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Abstract
Let G = (V,E) be a planar graph and let V be a partition of V whose clusters, i.e., the graphs
induced by the vertex sets in V, are connected. Let DC be an arrangement of disks with a
bijection between the disks and the clusters. Akitaya et al. [1] give an algorithm to test whether
(G,V) can be embedded onto DC with the additional constraint that edges are routed through
an additional set of pipes between the disks. Based on such an embedding, we prove that every
clustered graph with connected clusters and every disk-arrangement with non-overlapping disks
has a planar straight-line drawing where every vertex is embedded in the disk corresponding to
its cluster. This result can be seen as an extension of the result by Alam et al. [2] who solely
consider biconnected clusters.

1 Introduction

In this paper, we study the problem of drawing a large plane clustered graph G on a pre-
scribed disk arrangement DC . More formally, a (flat) clustering of a graph G = (V,E) is a
partition V = {V1, . . . , Vk} of the vertex set V . We refer to the pair C = (G,V) as a clustered
graph and the graphs Gi induced by Vi as clusters. A disk arrangement D = {d1, . . . , dk}
is a set of pairwise disjoint disks in the plane together with a bijective mapping µ(Vi) = di
between the clusters C and the disks D. We refer to a disk arrangement D with a bijective
mapping µ as a disk arrangement of C, denoted by DC . A DC-framed drawing of C is a pla-
nar drawing of a clustered graph C where each cluster Gi is drawn within its corresponding
disk di. We study the following problem: given a clustered planar graph G with an embed-
ding ψ and a disk arrangement DC of C, does G admit a DC-framed straight-line drawing
homeomorphic to ψ?

A pipe pij of two clusters Vi, Vj is the convex hull of the disks di and dj , i.e., the smallest
convex set of points containing di and dj ; see Fig. 1. A disk arrangement DC of C is planar
if (i) the pairwise intersections of all disks are empty, and (ii) if (Vi × Vj)∩E 6= ∅, then the
intersection of pij with all disks dk (corresponding to Vk) is empty (i, j, k pairwise distinct)
and, (iii) if (Vi × Vj) ∩ E 6= ∅ and (Vk × Vl) ∩ E 6= ∅ (i, j, k, l pairwise distinct), then the
intersection of the pipes pij and pkl is empty. A planar disk arrangement can be seen as
a thickening of the graph obtained by contracting all clusters in C. An embedding ψ of G,
i.e., a topological planar drawing of G, is compatible with a planar disk arrangement DC if
ψ is homeomorphic to a DC-framed embedding of C such that edges of a cluster are routed
within the corresponding disks, and edges between distinct clusters are routed through the
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Figure 1 The blue disk arrangement is planar. The red disk arrangement disrupts the planarity
of the entire arrangement. The dash dotted edge is not embedded in a pipe, hence the embedding
is not compatible with the disk arrangement.

corresponding pipes. Throughout the paper we assume the disk arrangement, provided as
part of the input, is planar.

Related Work

Feng et al. [7] introduced the notion of clustered graphs and c-planarity. A graph G together
with a recursive partitioning of the vertex set is considered to be a clustered graph. An
embedding of G is a c-planar embedding if (i) each cluster c is drawn within a connected
region Rc, (ii) two regions Rc, Rd intersect if and only if the cluster c contains the cluster d
or vice versa, and (iii) every edge intersects the boundary of a region at most once. They
prove that a c-planar embedding of a connected clustered graph can be computed in O(n2)
time. It is an open question whether it is possible to extend this result to disconnected
clustered graphs. Many special cases of this problem have been considered [4].

Concerning drawings of c-planar clustered graphs, Eades et al. [6] prove that every c-
planar graph has a c-planar straight-line drawing where each cluster is drawn in a convex
region. Angelini et al. [3] strengthen the result of Eades et al. by showing that every c-planar
graph has a c-planar straight-line drawing in which every cluster is drawn in an axis-parallel
rectangle. The result of Akitaya et al. [1] implies that in O(n logn) time one can decide
whether an abstract graph with a flat clustering has an embedding where each vertex lies
in a prescribed topological disk and every edge is routed through a prescribed topological
pipe. In general their algorithm decides whether a simplicial map ϕ of G onto a 2-manifold
M is a weak embedding, i.e., for every ε > 0, ϕ can be perturbed into an embedding ψε with
||ϕ− ψε|| < ε.

