Maximal Two-Guard Walks in a Polygon

Franz Aurenhammer!, Michael Steinkogler?, and Rolf Klein3

1 Institute for Theoretical Computer Science, University of Technology, Graz,
Austria, auren@igi.tugraz.at

2 Institute for Theoretical Computer Science, University of Technology, Graz,
Austria, steinkogler@igi.tugraz.at

3 Universitat Bonn, Institut fiir Informatik, Bonn, Germany,
rolf.klein@uni-bonn.de

—— Abstract
Deciding two-guard walkability of an n-sided polygon is a well-solved problem. We study the related
question of how far two guards can reach from a given source vertex, in the (more realistic) case
that the polygon is not entirely walkable. There can be ©(n) such maximal walks, and we show

how to find all of them in O(nlogn) time.

1 Introduction

We address a structural question on polygons, which is motivated by optimizing so-called
triangulation axes [1], but is also interesting in its own right: How many adjacent ‘ear
triangles’ can be cut off from a polygon W, starting from a given vertex s? Equivalent is the
following question: How far can two guards reach when they are to walk on W’s boundary,
starting from s in different directions and keeping mutually visible?

Visibility problems of this kind have been studied already in the 1990s, where Icking
and Klein [5] gave an O(nlogn) time algorithm for deciding two-guard walkability of an
n-sided polygon W, from a source vertex s to a target vertex t. A few years later, Tseng
et al. [7] showed that one can find, within the same runtime, all vertex pairs (s,t) such
that W is two-guard walkable from s to ¢. Their result was improved to optimal O(n) time
by Bhattacharya et al. [2]. The algorithm in [5] actually provides a walk for W in case of its
existence but, on the other hand, only a negative message is returned in the (quite likely)
case that the polygon is not entirely walkable.

The present note elaborates on ‘how far’ in the latter case a polygon W is two-guard
walkable — a natural question that has not been considered in the literature to the best of
our knowledge. Such mazximal walks are not unique, in general, which complicates matters.
We present a strategy that finds, in O(nlogn) time, all possible maximal walks that initiate
at a given source vertex s of W. A more detailed description of the results is given in [6].

2 Preliminaries

Throughout, we let W denote a simple polygon in the plane with n vertices, one of them
being tagged as a source vertex, s. For two points and y on the boundary, OW, of W,
we write < y if z is reached before y when walking on OW from s in clockwise (CW)
direction. For a vertex p of W, pT (repectively, p~) is the CW successor (predecessor)
vertex of p on OW. When p is a reflex vertex (that is, a vertex where the interior angle in W
is greater than), then the two ‘ray shooting points’ for p in W can be defined, namely,
For(p) as the first intersection point with QW in the direction from p~ to p, and Back(p) as
the first intersection point with W in the direction from p™ to p.

According to the aforementioned relation between walks and triangulations, we are only
interested in discrete and straight walks. That is, the guards when moving on OW directly

34th European Workshop on Computational Geometry, Berlin, Germany, March 21-23, 2018.

This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

01:2 Maximal Two-Guard Walks in a Polygon

Jump’ from a vertex to the respective neighboring vertex (only one guard is allowed to
move at a time), and they never backtrack. A walk in W is now defined as a diagonal (I, r)
of W, I < r, such that the first guard can move CW from s to I, and the second guard
can move CCW from s to r, while keeping visible to each other at each step. An obvious
condition for W to be walkable till (I,7) is that the two boundary chains from s to [and
to r, respectively (call them L and R), are co-visible in W. That is, each vertex on L is
visible from some vertex on R, and vice versa.

To characterize walkability, we will need a few more concepts, first introduced in [5]. We
say that at a pair (p,q) of its vertices, W forms a:

Forward deadlock if N
p(:ii-:f:g
Back(q) < p < ¢ < For(p). géek@‘)‘For(p)
S
Backward deadlock if F01‘Mck(p)
p < (For(q), Back(p)) < g. e
CW wegde if p < g and there exists no vertex x of W with N
q < For(q) < x < Back(p). "y For(g)
_~"Back(p)
L

(A CCW wegde is defined in a symmetric way.)

