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Abstract
We study the computation of the diameter and radius under the rectilinear link distance within a
rectilinear polygonal domain of n vertices and h holes. We introduce a graph of oriented distances
to encode the distance between pairs of points of the domain. This helps us transform the problem
so that we can search through the candidates more efficiently. Our algorithm computes both the
diameter and the radius in O(min(nω, n2 + nh log h + χ2)) time, where ω < 2.373 denotes the
matrix multiplication exponent and χ ∈ Ω(n) ∩ O(n2) is the number of edges of the graph of
oriented distances. We also provide a faster algorithm for computing the diameter that runs in
O(n2 logn) time.

1 Introduction

Diameters and radii are popular characteristics of metric spaces. For a compact set S with
a metric d : S × S → R+, its diameter is defined as diam(S) := maxp∈S maxq∈S d(p, q),
and its radius is defined as rad(S) := minp∈S maxq∈S d(p, q). The points that realize these
distances are called the diametral pair and center, respectively. All of these terms are the
natural extensions of the same concepts in a disk and give some interesting properties of the
environment, such as the worst-case response time or ideal location of a serving facility.

Much research has been devoted towards finding efficient algorithms to compute the
diameter and radius for various types of sets and metrics. In computational geometry, one
of the most well-studied and natural metric spaces is a polygon in the plane. This paper
focuses on the computation of the diameter and the radius of a rectilinear polygon, possibly
with holes (i.e., a rectilinear polygonal domain) under the rectilinear link distance. Intuitively,
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this metric measures the minimum number of links (segments) required in any rectilinear
path connecting two points in the domain, where rectilinear indicates that we are restricted
to horizontal and vertical segments only.

Many problems that are easy under the L1 or Euclidean metric turn out to be more
challenging under the link distance. For example, computing the shortest path between two
points in a polygonal domain can be done in O(n logn) time for both Euclidean [8] and L1
metrics [10, 11]. However, even approximating the same within a factor of (2− ε) under the
link distance is 3-SUM hard [12], and thus it is unlikely that a significantly subquadratic-time
algorithm is possible.

Computing the diameter and radius is no exception: when considering simple polygons
(i.e., polygons without holes) of n vertices, the diameter and center can be found in linear
time for both Euclidean [1,7] and L1 metrics [2]. However, the best known algorithms for
the link distance run in O(n logn) time [5,16]. Lowering the running times or proving the
impossibility of this is a longstanding open problem in the field. The only partial answer to
this question was given by Nilsson and Schuierer [14, 15]; they showed that the diameter and
center can be found in linear time when we are only allowed to use rectilinear paths.

If we consider polygons with holes, the difference becomes even bigger: no algorithm
for computing the diameter and radius under the link distance is known, not even one that
runs in exponential time. In comparison, polynomial-time algorithms are known both for
diameter and radius under L1 and Euclidean metrics.

1.1 Results
We introduce the graph of oriented distances, a graph that implicitly encodes the distance
between regions of the domain. In Section 3 we use this graph to transform the problem:
rather than searching pairwise distances in a list of potential candidates for diameter or
center, we transform the problem into a rectangle intersection problem. Intuitively speaking,
we cover the domain with several rectangles, and we find two pairs of rectangles that pairwise
intersect (and satisfy other properties). In particular, once we have found the diametral pair,
the four rectangles that satisfy the property can be used as a witness.

This transformation leads to an algorithm for computing both the rectilinear link diameter
and radius of a rectilinear polygonal domain with n vertices and h holes. The algorithm is
described in Section 4 and runs in O(nω) time, where ω < 2.373 is the matrix multiplication
exponent [9]. Alternatively, we can also bound the running time in terms of the number χ of
edges of the graph of oriented distances (χ will range from Ω(n) to O(n2) depending on P ).
With this parameter the running time becomes O(n2 + nh log h+ χ2). In Section 5 we use a
different approach to obtain an O(n2 logn) time algorithm to compute the diameter. All of
the algorithms presented in the paper can be modified to return not only diameter or radius,
but also the points that realize it (i.e., diametral pair and center).

1.2 Preliminaries
A rectilinear simple polygon (also called an orthogonal polygon) is a simple polygon that has
horizontal and vertical edges only. A rectilinear polygonal domain P with h pairwise disjoint
holes and n vertices is a connected and compact subset of R2 with h pairwise disjoint holes,
in which the boundary of each hole is a simple closed rectilinear curve.

