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Abstract
Coxeter triangulations are triangulations of Euclidean space based on a single simplex. By this we
mean that given an individual simplex we can recover the entire triangulation of Euclidean space
by inductively reflecting in the faces of the simplex. In this paper we establish that the quality
of the simplices in all Coxeter triangulations is O(1/

√
d) of the quality of regular simplex. We

further investigate the Delaunay property (and an extension thereof) for these triangulations. In
particular, one family of Coxeter triangulations achieves the protection O(1/d2). We conjecture
that both bounds are optimal for triangulations in Euclidean space.

1 Introduction

1.1 Motivation and related work
Well shaped simplices are of importance for various fields of application such as finite element
methods and manifold meshing. Poorly-shaped simplices may induce various problems in
finite element method, such as large discretization errors or ill-conditioned stiffness matrices.
A simplex is well shaped if its quality is good, which can be expressed in terms of various
quality measures. Some examples of quality measures are: the ratio between minimal height
and maximal edge length ratio called thickness, the ratio between volume and a power of the
maximal edge length called fatness, and the inradius-circumradius ratio. Bounds on dihedral
angles can also be included in the list of quality measures. We stress that there are many
other quality measures in use and authors often find useful to introduce measures that are
specific to whatever problem they study. Finding triangulations, even in Euclidean space, of
which all simplices have good quality is a non-trivial exercise in arbitrary dimension.

In this paper we shall discuss Coxeter triangulations.

I Definition 1.1. A monohedral1 triangulation is called Coxeter triangulation if all its
d-simplices can be obtained by consecutive reflections through facets of the d-simplices in
the triangulation.

There are four families of Coxeter triangulations and five exceptional ones. All three
two-dimensional Coxeter triangulations and the simplices of the three three-dimensional
Coxeter triangulations are illustrated in Figure 1. For an extended introduction we refer
to the pioneering paper on reflection groups by Coxeter [10] and the classical book on Lie
groups and algebras by Bourbaki [5]. Another classical reference book is “Sphere packings,
Lattices, and Groups” by Conway and Sloane [9].

To our knowledge, these are the triangulations with the best quality in arbitrary dimension.
In particular, all dihedral angles of simplices in Coxeter triangulations are 45◦, 60◦ or 90◦,
with the exception of the so-called G̃2 triangulation of the plane where we also can find an

1 A triangulation of Rd is called monohedral if all its d-simplices are congruent.
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Ã2 C̃2 G̃2

Ã3 B̃3 C̃3

Figure 1 Above: Coxeter triangulations in R2. Below: simplices of Coxeter triangulations in R3

represented as a portion of a cube.

angle of 30◦. This is a clear sign of the exceptional quality of the simplices involved. Our
goal is to exhibit the extraordinary properties of Coxeter triangulations and promote their
use in the Computational Geometry community.

The notion of Coxeter triangulations was introduced to the computational geometry
community by Dobkin, Wilks, Levy and Thurston in [11], where they tackled the problem of
contour-tracing in Rd. The choice of Coxeter triangulations was motivated by the following
requirements:

It should be easy to find the simplex that shares a facet with a given simplex.
It should be possible to label the vertices of all the simplices at the same time with indices
0, . . . , d, in such a way that each of the d+ 1 vertices of a d-simplex has a different label.
The triangulations should be monohedral, meaning that all simplices are congruent.
All simplices should be isotropic, meaning that they should be roughly the same in all
directions.

Coxeter triangulations exactly fit these requirements. After comparing the inradius-circumradius
ratio of the simplices in the triangulations Dobkin et al. chose the Ãd Coxeter triangulation
as the underlying triangulation for their contour-tracing algorithm.

The same Ãd Coxeter triangulation appeared in the works by Adams, Baek and Davis [1]
and Choudhary, Kerber and Raghvendra [7], among others.

The three-dimensional Coxeter triangulation Ã3 has attracted attention in the 3D mesh
generation community for the high-quality of its simplices. The vertex set of this triangulation
is also known as the body-centred cubic lattice, or bcc lattice, and its tetrahedron is sometimes
referred as Sommerville’s type II tetrahedron or simply bcc-tetrahedron. This tetrahedron
has been shown to be the best-conditioned space-filling tetrahedron out of all space-filling
tetrahedra used in the 3D mesh community by a number of conditioning measures.

