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Abstract

Given two sets of points A and B in a normed plane, we prove that there are two linearly separable

sets A′ and B′ such that diam(A′) ≤ diam(A), diam(B′) ≤ diam(B), and A′ ∪ B′ = A ∪ B. As a

consequence, some Euclidean clustering algorithms are adapted to normed planes.

1 Introduction and notation

We denote by E
2 the Euclidean plane, and by M

2 a normed plane, namely, R2 endowed with

a norm ‖ · ‖. We call B(x, r) the ball with center x ∈ M
2 and radius r > 0, and S(x, r) the

sphere of B(x, r). We use the usual abbreviations diam(A) and conv(A) for the diameter

and the convex hull of a set A, ab for the line segment connecting two points a, b ∈ M
2, and

〈a, b〉 for its affine hull.

We say that two sets of points in M
2 are linearly separable (for short, separable) if there

exists a line L such that each set is situated in a different closed half-plane defined by L. In

Section 2, our Theorem 2.3 extends the following result ([4]) to any normed plane.

◮ Theorem 1.1. Let A and B be two finite sets in E
2. Then, there are two separable sets

A′ and B′ such that diam(A′) ≤ diam(A), diam(B′) ≤ diam(B), and A′ ∪ B′ = A ∪ B.

Given a set S of n points in the plane, a cluster is any non-empty subset of S, and a k-

clustering is a set of k clusters such that each point of S belongs to some cluster. In Section

3, we apply Theorem 2.3 in order to solve some k-clustering problems in any normed plane.

2 Linear separability of clusters

In the rest of this section we work in M
2 and our objective is to prove the statement of

Theorem 1.1 in this context. Without loss of generality, we assume that diam(A) ≥ diam(B).

Let us denote {u1, u2, . . . , u2t} the clockwise sequence of points where the boundaries of

conv(A) and conv(B) cross (Figure 1). conv(A) \ conv(B) and conv(B) \ conv(A) consist of

two interlacing sequences of polygons {A1, A2, . . . , At} and {B1, B2, . . . , Bt} such that (for

convenience, u2t+1 := u1 and At+1 := A1): Ai touches Bi at u2i; Bi touches Ai+1 at u2i+1;

the vertices of any Ai belong either to A \ B or to conv(A) ∩ conv(B); the vertices of any

Bj belong either to B \ A or to conv(A) ∩ conv(B). We say that (Ai, Bj) is a bad pair if

diam(Ai ∪ Bj) > diam(A). In such a case, Ai is a bad set and Bj is its bad partner, and vice

versa. If ‖ai − bj‖ > diam(A) for some ai ∈ Ai and bj ∈ Bj , then both ai and bj are bad

points, ai is a bad partner of bj (and vice versa), and the segment aibj is a bad segment.

◮ Lemma 2.1. Let (Ai, Bj) and (Ai′ , Bj′) be two bad pairs such that Ai 6= Ai′ and Bj 6= Bj′ .

Let us choose ai ∈ Ai, bj ∈ Bj , ai′ ∈ Ai′ , bj′ ∈ Bj′ such that aibj and ai′bj′ are bad segments.
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Figure 1 A (blue points) and B (red points) are not separable (left). A ∪ B can be split by L

into new subsets A′ and B′ without increase of the Euclidean diameters (right).

If these bad segments do not cross, then Ai, Ai′ , Bj′ , Bj (disregarding symmetric variations)

is the sequence clockwise of these polygons and there is not any bad set from A between Bj′

and Bj.

Proof. Let us assume that Ai, Ai′ , Bj , Bj′ , ai, ai′ , bj, and bj′ satisfy the conditions of the

Lemma. All of them must be situated around conv(A ∩ B). If aibj ∩ ai′bj′ = ∅, there are

two cases (disregarding symmetric variations) for the relative positions of the polygons (and

points):

Case 1: Ai, Bj′ , Ai′ , Bj is the clockwise sequence of the polygons. Since the sum of the

diagonals of the quadrangle ai, bj′ , ai′ , bj is larger than the sum of two opposite sides, we get

a contradiction:

diam(A) + diam(B) ≥ ‖ai − ai′‖ + ‖bj − bj′‖ ≥ ‖ai − bj‖ + ‖ai′ − bj′‖ > 2 diam(A).

Case 2: Ai, Ai′ , Bj′ , Bj is the clockwise sequence of the polygons. Let us assume that there

exists a bad point am ∈ Am for some m, such that Bj′ , Am, Bj is the clockwise sequence.