A rectilinear path π from p ∈ P to q ∈ P is a path from p to q that consists of vertical
and horizontal segments, each contained in P , and such that along π each vertical segment is
followed by a horizontal one and vice versa. Recall that P is a closed set, so π can traverse



M.-K. Chiu et al. 2:3

the boundary of P (along the outer face and any of the h obstacles). We define the link length
of such a path to be the number of segments composing it. The rectilinear link distance
between points p, q ∈ P is defined as the minimum link length of a rectilinear path from
p to q, and denoted by `P (p, q). It is well known that in rectilinear polygonal domains
there always exists a rectilinear polygonal path between any two points p, q ∈ P , and thus
the distance is well defined. Once the distance is defined, the definitions of rectilinear link
diameter diam(P ) and rectilinear link radius rad(P ) directly follow. For simplicity in the
description, we assume that a pair of vertices do not share the same x- or y-coordinate unless
they are connected by an edge.

2 Graph of Oriented Distances

For any domain P , we virtually shoot a ray left and right from any horizontal segment of
the domain until it hits another segment of P , partitioning it into rectangles. We call this
partition the horizontal decomposition, H(P ). Similarly, if we shoot rays up and down from
vertical segments, we get the vertical decomposition, V(P ). Observe that both decompositions
have linear size and can be computed in O(n logn) time with a plane sweep.

Given two rectangles i, j ∈ H(P ) ∪ V(P ), we use i u j to denote the boolean operation
which returns true if and only if (1) the rectangles i and j properly intersect (i.e. their
intersection has non-zero area), and (2) one of i, j belongs to H(P ), and the other to V(P ).

I Definition 2.1 (Graph of Oriented Distances). Given a rectilinear polygonal domain P we
define the undirected graph G(P ) = (H(P ) ∪ V(P ), { (h, v) ∈ H(P )× V(P ) : h u v }).

In other words, vertices of G(P ) correspond to rectangles of the horizontal and the vertical
decompositions of P . We add an edge between two vertices if and only if the corresponding
rectangles properly intersect. Note that this graph is bipartite, and has O(n) vertices. From
now on, we make a slight abuse of notation and identify a rectangle with its corresponding
vertex (thus, we talk about the neighbors of a rectangle i ∈ H(P ) in G(P ), for example).

The name Graph of Oriented Distances is easily explained: consider a rectilinear path
π between two points in P . Each horizontal edge of π is contained in a rectangle of H(P )
and each vertical edge is contained in a rectangle of V(P ). A bend in the path takes place
in the intersection of the rectangles containing the two adjacent edges and corresponds to
an edge of G(P ). So every rectilinear path π has a corresponding path π′ in G(P ) and vice
versa. Moreover, each bend of π is associated with an edge of π′.

I Definition 2.2 (Oriented distance). Given a rectilinear polygonal domain P , let i and j
be two vertices of G(P ), let ∆(i, j) to be the length of the shortest path between i and j in
graph G(P ) plus one. We also define ∆(i, i) = 1.

We first list some useful properties of the oriented distance and then show the relationship
between the oriented distance ∆(·, ·) in G(P ) and the link distance `P (·, ·) in P .

I Lemma 2.3. Let i, j, i′, j′ be any (not necessarily distinct) rectangles in H(P ) ∪ V(P )
such that i u i′, and j u j′. Then, the following hold: (a) ∆(i, j) = ∆(j, i), (b) ∆(i′, j) ∈
{∆(i, j)− 1,∆(i, j) + 1 }, and (c) ∆(i′, j′) ∈ {∆(i, j)− 2,∆(i, j),∆(i, j) + 2 }.

I Lemma 2.4. Let p and q be two points of the rectilinear polygonal domain P . If p and q lie
in the same vertical or horizontal rectangle of V(P ) or H(P ) then `P (p, q) = 1 (if p and q share
a coordinate) or `P (p, q) = 2 (if both x- and y-coordinates of p and q are distinct). Otherwise,
let i ∈ H(P ), i′ ∈ V(P ), j ∈ H(P ) and j′ ∈ V(P ) be vertices of the graph of oriented distances
such that p ∈ i ∩ i′ and q ∈ j ∩ j′. Then `P (p, q) = min{∆(i, j),∆(i, j′),∆(i′, j),∆(i′, j′) }.
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Intuitively speaking, if we are given two disjoint rectangles i, j ∈ H(P ), then ∆(i, j)
denotes the minimum number of links needed to connect any two points p ∈ i and q ∈ j
under the constraint that the first and the last segments of the path are horizontal. It follows
that the link distance is the minimum of the four possible options. These O(n2) distances
can be precomputed using algorithms by Mitchell et al. [13] in O(n2 + nh log h) time or by
Chan and Skrepetos [3] in O(n2 log logn).