Apart from quality, we are also interested in the stronger requirement of protection [2],
which is specific to Delaunay triangulations. It has been proven that protection guarantees
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good quality [2]. Some algorithms were introduced for the construction of a protected set,
such as the perturbation-based algorithms in [3] and [4]. Both of these algorithms take a
general ε-net in Rd as input and output a δ-protected net with δ of the order just Ω(2−d2

ε).
The d-dimensional Coxeter triangulation Ãd provides us another extremity. As we will see in
the following, this highly-structured triangulation is Delaunay with protection O( 1

d2 ε). This
protection value is the greatest in a general d-dimensional Delaunay triangulation we know.

The Coxeter triangulations we study are intricately linked with root systems and root
lattices. Delaunay triangulations of the root lattices have been studied by Conway and
Sloane [9] and Moody and Patera [12]. These triangulations are different from the ones we
study: the vertex sets we use are not necessarily lattices (see Theorem 4.1).

1.2 Contribution
In this paper we give explicit expressions of a number of quality measures of Coxeter
triangulations for all dimensions, presented in Section 4. This is an extension of the work
by Dobkin et al. [11] who presented a table of the values of the inradius-circumradius ratio
for the Coxeter triangulations up to dimension 8. We also provide explicit measures of the
corresponding simplices in the full version of the current paper [8, Appendix B], allowing the
reader to compute quality measures other than the ones listed.

In Section 2, we state the theorem of optimality of the regular d-simplex for each of the
chosen quality measures. This theorem justifies the definition of the normalized versions of
these quality measures.

In Section 3, we established a criterion to identify if any given monohedral triangulation
is Delaunay.

The proofs of the statements can be found in the full version [8], as well as extra
introductory material.

1.3 Future work
The simplex qualities, defined in Definition 2.1, of the four families of Coxeter triangulations
behave as O(1/

√
d) in terms of dimension. We conjecture that this quality is optimal for a

general space-filling triangulation in Rd. In addition, the d-dimensional Coxeter triangulation
Ãd has the relative Delaunay protection O(1/d2). We further conjecture that it is optimal for a
general space-filling triangulation in Rd. These conjectures are motivated by the extraordinary
lower and upper bounds on the dihedral angles of simplices in Coxeter triangulations; they
are precisely 45◦, 60◦ or 90◦ for the four families. Moreover the circumcentres of the simplices
of Ãd lie very far inside the simplices.

2 Quality definitions

The quality measures we are interested in, we call aspect ratio, fatness, thickness and radius
ratio. Their formal definitions are as follows:

I Definition 2.1. Let h(σ) denote the minimal height, r(σ) the inradius, R(σ) the cir-
cumradius, vol(σ) the volume and L(σ) the maximal edge length of a given d-simplex
σ.

The aspect ratio of σ is the ratio of its minimal height to the diameter of its circumscribed
ball: α(σ) = h(σ)

2R(σ) .
The fatness of σ is the ratio of its volume to its maximal edge length taken to the power
d: Θ(σ) = vol(σ)

L(σ)d .
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The thickness of σ is the ratio of its minimal height to its maximal edge length: θ(σ) =
h(σ)
L(σ) .
The radius ratio of σ is the ratio of its inradius to its circumradius: ρ(σ) = r(σ)

R(σ) .

To be able to compare the presented quality measures between themselves, we will
normalize them by their respective maximum value. As we show, all of these quality measures
are maximized by regular simplices.

I Theorem 2.2. Out of all d-dimensional simplices, the regular d-simplex has the highest
aspect ratio, fatness, thickness and radius ratio.

For a quality measure κ we will define the normalized quality measure κ̂, such that for
each d-simplex σ, κ̂(σ) = κ(σ)

κ(∆) , where ∆ is the regular d-simplex. Theorem 2.2 ensure that
the quality measures ρ̂, α̂, θ̂ and Θ̂ take their values in [0, 1] surjectively.

3 Delaunay criterion for Coxeter triangulations

Many of the provably good mesh generation algorithms are based on Delaunay triangulations
[6]. This motivated us to investigate if Coxeter triangulations have the Delaunay property.
We established the following criterion, extending the work by Rajan [13] on triangulations
consisting of self-centered simplices.

I Definition 3.1. A simplex is called self-centred if it contains its circumcentre inside or on
the boundary.

I Theorem 3.2. A Coxeter triangulation is Delaunay if and only if its simplices are self-
centred.

Because some of the triangulations that interest us here are Delaunay, we will also look
at their protection value.

I Definition 3.3. The protection of a d-simplex σ in a Delaunay triangulation on a point
set P is the minimal distance of points in P \ σ to the circumscribed ball of σ:

δ(σ) = inf
p∈P\σ

d(p,B(σ)), where B(σ) is the circumscribed ball of σ.

The protection δ of a Delaunay triangulation T is the infimum over the d-simplices of the
triangulation: δ = infσ∈T δ(σ). A triangulation with a positive protection is called protected.

