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Abstract
Simplifying polygonal curves at different levels of detail is an important problem with many
applications. Existing geometric optimization algorithms are only capable of minimizing the
complexity of a simplified curve for a single level of detail. We present an O(n3m)-time algo-
rithm that takes a polygonal curve of n vertices and produces a set of consistent simplifications
for m scales while minimizing the cumulative simplification complexity. This algorithm is com-
patible with distance measures such as Hausdorff, Fréchet and area-based distances, and enables
simplification for continuous scaling in O(n5) time.

1 Introduction

Given a polygonal curve as input, the curve simplification problem asks for a polygonal curve
that approximates the input well using as few vertices as possible. Because of the importance
of data reduction, curve simplification has a wide range of applications. One such application
is cartography, where the visual representation of line features like rivers, roads, and region
boundaries needs to be reduced. Most maps nowadays are interactive and incorporate
zooming, which requires curve simplification that facilitates different levels of detail. A
naive approach would be to simplify for each zoom level independently. This however has
the drawback that the resulting simplifications are not consistent between different scales.
Therefore, we require progressive simplification, that is, a series of simplifications for which
the level of detail is progressively increased for higher zoom-levels. This is shown in Figure 1a.

Progressive simplifications are used in cartography [7]. Existing algorithms for progressive
simplification (e.g. Cao et al. [2]) work by simplifying the input curve, then simplifying this
simplification, and so on. Cao et al. [2] referred to progressive curve simplification as “aging”.
More concretely, a common approach is to iteratively discard vertices, such that we always
discard the vertex whose removal introduces the smallest error (according to some criterion).
For example, the algorithm by Visvalingam and Whyatt [9] always removes the vertex which
together with its neighboring vertices forms a triangle with the smallest area.

Such approaches stand in stark contrast to (non-progressive) curve simplification algo-
rithms that aim to minimize the complexity of the simplification while guaranteeing a (global)
bound on the error introduced by the simplification. The most prominent algorithm with a
preset error bound was proposed by Douglas and Peucker [5]. However, while heuristically
aiming at a simplification with few vertices, this algorithm does not actually minimize the
number of vertices. A general algorithm for the problem of minimizing the number of vertices
was introduced by Imai and Iri [6]. Their approach uses shortcut graphs, which we describe
in more detail below. An efficient algorithm to compute shortcut graphs for the Hausdorff
distance was presented by Chan and Chin [3]. Inspired by the work of Visvalingam and Why-
att, Daneshpajouh et al. [4] defined an error measure for non-progressive simplification by
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measuring the sum or the difference in area between a simplification and the input curve.
In the line of these algorithms, the goal of our work is to develop algorithms that solve
progressive simplification as an optimization problem.

A (vertex-restricted) simplification S of a polygonal curve C is an ordered subsequence
of C (denoted by S v C) that includes the first and the last point of C. An ε-simplification
S is a simplification that ensures that each edge of S has a distance of at most ε to its
corresponding subcurve, where the distance measure can for instance be the Hausdorff or
the Fréchet distance [1]. For an ordered pair of vertices (pi, pj) of C we denote the distance
between the segment (pi, pj) and the corresponding subchain by ε(pi, pj). We denote by
(pi, pj) ∈ S that (pi, pj) is an edge of S.

We next define the progressive simplification problem in the plane. Given a polygonal
curve C = 〈p1, . . . , pn〉 in R2 and a sequence E = 〈ε1, . . . , εm〉 with εi ∈ R>0 where 0 < ε1 <

. . . < εm, we want to compute a sequence of (vertex-restricted) simplifications S1,S2, . . . ,Sm
of C such that

1. Sm v Sm−1 v . . . v S1 v C (monotonicity),
2. Sk is an εk-simplification of C,
3.
∑m
k=1 |Sk| is minimal.

We refer to a sequence of simplifications fulfilling the first two conditions as progressive
simplification. A sequence fulfilling all three conditions is called a minimal progressive simpli-
fication, and the problem of computing such a sequence is called the progressive simplification
problem. We present an O(n3m)-time algorithm for the progressive simplification problem in
the plane.