3 Characterization via Boolean Formulas

Let d̂ = maxi,j∈H(P )∪V(P ) ∆(i, j) be the largest distance between vertices of G(P ). Similarly,
we define r̂ = mini∈H(P )∪V(P ) maxj∈H(P )∪V(P ) ∆(i, j). Note that these two values are the
diameter and the radius of G(P ) plus one. We use d̂ and r̂ to approximate the diameter
diam(P ) and radius rad(P ) of a domain P under the rectilinear link distance. First, we
relate the distance between two points p, q ∈ P to the oriented distances between the
rectangles that contain p and q. Specifically, from Lemma 2.4, we know that `P (p, q) =
min{∆(i, j),∆(i, j′),∆(i′, j),∆(i′, j′) }, where i, j ∈ H(P ) are the horizontal rectangles
containing p and q, respectively, and i′, j′ ∈ V(P ) are the vertical rectangles containing p
and q. Similarly, we define ˆ̀(p, q) = max{∆(i, j),∆(i, j′),∆(i′, j),∆(i′, j′) }.

I Lemma 3.1. For any two points p, q ∈ P , let i, j ∈ H(P ) and i′, j′ ∈ V(P ) be the rectangles
containing p and q, i.e., p ∈ i ∩ i′ and q ∈ j ∩ j′. Then, it holds that ˆ̀(p, q)− 2 ≤ `P (p, q) ≤
ˆ̀(p, q)− 1.

This relation allows us to express the rectilinear link diameter of a domain in terms of d̂
and the radius in terms of r̂.

I Theorem 3.2. The rectilinear link diameter diam(P ) of a rectilinear polygonal domain P
satisfies diam(P ) = d̂− 1 if and only if there exist i, i′, j, j′ ∈ H(P ) ∪ V(P ) with i u i′ and
j u j′, such that ∆(i, j) = d̂ and ∆(i′, j′) = d̂. Otherwise, diam(P ) = d̂− 2.

Proof. First observe that for any pair of points p, q ∈ P we have `P (p, q) ≤ ˆ̀(p, q)−1 ≤ d̂−1
by Lemma 3.1. Hence, the diameter of P is at most d̂− 1. Similarly, by the definitions of d̂
and ˆ̀(·, ·), there must be a pair of points p, q ∈ P so that ˆ̀(p, q) = d̂. Again by Lemma 3.1 it
follows that diam(P ) ≥ `P (p, q) ≥ ˆ̀(p, q)− 2 = d̂− 2.

Next we show that the diameter is d̂ − 1 if and only if the above condition holds. If
∆(i, j) = d̂ and ∆(i′, j′) = d̂, then by Lemma 2.3 and the fact that neither ∆(i, j′) nor
∆(i′, j) can be larger than d̂, we know that ∆(i, j′) = ∆(i′, j) = d̂− 1. This implies that a
pair of points p ∈ i ∩ i′ and q ∈ j ∩ j′ have `P (p, q) = d̂− 1. Thus, the diameter is d̂− 1.

Now consider any pair p, q and the set of rectangles i, j ∈ H(P ) and i′, j′ ∈ V(P ) with
p ∈ i ∩ i′ and q ∈ j ∩ j′. Recall that `P (p, q) = min{∆(i, j),∆(i, j′),∆(j′, i),∆(i′, j′)}. By
Lemma 2.3, ∆(i, j) and ∆(i′, j′) must differ by exactly one from ∆(i′, j) and ∆(i, j′). That
implies that two distances may be d̂− 1, but if the condition in the lemma is not satisfied, at
most one can be d̂ and the fourth must be d̂− 2 or less. Therefore, if the condition is not
satisfied for i, i′, j, j′, then the diameter is indeed d̂− 2. J

I Theorem 3.3. The rectilinear link radius rad(P ) of a rectilinear polygonal domain P

satisfies rad(P ) = r̂− 1 if and only if for all i, i′ ∈ H(P ) ∪ V(P ) with i u i′ there exist j, j′ ∈
H(P ) ∪ V(P ) with j u j′ such that ∆(i, j) ≥ r̂ and ∆(i′, j′) ≥ r̂. Otherwise, rad(P ) = r̂ − 2.

