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Abstract
We use the concept of production matrices to show that there exist sets of n points in the plane
that admit Ω(41.77n) crossing-free geometric graphs. This improves the previously best known
bound of Ω(41.18n) by Aichholzer et al. (2007).

1 Introduction

A geometric graph on a set S of n labeled points in the Euclidean plane is a graph with vertex
set S in which an edge is represented by a straight line segment between the corresponding
vertices. In this work, we are interested in the number of crossing-free geometric graphs
on a set of n points, i.e., geometric graphs in which all segments are interior-disjoint. It is
easy to see that, for any n points, this number is at least exponential in n. In 1982, Ajtai
et al. [2] showed that the upper bound on this number is also exponential. Currently, it is
known that any set of n points admits not more than O(187.53n) crossing-free graphs [13].
While it is known that the number of crossing-free graphs is minimized if the point set is
in convex position [1], not much is known about sets maximizing this number. The best
known example by now is the so-called double-zig-zag chain [1], with Ω(41.18n) crossing-free
graphs. As usual, such lower-bound constructions rely on describing a family of point sets
with convenient structural properties. In this paper, we improve this bound by showing that
another well-known family of point sets, a generalization of the double-zig-zag chain, admits
Ω(41.77n) crossing-free graphs. This generalization has also been used for similar bounds on
triangulations [5], but the number of general crossing-free graphs on this configuration was
not known. The method that allows us to analyze these point sets is the use of production
matrices, which we consider interesting on its own.

This method works by implicitly arranging the graphs in a generating tree, describing a
rule to produce a graph from one on fewer points. Consider a partition of the set of graphs
on i ≤ n points into n parts according to their degree at a special root vertex, and represent
the cardinality of each part in a vector ~vi. The first element of ~vi is the number of graphs
with the root vertex having degree 0, the second one that of graphs with root vertex with
degree 1, and so on. We then devise how to generate graphs on i + c points with a new root
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vertex from the graphs counted in ~vi, and again give the cardinalities of their parts in a
vector ~vi+c (for some small positive number c). Our point sets will allow us to devise an n×n

production matrix A such that ~vi+c = A~vi. We obtain the number of graphs on n vertices in
~vn = Aj~vn0 from the graphs on a constant number n0 of vertices, with j = (n− n0)/c. We
can then use the Perron–Frobenius theorem to obtain a lower bound on the elements of Aj

when j tends to infinity by approximating the largest eigenvalue of the matrix. This gives us
a lower bound on the number of crossing-free graphs on such a point set.

For points in convex position, generating trees have been described for triangulations [10],
spanning trees [6], and other crossing-free graphs [7]. They are the basis of the ECO
method [3]. The term production matrix was introduced in [4], a similar concept is known
as AGT matrix [11]. Together with Seara, the authors already addressed characteristic
polynomials of production matrices for geometric graphs [8].

In the next section, we define the family of point sets used, and provide production
matrices to count subgraphs in its different parts. In Section 3, we argue that bounds on the
Perron roots of the matrices give us a lower bound on the number of crossing-free graphs.

2 Generalized double zig-zag chains and the new lower bound

Basically, our point sets will be described as sequences (s1, . . . , sn). Consider any graph G

drawn on the first i + 1 vertices. If we replace every edge sjsi+1 by the edge sjsi for all
j ≤ i + 1 (and disregard duplicates and loops), we obtain a graph G′ that we call the parent
of G. Our sets will be such that G′ is crossing-free. In the other direction, we can select
some edges incident to si in G′ and replace them by edges incident to si+1 in a way that G′

is the parent of the new graph G̃, and such that G̃ is crossing-free. We say that G′ produces
G̃, and the edges incident to si+1 are inherited. The degree of si in G determines how many
graphs can be produced from it. For our construction, si is thus the root vertex, and the
vector ~vi contains the number of graphs with root vertex si of degree j, for 0 ≤ j ≤ n.
While this captures the basic idea of our proofs, we will actually have to use more involved
constructions, in which we add a constant number of points at once and add edges, some
inherited, and some not, in a well-defined, local way.

2.1 The generalized double-zig-zag chain
Let Zk be a set of n = 2z points with z ≡ 1 (mod (k + 1)) that is arranged in the following
way. Consider two x-monotone circular arcs facing each other as in Fig. 1, such that each
point on one arc can see each point on the other arc (where two points can see each other if
the interior of the line segment connecting them does not intersect one of the arcs). On each
arc, we place dn/(k + 1)e points. Consider the segment between two consecutive such points
s and t on the lower arc. We now place a “flat” circular arc between s and t with circle
center above the arc, and place k points on it; here, flat means that moving the center of the
arc up (and thus the k points on it) does not change the set of crossing-free graphs drawable
on Zk. We call the group formed by s, t, and the k points in between them a pocket. We
place k such points between each pair of consecutive points of the lower arc (obtaining the
lower chain), and also in an analogous way on the upper arc (resulting in the upper chain).
See Figure 1 for an example of Z2, where each pocket consists of four points.