Alam et al. [2] prove that it is NP-hard to decide whether a clustered graph has a c-
planar straight-line drawing where every cluster is contained in a prescribed rectangle and
edges have to pass through a defined part of the boundary of the rectangle. Further, they
prove that all instances with biconnected clusters always admit a solution. Their result
implies that graphs of this class have DC-framed straight-line drawings.

Contribution

In this paper, we prove that every connected clustered graph (G,V), i.e., each cluster Gi
is connected, with an embedding ψ compatible with a prescribed planar disk arrangement
DC , has a DC-framed planar straight-line drawing homeomorphic to ψ. Taking the result of
Akitaya et al. [1] into account, our result can be used to test whether an abstract clustered
graph with connected clusters has a DC-framed straight-line drawing. Our result is an
extension of the result of Alam et al. [2] from biconnected to connected clusters.
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Figure 2 (a) A planar clustered graph C that is not simple. (b) The block B is leaf block of
Gi. The block B′ of Gj obstructs B, B′ itself is free. The cycles mentioned in the definitions are
highlighted in red.

2 Preliminaries

A clustered graph C = (G,V) is simple if for every i, j, there is no cluster Gh(i, j 6= h)
embedded in the interior of the subgraph induced by Vi ∪ Vj ; see Fig. 2a. Note that this is
a necessary condition in our model, as otherwise the corresponding disk arrangement would
not be planar. The set of edges Ei of a cluster Gi are intra-cluster edges and the set of edges
with endpoints in different clusters inter-cluster edges. The vertex u of an inter-cluster edge
uv is the inter-cluster neighbor of v.

We refer to a maximal biconnected component B of Gi as a block of Gi. Removing a
cut vertex from Gi, splits Gi into two connected components. A block is a leaf block if it is
incident to at most one cut vertex of Gi; see Fig. 2b. A block B′ of a cluster Gj obstructs a
leaf block of Gi in ψ if there is a cycle C using only vertices of B and at most a single vertex
of B′ such that B′ is in the interior of the graph induced by C ∪ B ∪ B′. A block B that
is not obstructed by another block is free. We denote the graph after the contraction of a
block B by G/B and refer to the resulting vertex b as the contraction vertex of G/B. The
contraction of a block in a graph with an embedding ψ induces an embedding ψG/B of G/B.

I Lemma 2.1. Let C = (G,V) be a connected simple clustered graph with an embedding ψ
that is compatible with a disk arrangement DC. Then the embedding induced by the contrac-
tion of a free leaf block is compatible with DC.

3 Drawing Planar Clustered Graphs on Disk Arrangements

In this section, we prove that every connected simple clustered graph C has a DC-framed
straight-line drawing, see Theorem 3.6. Our proof strategy is as follows. We iteratively
contract free leaf blocks B of C until every cluster contains exactly one vertex, see Lemma 3.1.
In this case, the center points of the disks in the disk arrangement DC induce a DC-framed
straight-line drawing of C. In order to undo a contraction of a free leaf block B, we consider
a DC-framed straight-line drawing ΓC/B of the contracted graph C/B, see Fig 3b. We start
by defining a safe convex polygon σ, that allows us to extend the drawing ΓC/B to a drawing
Γ of C, by placing vertices on the boundary of B on the boundary of σ, and the interior
vertices of B in the interior of σ. The result of Chambers et al. [5] ensures that the drawing
of B, where the vertices on the boundary of B have prescribed placements on the boundary
of a convex polygon, is a planar straight-line drawing homeomorphic to the embedding of
B. The challenging part is to guarantee that the inter-cluster edges do not intersect with
edges of B; see Lemma 3.2 to Lemma 3.5. We first prove that unless the clustered graph is
not sufficiently small, there is a free leaf block B.
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Figure 3 (a) A block B (black) with inter-cluster neighbors outside of the blue disk. (b) A
straight-line drawing of the B-contracted graph. (c) A Ub-similar segment bw with its supporting
line (red). (d) DC-framed straight-line drawing with B drawn in the dark blue convex polygon σ.