With the above characterization, we can naively compute the diameter and the radius
by checking all O(n4) quadruples (i, i′, j, j′) ∈ H(P )× V(P )×H(P )× V(P ). However, the
approach can be improved by using G(P ).
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I Theorem 3.4. The rectilinear link diameter diam(P ) and radius rad(P ) of a rectilinear
polygonal domain P consisting of n vertices and h holes can be computed in O(n2 +nh log h+
χ2) time, where χ is the number of edges of G(P ) (i.e., the number of pairs of intersecting
rectangles of H(P ) and V(P )).

4 Computation via Matrix Multiplication

In this section we provide an alternative method to compute the diameter. Although
not described here, a similar approach can also be used to compute the radius. This
method also uses the condition in Theorem 3.2, but instead exploits the behavior of matrix
multiplication on (0,1)-matrices. Recall that, given two (0,1)-matrices A and B, their product
is (AB)i,j =

∑
k(Ai,k ·Bk,j) = |{ k : Ai,k = 1 ∧Bk,j = 1 }|.

We define the (0,1)-matrices I,D and M . Note that we slightly abuse our notation and
use i, j to indicate both matrix indices and their corresponding rectangles.

Ii,j =
{

1 if i u j,
0 otherwise.

Di,j =
{

1 if ∆(i, j) = d̂,

0 otherwise.
Mi,j =

{
1 if (ID)i,j > 0,
0 otherwise.

Intuitively, matrix I indicates for each pair of rectangles if they properly intersect and
have different orientations, whereas D indicates which rectangles are at oriented distance d̂
from each other. For any entry in their product we then have

(ID)j,i′ = |{ j′ : (j u j′) ∧ (∆(i′, j′) = d̂) }|.

The matrix M then records which entries in (ID) are non-zero and we get

(DM)i,i′ = |{ j : Di,j = 1 ∧Mj,i′ = 1 }| = |{ j : ∆(i, j) = d̂ ∧ (∃j′ : j u j′ ∧∆(i′, j′) = d̂ )}|.

So (DM)i,i′ > 0 if and only if there exists a pair j, j′ for which ∆(i, j) = d̂, j u j′ and
∆(i′, j′) = d̂. By Theorem 3.2 if (DM)i,i′ > 0 and Ii,i′ = 1 for any pair i, i′, then the
diameter is d̂− 1 and otherwise it is d̂− 2.

I Theorem 4.1. The rectilinear link diameter diam(P ) and radius rad(P ) of a rectilinear
polygonal domain P consisting of n vertices can be computed in O(nω) time.

5 Computing the Diameter Faster

To test the condition of Theorem 3.2 we could simply iterate over each pair of rectangles
i, j such that ∆(i, j) = d̂. For each such pair we could compute all pairs (i′, j′) such that
i u i′ and j u j′ and test if ∆(i′, j′) = d̂. However, doing this naively may take Θ(n4) time.
Note however there are only O(n2) unique pairs (i′, j′) to test and regardless of which pair
(i, j) was used to generate it, the diameter of P is d̂− 1 if and only if at least one pair (i′, j′)
has ∆(i′, j′) = d̂. We show how to more efficiently generate these pairs for the diameter.
Unfortunately for the radius we must remember which pair (i, j) generates each pair (i′, j′)
so this optimization doesn’t work for the radius.

I Theorem 5.1. The rectilinear link diameter diam(P ) of a rectilinear polygonal domain P
of n vertices can be computed in O(n2 logn) time.

Proof. Sketch. First, for each rectangle i, we find in O(n logn) time the set Qi of rectangles
at distance d̂ from i. Then, using a ray-shooting data-structure by Giyora and Kaplan [6],
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we compute the set Ri which contains all rectangles j′ that are orthogonal and intersect a
rectangle j ∈ Qi. We then store in a list for each rectangle in j′ ∈ Qi the segment i. After
doing this for each rectangle again iterate over all rectangles and use j′ to denote the current
rectangle. For each j′, let Lj′ denote the set of rectangles i with j′ ∈ Ri, which we stored
in a list. Then using the same ray-shooting data structure we can compute in O(n logn)
time the set Mj′ of all rectangles that are orthogonal to and intersect a rectangle i ∈ Lj′ .
Then we simply check every pair (i′, j′) with i′ ∈ Lj′ and if any such pair is at distance d̂ we
report that the diameter is d̂− 1. Since we iterate over all O(n) rectangles twice and spend
O(n logn) time on each of them the total running time is O(n2 logn). J
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