The points along the lower arc, including pockets, are labeled, from left to right, p1, . . . , pz,
and those on the upper arc q1, . . . , qz. Observe that the segment between any two consecutive
points pipi+1 is not crossed by any other segment between two points of the set, and thus
can co-exist with any other edge in a crossing-free graph. For this reason, these edges will be
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Figure 1 A generalized double-zig-zag chain Z2. The arcs for the construction are dotted, the
solid edges are not crossed by any segment between two points.
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Figure 2 Part of an almost convex chain with two interior vertices (i.e., k = 2). Vertices pi−2

and pi+1 are leading vertices. The other vertices are regular. Since pi+2 is a regular vertex, any
edge incident to pi+2 present in a plane graph can be obtained by inheriting an edge from the
previous vertex pi+1. The example shows pi+2 inheriting two edges from pi+2. The last inherited
edge (dashed) may also be kept at pi+1 without influencing the degree of pi+2.

disregarded first in our counting, and will be considered in the end by multiplying by a factor
of 2n. Also note that the construction consists of two almost convex polygons [9]. Therefore
we focus on counting the graphs with edges below the path (p1, . . . , pz) (and, symmetrically,
above the path (q1, . . . , qz)) called the outer part, and edges which connect vertices of the
two paths, which are in the inner part. Our bound is obtained on Z2.

2.2 Production matrices for the outer part
In this section we deduce matrices to count the number of plane graphs with edges below
the path (p1, . . . , pz), as in Figure 2. Recall that a chain is composed of a series of pockets;
each pocket forms a reflex chain of four vertices. The first and last vertices are convex, while
the two middle ones are reflex. The first (say, with smallest index) reflex vertex is called the
leading vertex of the chain. All other vertices we call regular.

We will present a matrix to count the number of plane graphs after adding one whole
pocket. This matrix will be the product of three matrices, one related to each new vertex
of the pocket pi+1, pi+2, pi+3 (recall that pi coincides with the last vertex of the previous
pocket).

2.2.1 Matrix for regular vertices
Consider a regular vertex like pi+2 (refer to Figure 2). Assume that the vector ~vi+1, containing
the number of plane graphs for each possible degree of pi+1, is known. The plane graphs
where pi+2 has degree 0 are equal to all the graphs counted in ~vi+1. This gives a first row of
1s in the matrix. If pi+2 has degree 1, it needs to inherit one edge from pi+1. If the degree of
pi+1 is 0, this is not possible, thus we get a zero in the first column of the second row. As
soon as pi+1 has degree at least 1, pi+2 can inherit one edge from pi+1. Moreover, there is
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R =


1 1 1 1 1 1
0 2 2 2 2 2
0 0 2 2 2 2
0 0 0 2 2 2
0 0 0 0 2 2
0 0 0 0 0 2

 C =


1 1 1 1 1 1
1 2 2 2 2 2
0 1 2 2 2 2
0 0 1 2 2 2
0 0 0 1 2 2
0 0 0 0 1 2

 X =


0 0 0 0 0 0
2 1 1 1 1 1
3 4 3 3 3 3
1 4 5 4 4 4
0 1 4 5 4 4
0 0 1 4 5 4


Table 1 Matrices for computing the outer part, for n = 6.
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Figure 3 When edges pi+1pi−2 and pi+1pi−3 are not included, pi+1 can inherit edges from pi

(left). The example shows pi+1 inheriting two edges from pi. The last inherited edge (dashed)
may be kept without influencing the degree of pi+1. The case when edges pi+1pi−2 or pi+1pi−3 are
included is shown to the right. In the example pi+1pi−2 is included, and pi+1 inherits two edges
from pi−2. The dashed edge can be optionally kept.

the option of keeping (a copy of) the inherited edge incident to pi+1 without creating any
crossing. In total, for each graph in which pi+1 has degree at least one, that gives two ways
for making pi+2 have degree 1. Thus the rest of the row is made of 2s.

The following rows are analogous, shifted by one column every time: in order for pi+2 to
have degree k, k edges need to be inherited from pi+1, thus the minimum degree for pi+1 is k.
Since we can always choose to keep the last inherited edge incident to pi+1, we get 2 options
every time. This results in matrix R in Table 1. Exactly the same matrix applies to pi+3.

2.2.2 Matrix for leading vertices
Leading vertices like pi+1 in Figure 2 require a different approach, as there are edges incident
to pi+1 that cannot be obtained by inheriting from pi (i.e., edges pi+1pi−1, pi+1pi−2, pi+1pi−3,
as pipi−1, pipi−2, pipi−3 are not in the outer part). To take this into account, we consider
two cases, depending on whether edges pi+1pi−2 or pi+1pi−3 are included or not.
Case 1: Edges pi+1pi−2 and pi+1pi−3 are not included. When pi+1pi−2 and pi+1pi−3
are not included, pi+1 can inherit edges from pi (notice that all edges from pi cross pi+1pi−2
and pi+1pi−3). See Figure 3 (left).

