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Abstract
We consider a variant of the art gallery problem where all guards are limited to seeing to the
right inside a monotone polygon. We show that the problem is NP-hard if guards are restricted
to be at the vertices of the polygon.

1 Introduction

An instance of the art gallery problem takes as input a simple polygon P . If these edges do
not intersect other than at the vertices in V , then P is called a simple polygon. The edges
of a simple polygon give us two disjoint regions: the interior and exterior of the polygon.
For any two points p, q ∈ P , we say that p sees q if the line segment pq does intersect the
exterior of P . The art gallery problem seeks to find a set of points G ⊆ P such that every
point p ∈ P is seen by a point in G. We call this set G a guarding set. In the point guarding
problem, guards can be placed anywhere in the interior of P . In the vertex guarding problem,
guards are only allowed to be placed at V . The optimization problem is thus defined as
finding the smallest such G.

Art gallery problems are motivated by applications such as line of-sight transmission
networks in terrains, signal communications and cellular telephony systems and other
telecommunication technologies as well as placement of motion detectors and security cameras.

1.1 Previous Work
The question of whether guarding simple polygons is NP-hard was independently confirmed by
Aggarwal [2] and Lee and Lin [15]. They showed that the problem is NP-hard for both vertex
guarding and point guarding. Along with being NP-complete, Brodén et al. [6] and Eidenbenz
[8] independently proved that point guarding simple polygons is APX-hard. This means
that there exists a constant ε > 0 such that no polynomial-time algorithm can guarantee an
approximation ratio of (1+ ε) unless P=NP. Ghosh provides a O(logn)-approximation for the
problem of vertex guarding an n-vertex simple polygon in [10]. This result can be improved
for simple polygons using randomization, giving an algorithm with expected running time
O(nOPT 2 log4 n) that produces a vertex guard cover with approximation factor O(logOPT )
with high probability, where OPT is the smallest vertex guard cover for the polygon [7].
Bhattacharya et. al claim a constant factor approximation for guarding simple polygons
using vertex guards in [4]. Assuming integer coordinates and a specific general position,
Bonnet and Miltzow present an algorithm for finding a point guard cover with approximation
factor O(logOPT ) in [5]. King and Kirkpatrick provide a O(log logOPT )-approximation
algorithm for the problem of guarding a simple polygon with guards on the perimeter in [12].
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Additional Polygon Structure. Due to the inherent difficulty in fully understanding the
art gallery problem for simple polygons, there has been some work done guarding polygons
with some additional structure. A simple polygon P is x-monotone (or simply monotone)
if any vertical line intersects the boundary of P in at most two points. Let l and r denote
the leftmost and rightmost point of P respectively. Consider the “top half” of the boundary
of P by walking along the boundary clockwise from l to r. We call this the ceiling of P .
Similarly we obtain the floor of P by walking clockwise along the boundary from r to l.
Notice that both the ceiling and the floor are x-monotone polygonal chains, that is a vertical
line intersects it in at most one point. Krohn and Nilsson [14] give a polynomial-time constant
factor approximation algorithm for point guarding monotone polygons. They also proved
point guarding and vertex guarding a monotone polygon is NP-hard [13, 14].
α-Floodlights. Motivated by the fact that many cameras and other sensors generally are
not able to sense in 360 degrees, previous works have considered the problem when guards
have a fixed sensing angle α for some 0 < α ≤ 360. This problem is often referred to as
the α-floodlight problem. 180°-floodlights are sometimes referred to as half-guards. Some
of the work on this problem has involved proving necessary and sufficient bounds on the
number of α-floodlights required to guard (or illuminate) an n vertex simple polygon P ,
where floodlights are anchored at vertices in P and no vertex is assigned more than one
floodlight, see for example [17, 9, 16]. From an approximation complexity standpoint, it is
known that computing a minimum cardinality set of α-floodlights to illuminate a simple
polygon P is APX-hard for both the point guard and vertex guard variants [1, 3]. Other
works in this area include considering the problem where α < 180°.

1.2 Our Contribution
In this paper, we consider guarding monotone polygons with half-guards that can see in one
direction, namely to the right. Let p.x denote the x-coordinate of a point p. We modify the
definition of sees to be the following: a point p sees a point q if the line segment pq does not
intersect the exterior of P and p.x ≤ q.x. A constant factor approximation for this problem
was given in [11].

Our main result is to show that vertex guarding a monotone polygon with half-guards is
NP-hard. Krohn and Nilsson [14] obtained a similar NP-hardness result using full guards,
but guards were required to see in all directions. The reduction could not be trivially tweaked
to show the half-guard problem is NP-hard.

In Section 2, we provide a high level overview that vertex guarding a monotone polygon
with half-guards is NP-hard. Section 3 provides the details of the proof.