I Lemma 3.1. Every connected simple clustered graph C = (G,V) has a cluster Gi with a
free leaf block or every cluster has exactly one vertex.

Let B be a free leaf block of a cluster Gi and consider a DC-framed straight-line drawing
ΓC/B of a B-contracted clustered graph C/B. Observe that we cannot take an arbitrary
convex polygon σ to extend the drawing ΓC/B to a drawing Γ, since for this polygon it
might not be possible to avoid intersections between inter-cluster edges and edges of B. To
avoid these intersections, we construct the polygon σ in two phases. First, we will prove the
existence of a special segment s (see Fig 3c), that we will later use to construct two polygons
σL and σR. Then the union of σL and σR will be the desired polygon σ.

We formalize the concept of a safe point set as follows. Denote by Ub the inter-cluster
neighbors of the contraction vertex b and let L ⊆ Ub be a set of vertices that is consecutive
in the clockwise order around b. We construct an L-split drawing Γp from ΓC/B by removing
the inter-cluster edges {bu | u ∈ L} from ΓC/B and adding a split vertex w at position
p ∈ R2 and connecting w to all vertices in L ∪ {b} with straight-line edges. We say a set
P ⊆ R2 is L-similar if for every point p ∈ P the L-split drawing Γp of ΓC/B is planar, and
the contraction of the edge bw induces an embedding homeomorphic to ΓC/B .

I Lemma 3.2. Let B be a free leaf block of a cluster Gi and let di ∈ DC be the corresponding
disk. Let ΓC/B be a DC-framed straight-line drawing of C/B. Let b be the contraction vertex of
C/B with inter-cluster neighbors Ub. Then there is a Ub-similar straight-line segment s ⊂ di.

Proof sketch. There is a small disk δ ⊂ di around b such that moving b within δ preserves
the topological properties of b. Let el be and er be the edges that precede and succeed B,
respectively. Then, the two lines containing el and er divide δ into four regions of which one
region R is Ub-similar. Thus, every segment ba, with a ∈ R, is Ub-similar. �

A supporting line of a Ub-similar segment s = ba is the line that contains s and is directed
from b towards a. This line l separates the set Ub into sets L and R, such that the vertices
in L are to left of l in the drawing ΓC/B , and the vertices in R to the right of l. Depending
on the set, we show that there are convex polygons σL and σR that are monotone with
respect to s. For a segment s = ba, a convex polygon 〈p0, p1, . . . , pk, pk+1〉, with p0 = a and
pk+1 = b, is s-monotone if the projections of all pi onto the supporting line of s, lie on s.

I Lemma 3.3. Let ΓC/B be a DC-framed straight-line drawing of C/B and let Ub be the
inter-cluster neighbors of the contraction vertex b and let s = ba be a Ub-similar segment.
Let L ⊆ Ub be the set of vertices that are to the left of the supporting-line of s. Then there
is a convex s-monotone polygon σL contained in di ∈ DC such that the boundary BD(σL)
of σL is L-similar, and for every point p on BD(σL) \ s and every vertex u ∈ L, the open
segment pu and σL do not intersect.
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Figure 4 (a) Triangle ∆ is the intersection of all triangles ∆u. (b) ∆ is not L-similar. (c) B is
a Bézier-curve within ∆.