We define the relative protection δ̂(σ) of a given d-simplex σ to be the ratio of the
protection to its circumscribed radius: δ̂(σ) = δ(σ)

R(σ) .
The relative protection δ̂ of a Delaunay triangulation T is the infimum over the d-simplices

of the triangulation: δ̂ = infσ∈T δ̂(σ). We can determine if a Coxeter triangulation is not
protected with the help of the following theorem.

I Theorem 3.4. 1. A Delaunay triangulation of Rd where a simplex with maximal circum-
radius contains the circumcentre on its boundary is not protected.

2. If a simplex of a Coxeter triangulation contains the circumcentre on its boundary, then
the triangulation is non-protected Delaunay.

3. If a simplex of a Coxeter triangulation contains the circumcentre strictly inside, then the
triangulation is Delaunay with a non-zero protection.
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4 Main result

In this section we present a table with explicit expressions of quality measures of Coxeter
triangulations. In addition to that we also identify which Coxeter triangulations are Delaunay
and give their protection values. Finally, we identify which Coxeter triangulations have
vertex sets with lattice structure.

I Theorem 4.1. The normalized fatness, aspect ratio, thickness and radius ratio of simplices
in Coxeter triangulations, as well as Delaunay property are:

Fatness Θ̂1/d Aspect Ratio α̂ Thickness θ̂ Radius Ratio ρ̂ Delaunay?
Ãd,

d odd
23/2

(√d+1)1+2/d

√
6d

(d+1)(d+2)

2
√

d
d+1

√
6d

(d+1)(d+2) 3

Ãd,

d even
23/2(

√
d+1)1−2/d√
d(d+2)

2√
d+2

B̃d
21/2+1/d

√
d(√d+1)1/d

d
√

2
(d+1)

√
d+2

1√
d+1

2d√
d+2(1+(d−1)

√
2) 7

C̃d

√
2

√
d(√d+1)1/d

√
2d

d+1
1√

d+1
2
√

d

2+(d−1)
√

2 3

D̃d
21/2+2/d

√
d(√d+1)1/d

d
√

2
(d+1)

√
d+4

1√
d+1

d
√

2
(d−1)

√
d+4 7

Ẽ6
12
√

64
137781

2
7

1√
14

1
2 7

Ẽ7
14
√

1
177147

7
√

13
104

√
21

24
14
√

13
117 7

Ẽ8
8
√

1
3240

8
√

19
171

2
√

19
57

8
√

19
95 7

F̃4
8
√

1
405

4
√

2
15

2
√

5
15

4
√

2
3(2+

√
2) 3

G̃2
√

2
2

1√
3

1
2

2
1+
√

3 3

Out of them, only Ã family triangulations have a non-zero relative protection value equal
to:

δ̂ =
√
d2 + 2d+ 24−

√
d2 + 2d√

d2 + 2d
∼ 12
d2

Only Ã family, C̃ family and D̃4 triangulations have vertex sets with lattice structure.

For the proof, refer to the full version [8]. The corresponding quality measures for the
regular d-simplex ∆ (which does not correspond to a triangulation in general) are:

Fatness Θ Aspect Ratio α Thickness θ Radius Ratio ρ

∆ 1
d!

√
d+1
2d

d+1
2d

√
d+1
2d

1
d

All simplex quality measures in the table above are normalized with respect to the regular
simplex. Note that the fatness values in the table are given with power 1/d. It is due to the
fact that fatness is a volume-based simplex quality, and taking the (1/d)-th power allows a
better comparison. Also note that all normalized simplex qualities for the families Ãd, B̃d,
C̃d and D̃d behave as O(1/

√
d). As illustrated for fatness and radius ratio in Figure 2, Ãd

achieves the greatest simplex quality among the four families of Coxeter triangulations in
each dimension d.

Acknowledgements

The research leading to these results has received funding from the European Research
Council (ERC) under the European Union’s Seventh Framework Programme (FP/2007-
2013) / ERC Grant Agreement No. 339025 GUDHI (Algorithmic Foundations of Geometry
Understanding in Higher Dimensions). We also thank Arijit Ghosh, Ramsay Dyer and
Jean-Daniel Boissonnat for discussion and suggestions.

EuroCG’18



4:6 Coxeter triangulations have good quality

2 3 4 5 6 7 8

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Dimension

N
or
m
al
iz
ed

fa
tn
es
s

Θ̂
1/
d

Ãd
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Figure 2 The visual representation of the normalized fatness and the radius ratio for simplices of
Ãd, B̃d, C̃d and D̃d triangulations.
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