Let bk be a bad partner of am for some k. The half-lines starting in am and connecting am

with ai and with ai′ , and the lines 〈am, bj〉 and 〈am, bj′〉, divide the plane into six zones

(see Figure 2). If bk is situated in the shaded zone in Figure 2, then ‖am − bk‖ ≤ diam(B)

and ambk is not a bad segment. If bk belongs to any other zone, it is possible to consider

a quadrangle whose vertices are situated in clockwise order like in Case 1, and we get a

contradiction. ◭

◮ Remark 1. In the Euclidean subcase, every two bad segments from disjoint bad pairs

(Ai, Bj) and (Ai′ , Bj′) cross ([4]). The property that the longest side of every obtuse triangle

is opposite to the obtuse angle is used in the proof. Nevertheless, this property is not true

for any normed plane, and there exist bad segments that do not cross.

Before splitting the sets A and B, we group all the adjacent bad subsets Ai from the

cluster A. Thus, we define a group of bad subsets from A to be a maximal cyclic subsequence

of bad subsets Ai. (Intervening subsets Bj of the other cluster must not be bad). The same
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Figure 2 If (ai, bj) and (ai′ , bj′) are bad partners, then the shaded zone cannot contain a bad

partner of am ∈ Am

is made with cluster B. These maximal cyclic groups are noted by Ā1, Ā2, . . . , Āp and

B̄1, B̄2, . . . , B̄q.

We say that (Āi, B̄j) is a bad pair of groups if there exists a bad segment from Āi to

B̄j . Two pairs of sets (Ai, Bj) and (Ai′ , Bj′) cross if there exist two (one from every pair)

bad segments that cross. Similarly, (Āi, B̄j) and (Āi′ , B̄j′ ) cross if there exist two (one from

every pair) bad segments that cross.

The structure of the rest of the section is similar to that presented by [4], but the proofs

are different due to Remark 1. Some of the these proofs are omitted in this extended

abstract.

◮ Lemma 2.2. The following holds:

1. Let (Ai, Bj) and (Ai′ , Bj′ ) be two bad pairs such that Ai 6= Ai′ and Bj 6= Bj′ . If Ai and

Ai′ belong to a group Ān for some n, then Bj and Bj′ belong to a group B̄t for some t.

2. The number of maximal cyclic groups for A and for B is the same.

3. Let (Āi, B̄j) and (Āi′ , B̄j′) be two bad pairs of groups such that Āi 6= Āi′ and B̄j 6= B̄j′ .

Then (Āi, B̄j) and (Āi′ , B̄j′) cross.

Proof. Statement 2 is a consequence of 1. In order to prove 1, let us assume that (Ai, Bj) and

(Ai′ , Bj′) are two disjoint bad pairs such that Ai, Ai′ ∈ Ān for some n. If Bj and Bj′ belong

to different groups, there is a bad pair (Am, Bk) for some m and k such that Am separates

Bj from Bj′ . (Ai, Bj) and (Ai′ , Bj′) must cross (Lemma 2.1), and since Ai and Ai′ belong

to the same group, only one of the pairs (not both) and (Am, Bk) cross. For simplicity, let us

assume that (Ai, Bj) and (Am, Bk) cross. There exist am ∈ Am, bk ∈ Bk, ai′ ∈ Ai′ , bj′ ∈ Bj′

that would be situated in an impossible clockwise sequence am, bk, ai′ , bj′ (similar to Case 1

in Lemma 2.1), and we get a contradiction.

Let us see Statement 3. Let (Āi, B̄j) and (Āi′ , B̄j′ ) be two bad pairs of groups such

that Āi 6= Āi′ and B̄j 6= B̄j′ . The clockwise order cannot be Āi, B̄j′ , Āi′ , B̄j (due to the

arguments used in Case 1 of Lemma 2.1); and neither Āi, Āi′ , B̄j′ , B̄j , because then B̄j′ and

B̄j cannot be separated by a bad polygon Am (Lemma 2.1, Case 2). Therefore, the clockwise

order must be Āi, Āi′ , B̄j , B̄j′ , and 3 holds.

◭

The groups from A and B are interlacing, and Statement 3 of Lemma 2.2 implies that

there exist a complete matching among the groups, and the number of groups from each

cluster has to be odd.
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Let Ai be the last bad set of a group (in clockwise order), and let Bj′ be the last bad

partner of Ai. Let Bj be the first bad set after Ai, and let Ai′ be the first bad partner of

Bj . We choose the separating line L to go through the point u2j before Bj and the point

u2j′+1 after Bj′ (see Figure 1). We define B′ to be the points in A ∪ B lying on the same

side of L as Bj and Bj′ , and A′ as the remaining points.

◮ Theorem 2.3. Let A and B be two finite sets in M
2. Then, there are two linearly separable

sets A′ and B′ such that diam(A′) ≤ diam(A), diam(B′) ≤ diam(B), A′ ∪ B′ = A ∪ B, and

perimeter(conv(A)) + perimeter(conv(B)) ≥ perimeter(conv(A′)) + perimeter(conv(B′)).