It is not hard to see that the two guards cannot pass beyond deadlocks and wedges
without losing visibility. This will be made specific in Section 4. Moreover, in [5] it has been
shown that these obstacles to walkability are indeed the only ones. By adapting their result
to our setting we get:

» Theorem 2.1. Let (I,r), l < r, be a diagonal of W, and denote with Q) the polygon bounded
by (I,7) and the chains L and R. Then (I,r) is a walk in W iff (1) L and R are co-visible
in Q, (2) Q forms no forward and no backward deadlock, (3) Q forms no CW wedge on L,
and no CCW wedge on R.

3 Extremal walks and obstacles

A walk (I,7) in W is termed mazimal if it cannot be extended by a single guard move.
More precisely, neither (I*,7) nor (I,77) is a walk in W. For finding maximal walks, we
will apply Theorem 2.1, but we have to do so with care since conditions (1) to (3) refer to
a (yet unknown) polygon @, rather than to the input polygon W as in [5].

To this end, for (1) we observe that the chains L and R are co-visible in @ iff they are
co-visible in W: The line segment Ir lies entirely within W, so the part of W different
from 0Q does not obstruct the view within Q.

Concerning (2), we notice that forward deadlocks formed by @ do not depend on the
shape of W \ 0Q), and thus trivially are also forward deadlocks formed by W. By contrast,
for a backward deadlock (p,q) formed by @, the points For(q) and Back(p) in @ may not
be the same as in W. (Namely, if at least one of them lies on Ir). But since these points are
larger than p and smaller than ¢, (p, ¢) is also a backward deadlock in W.

No such property holds for the wedges in (3), however. A wedge (p,q) formed by Q is
not neccessarily also formed by W: The segment I can obstruct the view to vertices = on
OW \ 0Q that prevent (p,q) from being a wedge in W. Fortunately though, such ‘induced’
wedges cannot occur once the co-visibility condition is satisfied; see [6].

In conclusion, it suffices to consider obstacles formed by W rather than by Q.

Franz Aurenhammer, Michael Steinkogler, and Rolf Klein 01:3

For maximal walks, obstacles with extremal positions are relevant (in case of the presence
of obstacles at all, which we will assume in the sequel). A minimal CW wedge on the chain L
is a wedge (p,q) on L where the vertex ¢ is smallest possible. For a minimal CCW wedge
(p,q) on R, in turn, the vertex p has to be largest possible. Such extremal wedges need not
be unique. A representative can be found in O(nlogn) time by adapting an algorithm in [7].

A deadlock (p, q) (either forward or backward) is called minimal if there is no other such
deadlock (p/,q’") with p’ < p and ¢’ > q. The minimal backward deadlock is unique, by the
following property: If (p,q) and (p’, q') are two backward deadlocks with p < p’ and ¢ < ¢/,
then (p,q’) is a backward deadlock as well.

To find this minimal deadlock, we simply let p and ¢ run through the reflex vertices of W,
starting from s in CW and CCW direction, respecticely, until the deadlock inequalities for
p as well as for ¢ are fulfilled at the same time. This can be done in O(n) time, if W has
been preprocessed accordingly in O(nlogn) time using ray shooting; see Chazelle et al. [3].

Minimal forward deadlocks, on the other hand, are not unique in general. This is one of
the reasons why maximal walks need not be unique. In fact, W can contain ©(n) minimal
forward deadlocks (p;, ¢;); see the figure below for i = 1,2, 3. The following algorithm reports
all of them. The points on OW relevant for this task are the reflex vertices p of W plus their
ray shooting points For(p). We assume their availability in cyclic order around W.