The cornerstone of progressive simplification is that we require monotonicity. This
guarantees that, when “zooming out”, vertices are only removed and cannot (re)appear.
As error measure, we will mostly use the Hausdorff distance. This is not essential to
the core algorithm, and we will discuss how to use the Fréchet distance [1] or area-based
measures [4] without affecting the worst-case running time. Furthermore, our algorithm
generalizes to the weighted version of the problem in which

∑m
i=1 wi|Si| with positive

weights wi is minimized, and to the continuous version, where Sε needs to be computed
for all 0 ≤ ε < εM . As in the discrete setting, we require Sε′ v Sε for ε′ > ε; the resulting
algorithm minimizes

∫ εM

0 |Sε| dε in O(n5) time. Note that εM is the error at which we can
simplify the curve by the single line segment (p1, pn); thus, we have εM = ε(p1, pn).

In our algorithms we will make use of the shortcut graph as introduced by Imai and Iri [6].
For a given curve C, a shortcut (pi, pj) is an ordered pair (i < j) of vertices. Given an error
ε > 0, a shortcut (pi, pj) is valid if ε(pi, pj) ≤ ε. The shortcut graph G(C, ε) [6] as shown
in Figure 1b represents all valid shortcuts (pi, pj) with 1 ≤ i < j ≤ n. A bottleneck in
computing (progressive) simplifications is the construction and space usage of these graphs.

S2 v S1

S1 v C

C

(a)

S

G(C, ε)

C

(b)

Figure 1 (a) a progressive simplification and (b) curve simplification using the shortcut graph.
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2 Optimal Progressive Simplification

We show how to solve the progressive simplification problem in O(n3m) time in this section.
The same running time holds for the weighted version, and based on this we show that the
continuous progressive simplification problem can be solved in O(n5) time, see Section 3.

By the monotonicity property of the progressive simplification problem (see condition
1 in the definition in Section 1), we require that all vertices within a simplification Sk of
the sequence must also occur within all subsequent simplifications Sl with k < l. Adding
shortcuts to a specific simplification thus influences the structure of the other simplifications.
We therefore associate a cost value cki,j ∈ N for each shortcut (pi, pj) in the shortcut graph
G(C, εk) that relates to the cost of including (pi, pj) in Sk. We use the Hausdorff distance
as an error measure to determine whether a shortcut is valid, but since the shortcut graph
is flexible to use any error measures, we can employ any other distance measure for our
algorithms. In particular for the Fréchet distance [1] and area-based distances [4], we can
use brute-force to compute whether a shortcut is valid in O(n) time, and therefore use these
measures without changing the worst-case running time. We obtain a cost value cki,j for a
shortcut (pi, pj) ∈ G(C, εk) by minimizing the costs of all possible shortcuts in 〈pi, . . . , pj〉 at
lower scales recursively. The dynamic program is defined as follows:

cki,j =


1 if k = 1
1 + min

π∈
∏k−1

i,j

∑
(px,py)∈π

ck−1
x,y if 1 < k ≤ m

We use
∏k
i,j to denote the set of all paths in G(C, εk) from pi to pj .

The algorithm starts with constructing the shortcut graphs G(C, ε1), . . . , G(C, εm). For
most distance measures, the distance of shortcut (pi, pj) to the subcurve 〈pi, . . . , pj〉 can be
determined in O(j − i) time. For such measures, constructing these graphs naively takes
O(n3m) time. By employing the algorithm by Chan and Chin [3] we can compute it in
O(n2m) time for the Hausdorff distance.

We compute all cost values from scale k = 1 up to m by assigning a weight cki,j to each
shortcut (pi, pj) ∈ G(C, εk). For each shortcut (pi, pj) ∈ G(C, εk), we compute cki,j by finding
a shortest path π in G(C, εk−1) from pi to pj , minimizing

∑
(px,py)∈π c

k−1
x,y thereby.

We can use any shortest path algorithm, such as Dijkstra’s algorithm. On each scale k,
we need to run Dijkstra’s algorithm on O(n) source nodes of G(C, εk). This yields a worst
case running time of O(n3m), because Dijkstra’s algorithm runs in O(n2) time on weighted
shortcut graphs with integer weights.

We increment cki,j = ck−1
i,j + 1 for any shortcut (pi, pj) ∈ G(C, εk−1). By doing so, we

avoid recomputations of shortest paths and reuse cost values whenever necessary.
We construct the sequence of simplifications from Sm down to S1. First, we compute Sm

by returning the shortest path from p1 to pn in G(C, εm) using the computed cost values at
scale m. Next, we compute a shortest path P from pi to pj in G(C, εm−1) for all shortcuts
(pi, pj) ∈ Sm. Simplification Sm−1 is then constructed by linking these paths P with each
other. We build all other simplifications in this manner until S1 is constructed.