Proof. We consider Ai, Bj , Ai′ , Bj′ , L, A′ and B′ defined above. Since L cuts all bad pairs,

diam(A′) ≤ diam(A). In order to prove diam(B′) ≤ diam(B), let us consider a, b ∈ B′. If

a, b ∈ B there is nothing to prove. In any other case, let us assume that ‖a − b‖ > diam(B).

Let us choose ai ∈ Ai, bj ∈ Bj , ai′ ∈ Ai′ , bj′ ∈ Bj′ such that (ai, bj′) and (ai′ , bj) are bad

pairs. There are three possible cases.

Case 1: a ∈ conv(A)\conv(B) and b ∈ conv(B)\conv(A). The points {bj, a, b, bj′ , ai′ , ai}
are situated around conv(A) ∩ conv(B) and it is possible to consider a clockwise order. If

{a, b} is the clockwise order of these two points, we observe the quadrangle with vertices

(clockwise) {bj, a, b, ai′} and the following contradiction holds:

diam(A) + diam(B) ≥ ‖a − ai′‖ + ‖b − bj‖ ≥ ‖bj − ai′‖ + ‖a − b‖ > diam(A) + diam(B).

If the clockwise order is {b, a}, we obtain a similar contradiction on the quadrangle with

vertices (clockwise order) {ai, b, a, bj′}.

Case 2: a, b ∈ conv(A) \ conv(B). Case 1 implies that ‖b − b′‖ ≤ diam(B) for every

b′ ∈ (conv(B) \ conv(A)) ∩ B′. If {a, b} is the clockwise order of these two vertices, applying

the above arguments to the quadrangle {bj , a, b, ai′}:

diam(A) + diam(B) ≥ ‖a − ai′‖ + ‖b − bj‖ ≥ ‖bj − ai′‖ + ‖a − b‖ > diam(A) + diam(B),

which is again a contradiction. If the order is {b, a}, we use the quadrangle {bj, b, a, ai′}.

Case 3: a ∈ conv(A) \ conv(B) and b ∈ conv(A) ∩ conv(B). Since the distance from a is

maximized at some vertex of conv(A) ∩ conv(B) ∩ conv(B′), we may assume that b is one

of these vertices and apply an analysis similar to Case 1 or to Case 2.

The proof in [4] for the perimeter inequality is valid for M
2. ◭

3 Some applications to clustering problems

From now on, S is a set of n points in M
2. We assume that in our computation model an

oracle answers the required questions about the unit ball of M2 (see Section 3.3 of [6]).

3.1 2-clustering problem: minimize the maximum diameter.

Given a metric, the 2-clustering problem of minimizing the maximum diameter asks about

how to split S into two sets minimizing the maximum diameter. Avis [1] solves the problem

in E
2 looking for two separable sets with the following algorithm (O(n2 log2 n) time): sort

the distances di between the points of S into increasing order (O(n2 log n) time); locate the

minimum di that admits a stabbing line1 (using [5] for the stabbing line) by a binary search.

We obtain the following as a consequence of Theorem 2.3.

1 A stabbing line for a set of segments is a line that intersects every segment of the set.
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◮ Corollary 3.1. Given a set of n points in M
2, the 2-clustering problem of minimizing the

maximum diameter can be solved in O(n2 log2 n) time using the algorithm presented by Avis.

The similar approach of Asano et al. ([2], that reduces the cost of Avis’ approach to O(n log n)

time using a maximum spanning tree) could be used as well, but as far as we know, an

efficient method to build a maximum spanning tree for any normed plane is not known.

3.2 2-clustering problem: constraints over the diameters

Given two fixed numbers d1 ≥ d2 > 0, Hershberger and Suri ([8]) solve in O(n log n) time the

problem of dividing S into two sets S1 and S2, such that diam(S1) ≤ d1 and diam(S2) ≤ d2

in E
2. They use the fact that if ‖a − b‖ ≥ d1, then B(a, d2) ∩ B(b, d1) can always be split

into two subsets whose diameters are at most d1 and d2, respectively. Nevertheless, the

following example shows that this cannot be extended to M
2. Let us consider a = (0, 0),

b = (−9.81, 6.24), and the strictly convex norm whose unit sphere is bounded by the two arcs

of circles with center at (0, 10) and in (0, −10), respectively, and radius 5
√

13 (see Figure

3). Let {r = (−9.39, r2), s = (−8.24, s2)} ∈ S(a, 1) and {p, q} = S(a, 1) ∩ S(b, 1.1), such

that r2 > 0, s2 > 0, and {p, r, s, q} is the clockwise order on S(a, 1). Then, ‖a − b‖ ≥ 1.1,

min{‖s − p‖, ‖r − q‖, ‖p − q‖} > 1.1 and min{‖r − p‖, ‖s − q‖} > 1, and S = {p, q, r, s} ∈
B(a, 1) ∩ B(b, 1.1) cannot be divided into two subsets whose diameters are at most 1.1 and

1, respectively.

s

r

a

b

b+ ~rq

q

a+ ~sq

a+ ~rp

b+ ~sp p

B(b, 1.1)

B(a, 1)

Figure 3 S = {p, q, r, s} cannot be divided into two subsets with diameters less than or equal to

1.1 and 1, respectively.

