equivalent to V (P )∩QV (r) and therefore
homologous. That is, instead of considering the growing sets QV (r1) ⊂ · · · ⊂ QV (rk) we
can consider the growing subsets QV (r1) ∩ V (P ) ⊂ · · · ⊂ QV (rk) ∩ V (P ) of the Voronoi
diagram and likewise for the straight skeleton. So it suffices to track the birth and death of
components and cycles in the growing graph structure of the skeleton.

By Lem. 3.2 we can exclude the death of cycles from our considerations. So we sort the
vertices of the skeleton by decreasing level in the roof model and keep adding vertex by
vertex in the growing graph structure. For each new vertex v we have the following cases:

1. No neighbor of v was inserted already. Then v is a peak and a new component is born.
2. The neighbors u1, . . . , ud were already inserted. For every connected component that is

involved with c vertices in {u1, . . . , ud} we get c− 1 new cycles closed at v. All involved
components are merged with the oldest component and then v joins this component, too.

After the skeleton of P has been computed and the vertices were sorted in O(n logn)
time, where n is the number of vertices of P , one can compute the birth and death of the
homology classes in O(nα(n)) time by means of a union-find data structure [3]. (There
are O(n) find resp. union operations in case 2.) If one is interested in the homology classes
itself each can be dumped in O(n logn) time by a simple graph traversal. For instance the
cycle that is born at level 0.109 in Fig. 4 can be obtained by a depth-first search along one
emanating edge of the vertex v at level 0.109, restricted to vertices inserted so far, until v is
reached again. (The traversal stays within the component in which the cycle is closed.)

4 Conclusion

Computational topology has prominent applications in topological data analysis. We believe
that also classical problems in computational geometry profit from methods of computational
topology.
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Figure 4 Birth and death of homology classes in the mitered-offset filtration by inserting vertices
at given levels. Red circles are of case 1. (Peak 1 is on level 1.632.) Orange (birth of cycle) and
violet (death of component) vertices are of case 2. Unlabeled vertices are trivial instances of case 2.
The grey arrows tell the merge direction. Peaks in decreasing persistence: 1, 2, 6, 3, 7, 4.

Take for instance the maximum inscribed circle of P whose center is known to be a
vertex of V (P ) with highest distance to its defining faces, i.e., the highest peak in RV (P ).
In other words, the maximum inscribed circle corresponds to the 0-dimensional homology
class of highest persistence, where the persistence of a homology class is defined by the level
difference of birth and death. We can quantify all peaks by its persistence and obtain a
notion of “significance” of a locally maximum inscribed circle. This could again be useful
for shape decomposition algorithms, e.g. for motion planing in NC machining. In Fig. 4
the peaks 1 and 2 have a significant persistence above 1.1, while the other peaks possess a
comparable small persistence below 0.1. Those two peaks represent the “main parts” of P in
this sense.
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