The plane graphs where pi+1 has degree zero are, as before, all the ones counted in ~vi,
thus this gives a first row of 1s in the matrix. If pi+1 has degree one, it either inherited one
edge from pi or is connected to pi−1. Thus if pi has degree zero, there is only one possibility:
using edge pi+1pi−1. That gives a 1 in the first column of the second row. As soon as pi has
degree at least one, pi+1 can inherit one edge from pi, with the additional option of keeping
the inherited edge incident to pi; note that in this case using also pi+1pi−1 is not considered
because that would increase the degree of pi+1 by one. In total, for each possible degree of pi,
that gives two ways for making pi+1 have degree one. Thus the rest of the row is made of 2s.

The following rows are analogous. Consider the kth row (k ≥ 3). If pi has degree k − 2
or less, it is impossible for pi+1 to obtain degree k. When pi has degree k − 1, there is one
possibility: to inherit all edges incident to pi and add edge pi+1pi−1. If pi has degree at
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Q =


6 0 0 0 0 0
10 6 0 0 0 0
5 10 6 0 0 0
1 5 10 6 0 0
0 1 5 10 6 0
0 0 1 5 10 6

 F =


2 1 1 1 1 1
0 3 2 2 2 2
0 0 3 2 2 2
0 0 0 3 2 2
0 0 0 0 3 2
0 0 0 0 0 3


Table 2 Matrices for computing the inner part, for n = 6.

least k, then pi+1 can inherit k edges from pi, with the additional option of keeping the last
inherited edge incident to pi, giving two options for every possible degree of pi. This leads to
the matrix C in Table 1.
Case 2: At least one of pi+1pi−2 and pi+1pi−3 is included. In this case we proceed
essentially by using pi−2 as “previous” vertex, but considering also the three special edges
{pi+1pi−1, pi+1pi−2, pi+1pi−3}, which cannot be inherited from pi−2. Refer to Figure 3 (right).
We defer the details to the full version. The result for this case is matrix X, shown in Table 1.

2.3 Production matrices for the inner part
The number of graphs on the inner part can be bounded similar to [1]. However, in the
full version, we show how to obtain a lower bound using production matrices, based on two
additional matrices, Q and F shown in Table 2.

2.4 Putting things together
The final production matrix for the outer part is obtained by combining matrices R, C, and
X. For each of the two regular vertices it is enough to multiply the previous vector by R.
For the leading vertex we need to combine the two cases, thus we need to add up C and
X. However, the reasoning in X uses pi−2 instead of the previous vertex pi. Thus prior
to multiplying by X, we need to recover the vector corresponding to pi−2: for this we first
multiply twice by R−1. Thus the final combined matrix for the outer part is R2(C +X ·R−2).
In the full version we show that a lower bound on the number of plane graphs in the inner
part is given by the combined matrix (FFR + 2R)Q.

3 A lower bound using the eigenvalue

All our production matrices are non-negative. The zero entries are exactly those below a
sub-diagonal. Thus, they are irreducible and primitive (Frobenius’ test for primitivity holds,
cf. [12, p. 678]). Let A be a production matrix of fixed size m×m. We know therefore that

lim
n→∞

(
A

r

)n

= ~p~qT

~qT ~p
> 0 ,

where ~p and ~q are the Perron vectors of A and AT , respectively, and r is the Perron root (i.e.,
largest eigenvalue) of A [12, p. 674]. As these values are constant and each entry of An is in
Θ(rn), this provides a means of obtaining the asymptotic number of elements constructed
by the production matrix: multiplying the initial degree vector with Ai gives the degree
vector for ci < m points. However, there is one caveat. The exponent n tends to infinity, and
we thus cannot use this to argue about matrices of size n. The matrix size must be fixed.
However, for obtaining lower bounds, we can take the nth power of a (m×m) production
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matrix for some constant m to obtain a lower bound on the number of graphs on n vertices.
In the first iteration where we add a point larger than the size of the matrix, we do not count
some graphs with high degree at the last point. These are also not taken into account in the
next iteration etc., where we also produce graphs of smaller degree at the last point. Still, the
degree vector gives a lower bound on the number of graphs. We may thus obtain the Perron
root r of a constant-size production matrix and know that the number of graphs on n vertices
in that class is in Ω(rn) for all our considered instances. For the matrix R2(C + X ·R−2), the
largest eigenvalue is at least 124.22239555, when taking the constant-size production matrix
large enough. For the inner part, the largest eigenvalue of the matrix (FFR + 2R)Q is at
least 5380.90657056 (see the full version). Accounting for the 2n ways to add edges along the
chains, we get Ω(( 3

√
124.22239555 · 6

√
5380.90657056 · 2)n) = Ω(41.773981586n) crossing-free

graphs (eigenvalues computed using Mathematica 11.2 with m = 1024).

4 Conclusion

We slightly improved the current lower bound on the maximum number of crossing-free
geometric graphs on n points using production matrices. Applying production matrices to
families of well-structured point sets appears to be an easy way of obtaining bounds for
certain types of graphs (e.g., triangulations). It is also easy to mix the pocket sizes. However,
our current approach results in an increasing number of cases when considering generalized
double-zig-zag chains with larger pockets.
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