Theorem 2.3 can help to solve this problem in any normed plane as follows. Build the

graph (S, Ed1
) with the points of S and the set of edges Ed1

connecting two points of S at

distance more than d1 (in O(n2 log n) time). Check if Ed1
has a stabbing line (in O(n log n)

time with the algorithm presented in [5]). If the stabbing line does not exist, there is no

solution (Theorem 2.3). If some stabbing lines exist, check if one of them split S into two

subsets with the required diameters.

EuroCG’18
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3.3 k-clustering problems

Let us consider the k-clustering problem of minimizing F to the diameters (equivalently,

to the radii), where F is a monotone increasing function F : R
k → R that is applied

to the diameters (equivalently, to the radii) of the clusters. For instance, F can be the

maximum, the sum, or the sum of squares of the diameters (or the radii). Capoyleas, Rote

and Woeginger (see Lemma 8 and Theorem 9 in [4] for details) design an algorithm that

solves these geometric k-clustering problems in polynomial time. Using Theorem 2.3 and a

result of Banasiak [3] describing precisely the intersection of two balls, we prove the following

statements. The proofs are omitted in this extended abstract.

◮ Theorem 3.2. Let S be a set of n points in M
2. Consider the k-clustering problem of

minimizing a monotone increasing function F : R
k → R that is applied to the diameters

or to the radii of k subsets of S. Then there is an optimal k-clustering such that each pair

of clusters is linearly separable. A solution can be obtained by the algorithm presented by

Capoyleas-Rote-Woeginger, and it takes polynomial time for the case of the diameters.

3.4 3-clustering problems: minimize the maximum diameter

◮ Theorem 3.3. Given a set of n points in M
2 and d > 0, we can determine in O(n3 log2 n)

time whether there is a partition of S into sets A, B, C with diameters at most d, and

construct in O(n3 log3 n) time a 3-partition of S such that the largest of the three diameters

is as small as possible.

Proof. (Scheme) A specific approach by Hagauer and Rote proves this result in E
2. For

the first statement, the authors use some lemmas (from Lemma 3 to Lemma 6 in [7]) and

Theorem 1.1. Theorem 2.3 extends Theorem 1.1, and we prove results similar to the rest

of lemmas in [7] for any normed plane using the notion of Birkhoff orthogonality instead

of the Euclidean one. Regarding the complexity of the algorithm, we can justify that the

data structure introduced by Hershberger and Suri ([8]) is usable in the same way that in

E
2. Finally, a binary search on the

(

n
2

)

distances occurring in S solves the optimization

problem. ◭

References

1 D. Avis. Diameter partitioning. Discrete Comput. Geom., 1:265-276, 1986.

2 T. Asano, B. Bhattacharya, M. Keil, and F. Yao. Clustering algorithms based on minimum

and maximum spanning trees. Proc. 4th ACM Symposium on Computational Geometry,

252-257, 1988.

3 J. Banasiak. Some contributions to the geometry of normed linear spaces. Math. Nachr.,

139:175-184, 1988.

4 V. Capoyleas, G. Rote, and G. Woeginger. Geometric clustering. J. Algorithms, 12:341-356,

1991.

5 H. Edelsbrunner, H.A. Mauer, F.P. Preparata, A.L. Rosenberg, E. Welzl, and D. Wood.

Stabbing line segments. BIT, 22:274-281, 1982.

6 P. Gritzmann, and V.L. Klee. On the complexity of some basic problems in computational

convexity: I. Containment problems. Discrete Math., 136:129-174, 1994.

7 J. Hagauer, and G. Rote. Three-clustering of points in the plane. Comput. Geom., 8:87-95,

1997.

8 J. Hershberger, and S. Suri. Finding tailored partitions. J. Algorithms, 12:431–463, 1991.


	Introduction and notation
	Linear separability of clusters
	Some applications to clustering problems
	2-clustering problem: minimize the maximum diameter.
	2-clustering problem: constraints over the diameters
	k-clustering problems
	3-clustering problems: minimize the maximum diameter