2 NP-Hardness for Vertex Guards

The reduction is from 3SAT. A 3SAT instance (X,C) contains a set of Boolean variables,
X = {x1, x2, . . . , xn} and a set of clauses, C = {c1, c2, . . . , cm}. Each clause contains three
literals, ci = (xj ∨ xk ∨ xl). A 3SAT instance is satisfiable if a satisfying truth assignment for
X exists such that all clauses ci are true. We show that any 3SAT instance is polynomially
transformable to an instance of vertex guarding a monotone polygon using half-guards.
We construct a monotone polygon P from the 3SAT instance such that P is guardable by
K = (2 +m)n+ 1 or fewer guards if and only if the 3SAT instance is satisfiable.

The high level overview of the reduction is that certain vertices represent the truth values
of the variables in the 3SAT instance. All starting patterns are placed on the ceiling on
the left side of the polygon, see Figure 1. We assume that all guards can see only to the
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right. In these starting patterns, one must choose one of two guardset locations in order to
guard distinguished vertices for that particular pattern. A distinguished vertex is a vertex
that is seen only by a small number of specific vertices. In each variable pattern, similar
to a starting pattern, certain vertices will represent a truth assignment of true and certain
vertices will represent a truth assignment of false for some variable. This information is
then “mirrored rightward” going from the ceiling, to the floor and then back to the ceiling
such that there is a consistent choice of the xj vertices or the xj vertices for each variable.
This differs from previous results where variable information was mirrored from the “left
side” of the polygon to the “right side” of the polygon and then back to the left side. A
distinguished clause vertex is placed to the right of the variable patterns such that only the
vertices representing the literals in the specific clause can see the clause distinguished vertex.
A high level example of the entire reduction is shown in Figure 1.

I Theorem 1. Finding the smallest vertex guard cover for a monotone polygon using half
guards is NP-hard.

3 Hardness Details

Figure 1 A high level overview of the reduction.

Starting Pattern: This pattern appears along the left side of the monotone polygon a total
of n times, one corresponding to each variable, see Figure 2. In each pattern, there are 3
distinguished vertices: {h4, h10, h13}. These vertices are seen by a specific subset of vertices
in each starting pattern. It is important to note that no other vertex outside of this starting
pattern sees these distinguished points. Let vl(p) be the set of vertices that see p. Note that
all vertices in vl(p) lie to the left of p or on the vertical line that contains p.
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Figure 2 A starting pattern.

Let’s assume we are considering the starting pat-
tern for variable xj . vl(h10) = {h10, h9, xj}, vl(h13) =
{h12, h13, xj}, vl(h4) = {h3, h4, h9, h11, h12, h14}. One
should note that one guard does not see all of the distin-
guished points. Two guards are necessary and sufficient.
The only possible combinations of vertex guards that see
each distinguished vertex are: {xj , h12}, {xj , h9}. If the
second option is chosen, then it appears that the xj vertex
is unseen. However, the polygon is drawn in such a way
such that the leftmost point in the polygon sees xj for all
j, see Figure 1.
Variable Pattern: On the floor of the polygon to the
right of the n starting patterns are the first n variable
patterns, one for each variable, that verify and propagate

the assigned truth value of each variable. The variables are in reverse order from the initial
starting pattern. The variables are ordered from x1, x2, . . . , xn in the starting patterns from
left to right. However, the variables are ordered from xn, xn−1, . . . , x1 in the first grouping
of variable patterns from left to right. When the variables are “mirrored” rightward again to
the ceiling, the ordering will again reverse. See Figure 1 for a high level overview.
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A single variable pattern is shown in Figure 4. Similar to the starting pattern, there are 3
distinguished vertices located at {v2, v5, v7}. The visibility for these points within this pattern
are as follows: vl(v2) = {v1, v2, xj , v6, xj , v8}, vl(v5) = {v5, xj}, vl(v7) = {v7, xj}. It should
be noted that v2 is not seen by another vertex outside of this pattern. One guard within this
pattern is necessary to guard this distinguished vertex. Along with these visibilities, v5 is
seen by the xj vertex in the starting pattern representing xj . v5 does not see the xj vertex
from the starting pattern because it is angled in such a way that its line of sight is “above”
the xj vertex in the starting pattern. v7 is seen by the xj vertex in the starting pattern
representing xj . The reason it is not seen by xj is because the xj vertex in the starting
pattern is being blocked by h7 in the starting pattern. Figure 3 shows how the starting
patterns are connected to variable patterns.

xj

xj

h7

Figure 3 Starting pattern
interacting with first variable
gadget.

Variable patterns are connected to other variable patterns
in a similar fashion. Consider a set of n variable patterns on
the floor representing one mirroring of the variables. At the far
right of these patterns is a vertex called c2. This vertex will
block our xj and xj vertices from seeing too far to the right.
Consider a single variable xj being mirrored from the floor to
the ceiling. In Figure 5, the ceiling variable pattern is simply
an inverted floor variable pattern. The v5 vertex in the ceiling
variable pattern sees the xj vertex in the floor variable pattern
and not the xj vertex in the floor variable pattern because the
angle of the polygon blocks it. v7 in the ceiling variable pattern
sees the xj vertex in the floor variable pattern but not the xj vertex in the floor variable
pattern because it is being blocked by c2.

v1

v2

v3

xj

v5

v6
xj

v7

v8

Figure 4 Variable pattern xj .