Proof sketch. Consider the non-empty set L and the triangle ∆u with vertices b, u, a for a
vertex u ∈ L; see Fig. 4a. Let ∆ be the intersection of all triangles ∆u. Since the segment
s = ba is Ub-similar and the set L contains all vertices to the left of l, ∆ is L-similar.
Unfortunately, the triangle ∆ = (b, x, a) is not the desired polygon σL, yet. To ensure that
the polygon σL is s-monotone and entirely contained in di, we place the vertex x in the
intersection of ∆ and di, such that the projection of x lies on s. Such a point exists, since
s is contained in di. Finally, we have to guarantee that for every point p in BD(σL) \ s and
every vertex u in L, the open segment pu and σL do not intersect. Indeed the Bézier-curve
B with b, x, a as its control points satisfies this property. Hence, the desired polygon σL can
be constructed by discretizing the curve B. �

Observe that this lemma can be restated in terms of the set R right of the supporting
line l of s. We then obtain an s-monotone polygon σR. Merging the two polygons σL and
σR results in the final polygon σ. Before we are able to actually draw the block B on σ, it is
crucial that the notion of vertices to the left and right of a supporting line l transfers to the
vertices on the boundary of B. We formalize this with the concept of an apex vertex of B.
Let v0, v1, . . . , vk, vk+1 be the vertices on the boundary of B, with v0 = vk+1 the cut vertex
of B. A vertex vi is called an apex vertex of B with respect to ΓC/B and l if all inter-cluster
neighbors of the vertices in v1, . . . vi−1 are to left of l in ΓC/B and the inter-cluster neighbors
of the vertices vi+1, . . . , vk are to the right of l in ΓC/B .

I Lemma 3.4. Let B be a free leaf block of a clustered graph C with an embedding ψ. Let
ΓC/B be a planar straight-line drawing homeomorphic to the induced embedding of C/B and
let l be the supporting line of a Ub-similar segment. Then there is an apex vertex of B with
respect to ΓC/B and l.

Proof sketch. Since ΓC/B is a straight-line drawing homeomorphic to the embedding induced
by the contraction of B, the neighbors of b in C/B appear in the same clockwise order as
in a clockwise traversal of all neighbors of vertices on the boundary of B in C. Thus, the
partitioning of the neighborhood of b into the left and right of l transfers to the vertices on
the boundary of B. �

With this framework at hand, we are now able to prove that C has DC-framed straight-
line drawing, if the B-contracted clustered graph C/B has a DC-framed straight-line drawing
ΓC/B . Thus, let L be the set of inter-cluster neighbors to the left of the supporting-line l
of a Ub-similar segment s, and let R be the corresponding set to the right of l. We obtain
two polygons σL and σR by the application of Lemma 3.3. We obtain a convex polygon σ
by merging σL and σR at the common side s. An apex vertex vi splits the vertices on the
boundary of B. We place the vertices v0, . . . , vi−1 on the boundary of the polygon σL and
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vi+1, . . . , vk on the boundary of σR. The apex vi is placed at the end a of the Ub-similar
segment s = ba where it can be connected to vertices in L and in R. Since σ is a convex
polygon, we can extend this drawing to a drawing Γ of C by drawing the remaining vertices
of B in the interior of σ with the result of Chambers et al. [5]. We get the following result.

I Lemma 3.5. Let C = (G,V) be a connected simple clustered graph with an embedding ψ
that is compatible with a disk arrangement DC. If B is a free leaf block of C and C/B has
DC-framed straight-line drawing homeomorphic to the embedding induced by the contraction
of B, then C has a DC-framed straight-line drawing.

Note that, if every cluster contains exactly one vertex, then the center points of the disks
in the planar disk arrangement DC induce a planar straight-line drawing of C. Thus, we can
inductively apply the previous lemma to prove our main theorem.

I Theorem 3.6. Every connected simple clustered graph C = (G,V) with a planar embedding
ψ that is compatible with a disk arrangement DC has a DC-framed straight-line drawing that
is homeomorphic to ψ.

4 Conclusion

We proved that every clustered planar graph with an embedding compatible with a pla-
nar disk arrangement has a DC-framed straight-line drawing. If the requirement of the
disk arrangement to be planar is dropped, not every clustered-planar graph has DC-framed
straight-line drawing. Thus, we ask what is the complexity of deciding whether a clustered
planar embedded graph has DC-framed straight-line drawing for a given non-planar disk
arrangement DC?
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