If (pi, pj) is a valid shortcut in G(C, εk−1) for any 1 < k ≤ m, then it follows that
cki,j = ck−1

i,j + 1. We prove this in [8].

Correctness

We prove that our simplification algorithm returns a valid and minimal solution for the
progressive simplification problem. Let 〈S1, . . . ,Sm〉 be a sequence of simplifications computed
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by our algorithm. By constructing the simplifications from scale m down to 1, it follows that
for any shortcut (pi, pj) ∈ Sk with 1 < k ≤ m, there exists a subsequence 〈pi, . . . , pj〉 v Sk−1,
and thus Sk v Sk−1. Furthermore, each simplification Sk has a maximum Hausdorff distance
εk to C since it contains only edges from G(C, εk).

It remains to show that we minimize
∑m
i=1 |Si|. We therefore define a set of shortcuts

Si,jk for any 1 ≤ i < j ≤ n and 1 ≤ k ≤ m as Si,jk = { (px, py) ∈ Sk | x ≤ i < j ≤ y }.
Thus, Si,jk includes all line segments of Sk that span the subcurve 〈pi, . . . , pj〉 with an

error of at most εk to C. |Si,jk | then is the number of shortcuts in simplification Sk covering
(pi, pj).

I Lemma 2.1. If the line segment (pi, pj) is part of simplification Sk, then the associated
cost value cki,j =

∑k
`=1 |S

i,j
` | for any 1 ≤ k ≤ m and 1 ≤ i < j ≤ n.

Proof. We show cki,j =
∑k
`=1 |S

i,j
` | by induction on k using the following induction hypothesis:

For any (px, py) ∈ Sk, it holds that ckx,y =
∑k
`=1 |S

x,y
` | (IH).

Base k = 1: Take any shortcut (pi, pj) ∈ S1. It follows that Si,j1 = {(pi, pj)}, and therefore
|Si,j1 | = 1. We deduce that c1

i,j = 1 =
∑k
`=1 1 =

∑k
`=1 |S

i,j
1 |.

Step k > 1: Take any line segment (pi, pj) ∈ Sk+1. Thus, we observe (pi, pj) ∈ G(C, εk+1),
Si,jk+1 = {(pi, pj)}, and |Si,jk+1| = 1.

Consider any 1 ≤ ` ≤ k and a path π ∈
∏k(pi, pj) such that

∑
(px,py)∈π |S

x,y
` | is minimal.

We now derive that π = Si,j` such that Sx,y` is minimal for all (px, py) ∈ π. Note that
π = Si,j` ⊆ G(C, ε`) ⊆ G(C, εk) since εk ≥ ε`. We observe that π is both in

∏`(pi, pj) and∏k(pi, pj). It thus follows that:

min
π∈
∏k

i,j

∑
(px,py)∈π

|Sx,y` | = min
π∈
∏`

i,j

∑
(px,py)∈π

|Sx,y` | (1)

From π = Si,j` it follows that Sx,y` ∩S
y,z
` = ∅ for any (px, py) and (py, pz) in π. Combining

Sx,y` for all (px, py) ∈ π yields a non-overlapping sequence of shortcuts from pi to pj . This
gives us:

|Si,j` | = min
π∈
∏`

i,j

∑
(px,py)∈π

|Sx,y` | (2)

We now derive the following:

ck+1
i,j

(IH)= 1 + min
π∈
∏k

i,j

∑
(px,py)∈π

k∑
`=1
|Sx,y` |

(1)= 1 +
k∑
`=1

min
π∈
∏`

i,j

∑
(px,py)∈π

|Sx,y` |
(2)= 1 +

k∑
`=1
|Si,j` |

|Si,j
k+1|={(pi,pj)}

=
k+1∑
`=1
|Si,j` |

J

I Theorem 2.2. Given a polygonal curve with n points in the plane, and 0 ≤ ε1 < . . . < εm,
a minimal progressive simplification can be computed in O(n3m) time under distance measures
for which the validity of a shortcut can be computed in O(n) time. This includes the Fréchet,
Hausdorff and area-based measures.