Different variable patterns that represent different
variables will not affect each other. For example, take the
starting pattern for an arbitrary xi and call the vertices
that see the distinguished vertices in that starting pattern
the Xi set. Now consider the variable pattern for xi

and look at the variable patterns to the left of xi on the
floor. None of Xi can see the distinguished vertices of
variable patterns to the left of the variable pattern for
xi because the distinguished vertices in those variable
patterns are angled too far to the “right.” None of Xi

can see distinguished vertices of variable patterns to the
right of the variable pattern for xi because h7 or h16 is
blocking them from seeing too far right, see Figure 2.

In a similar fashion, variable patterns will not affect other variable patterns when mirroring,
see Figure 6. The variable pattern on the ceiling for xi will not be seen by the previous
variable pattern on the floor for xi+1 because the angle of the polygon in the variable pattern
for xi on the ceiling is too steep. In other words, the distinguished vertices for xi on the
ceiling will not be able to be seen from that far left. The vertices in the variable pattern on
the ceiling for xi will not be seen by the previous variable pattern on the ceiling for xi−1
because the c2 vertex will block them.
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xj xj c2

xj xj

Figure 5 An example of
a variable being mirrored.

We allow one guard to be placed in a single variable pattern.
No single guard is able to see all of the distinguished points.
Therefore, one must rely on previously placed guards to help see
at least 1 of the distinguished points in the variable pattern. If
we choose xj in the starting pattern or in some previous variable
pattern, we see the v7 vertex in the subsequent variable pattern.
The only guard in the variable pattern that sees v2 and v5 is
xj . If we choose xj in the starting pattern or in some previous
variable pattern, the distinguished points that are unseen are v2 and v7 in the subsequent
variable patterns and the only guard in the variable pattern that sees them is xj . In this
second case, xj is seen by that previously placed guard that also sees v5.

c2
xi

Figure 6 An example of
multiple variables being

mirrored.

Clauses: For each clause c in the boolean formula, there is a
sequence of variable patterns x1, . . . , xn along either the ceiling
or the floor of the polygon. Immediately to the right of the
variable patterns exists a clause pattern. A clause pattern
consists of one vertex such that the vertex is only seen by the
variable patterns corresponding to the literals in the clause; see
Figure 7. The distinguished vertex of the clause pattern is the
c3 vertex. This vertex is seen only by specific vertices in its
respective sequence of variable patterns.

c3

c2

x1 x1

Figure 7 A clause gadget
to the right of x1.

To see how a clause is placed in the polygon, consider Figure
8 that represents the clause x1 ∨ x3 ∨ x5. Initially, all xi and xi

vertices in their respective variable patterns are blocked from
seeing the c3 clause point by their respective v8 vertex. Consider
the example clause of x1 ∨ x3 ∨ x5. In the case of x1 and x5,
their respective v8 vertices have been lowered just enough such
that the v8 vertex is no longer blocking them from seeing c3.
However, v8 is still blocking xj from seeing c3. In the case of x3,
the v8 guard is lowered enough such that x3 sees c3. To keep x3 from seeing c3, we raise the
v6 vertex just enough so it blocks x3 from c3. It should be noted that these small tweaks do
not affect the mirroring of variable truth values. None of the xj or xj vertices were moved.
Their position with respect to the key blocker of c2 is the same. Therefore, c2 still blocks
each respective vertex from seeing too far to the right.

v5 v4 v3 v2 v1
c3

Figure 8 The clause
(v1 ∨ v3 ∨ v5).

Putting it all together: We choose our truth value for
each variable in the starting variable patterns. The truth
values are then mirrored in turn between variable patterns
on the ceiling and the floor. In the example of Figure 8
the 3SAT clause corresponds to c = x1 ∨ x3 ∨ x5. Hence,
a vertex guard placement that corresponds to a truth
assignment that makes c3 true, will have at least one
guard on x1, x3 or x5 and can therefore see vertex c3

without additional guards. We still have variables x2 and x4 on the polygon, however, none
of them or their negations see the vertex c3. They are simply there to transfer their truth
values in case these variables are needed in later clauses.

The monotone polygon we construct consists of 17n + (9n + 3)m + 2 vertices. Each
starting variable pattern has 17 vertices, each variable pattern 9 vertices, the clause pattern
has 3 vertices, plus 2 vertices for the leftmost and rightmost points of the polygon. Exactly
K = (2 +m)n+ 1 guards are required to guard the polygon. 2 guards are required to see the
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distinguished points of the starting patterns (2n) and 1 guard is required at every variable
pattern, of which there are (mn) of them. Lastly, since a starting pattern cannot begin at the
leftmost point, a guard is required at the leftmost vertex of the polygon. If the 3SAT instance
is satisfiable, then guards are placed at vertices in accordance to whether the variable is true
or false in each of the sequences of variable patterns. Each clause vertex is seen since one of
the literals in the associated clause is true and the corresponding vertex has a guard.
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