Proof. It remains to be proven that the combined size of the simplifications computed by
our algorithm is minimal. Let 〈S ′1, . . . ,S ′m〉 be a sequence of simplifications of a minimal
progressive simplification, and let 〈S1, . . . ,Sm〉 be the sequence computed by our algorithm.
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Let us derive the following:

min
π∈
∏m

1,n

∑
(px,py)∈π

cmx,y
(2.1)= min

π∈
∏m

1,n

∑
(px,py)∈π

m∑
k=1
|Sx,yk |

(1)=
m∑
k=1

min
π∈
∏`

1,n

∑
(px,py)∈π

|Sx,yk |
(2)=

m∑
k=1
|Sk|

Hence, the algorithm produces a simplification that minimizes the cumulative cost of
shortcuts in Sm. Because Si+1 v Si; the algorithm produces a set of simplifications in which
each simplification consists of edges from the corresponding shortcut graph such that the
cumulative number of vertices is minimized.

We further know that any minimal simplification S ′k is a path in G(C, εk) since it strictly
connects shortcuts with an error of at most εk.

We conclude that
∑m
k=1 |Sk| ≤

∑m
k=1 |S ′k| holds. J

3 Continuous and Weighted Progressive Simplification

We now consider two versions of the progressive simplification problem: the weighted progres-
sive simplification, where the objective is to minimize

∑m
k=1 wk|Sk| (with wk ≥ 0), thus the

weighted cumulative size of the simplifications; and the continuous progressive simplification,
which is an instance of the weighted progressive simplification where

∫m
0 |Si| dε is minimal.

For both problems, we can employ our preceding algorithm to compute simplifications progres-
sively. We first show how to adapt our algorithm for the weighted progressive simplification
problem; then we prove how to solve the continuous simplification problem.

For the weighted progressive simplification, we use the following cost function for each
shortcut (pi, pj) ∈ G(C, εk): if k = 1, cki,j = w1 else cki,j = wk + min

π∈
∏k−1

i,j

∑
(px,py)∈π c

k−1
x,y .

Note that the proofs above are trivially extended to apply to this updated cost function.
The main reason to consider the weighted case is that it helps us solving the continuous
progressive simplification problem.

I Theorem 3.1. Given a polygonal curve with n points in the plane, a minimal continuous
progressive simplification can be computed in O(n5) time under distance measures for which
the validity of a shortcut can be computed in O(n) time. This includes the Fréchet, Hausdorff
and area-based measures.

Proof. Consider the maximal errors ε(pi, pj) of all possible line segments (pi, pj) with
i < j with respect to the Hausdorff distance (or another distance measure). Then let
E := 〈ε1, . . . , ε(n

2)〉 be the sorted sequence of these errors based on their value. Let M be
the index of the corresponding εM in this sorted sequence E for the line segment (p1, pn);
thus εM = ε(p1, pn). Note that it is possible that M <

(
n
2
)
, but there is no reason to use

any ε > εM , since at this point we already have simplified the curve to a single line segment,
(p1, pn).

In a minimal-size progressive simplification it holds that Sε = Sεi
for all ε ∈ [εi, εi+1).

This can be shown by contradiction: if Sε would be smaller, we could decrease the overall
size by setting all Sε′ with ε′ ∈ [εi, ε] to Sε. Therefore, in a minimal continuous progressive
simplification we have

∫ εM

0 |Sε| dε =
∑M−1
k=1 (εk+1−εk)|Sεk

|. Thus, we can solve the continuous
progressive simplification problem by reducing it to the weighted progressive simplification
problem with O(n2) values εk. J
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4 Discussion

We present the first algorithm to compute minimum-complexity progressive simplifications
given a polygonal curve with n points in the plane. Our algorithm runs in O(n3m) time for
m discrete scales and O(n5) time for continuous scaling.

In the following, we survey further results from [8]. To facilitate progressive simplifications
on many scales, in [8] we present a technique for computing all ε(pi, pj) efficiently in
O(n2 logn) time instead of O(n3) time [3]. This is in particular useful for continuous
progressive simplification, where we would otherwise need to compute a quadratic number of
shortcut graphs, thus spending O(n4) time on computing shortcut graphs.

Furthermore, we developed a storage-efficient representation of the shortcut graph that
is capable of finding shortest paths in O(n logn) time, which is also applicable to any
simplification algorithm that uses a shortcut graph.

The experimental evaluation on a trajectory of a migrating griffon vulture shows that
our progressive algorithm is effective, yet too slow for larger trajectory data, and provides
similar cumulative simplification sizes as an optimal non-progressive simplification algorithm.
We discuss all experiments, algorithms, and results in [8].

As future work, it would be of interest to improve the running time of the minimal
progressive simplification algorithm to facilitate real-world application.
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