Algorithm MFD

Trace relevant points & in CCW order from s:
if = For(p) and p < x then
Put p to a CW sorted list F
else if z is a reflex vertex ¢ then
Search F for the smallest p with Back(q) < p
if p exists and is unmarked then
Mark p
Report the forward deadlock (p, q)
end if
end if
T = next relevant point
Delete from F' all vertices p with p > x

The proof of correctness of Algorithm MFD is omitted due to lack of space. The algorithm
can be implemented in O(nlogn) time. It scans O(n) relevant points, each being processed
in constant time apart from the actions on F', which take O(nlogn) time in total when a
balanced search tree for F' is used.

4| Constraints from obstacles

Minimal wedges and deadlocks, and also the required co-visibility, give rise to constraints
on [and r for a maximal walk (I,7) in the polygon W. We will discuss the constraints on [
in some detail. The situation for r is symmetric.

We have to distinguish between absolute and conditional constraints. Among the former
is the list below. The first two constraints stem from the co-visibility of L and R; see [5].

(1) For each reflex p with p > For(p): | < p.
(2) For each reflex p with p < Back(p): | < Back(p).

EuroCG’18

01:4 Maximal Two-Guard Walks in a Polygon

(3) For the minimal CW wedge (p,q) on L: | < q.
(4) For the minimal backward deadlock (p,q): | < p.

The conditional constraints read as follows:
(I) For each pin (1): If r > p then I < p~.
(IT) For each p in (2): If r > Back(p) then I < p.
(III) For (p,q) in (3): If r > ¢ then | < q.
For convenience, we subsume the absolute constraints (1) - (4) into a single one, I < x
(where x is the smallest right-hand side value), and turn it into a conditional constraint:
(IV) If r > s then | < z.

Finally, the minimal forward deadlocks lead to absolute constraints which deserve special
attention. Whereas in the case of a backward deadlock (p, q), neither guard can walk beyond
these vertices, we have the following observation for the avoidance of a forward deadlock
(p,q): Only one of the bounds [< p and r > ¢ needs to hold. Assume now that & minimal
forward deadlocks (p1,q1),. .., (P, qx) exist, and let the p;’s be sorted in CW order.

» Lemma 4.1. Each of the following k + 1 pairs of bounds for (I,r) avoids all minimal
forward deadlocks: (p1,s), (p2,q1)-- - Pk, ar—1), (57, aw).-
Proof. By minimality of the considered deadlocks, we know that the ¢;’s have to be sorted

in CW order. So, for each index ¢ > 2, the observation above tells us that the constraint
I < p; avoids the deadlocks (p;,¢;),--., (Pk,qx), and the constraint r > ¢;_1 avoids the

remaining deadlocks (p1,q1),...,(Pi—1,49i—1). Moreover, the constraint ! < p; suffices to
avoid all k deadlocks, and r > s is trivially fulfilled. The same is true for r > ¢ and [< s—,
respectively. |

In summary, there are O(n) constraints in total, which can be found in O(nlogn) time
by the results in Section 3.

5 Computing all maximal walks

Section 4 tells us that the goal is to fulfill the constraints in (I) - (IV) simultaneously, though
for each of the bounding pairs in Lemma 4.1 separately. This gives all possible maximal
walks—granted the visibility of the reported vertex pairs. But let us come back to the issue
of visibility later in this section.

For a fized bounding pair (a,b), the constraint satisfaction problem can be transformed
into the following standard form: For two variables [and r, with bounds a and b, respectively,
there are two sets Cr, and C'i of conditional constraints, of the form

r>y; = [<x; and lng = r 2>y

respectively, with all values in {0,1,...,n}. (That is, the vertices wp,ws,...,w, of W,
wo = w, = 8, are identified with their indices.) We want to compute the maximal pair (I, r)
such that

[<a, r>b, and all c € Cp UCR are fulfilled.

We say that ¢; € Cp, is active at a value r if r > y; holds. Similarly, ¢; € Cr is active
at [if we have [< z;. The constraint fulfilling algorithm now simply alternates in scanning
through the sorted sets Cr, and Cg (in ascending order of y;-values, and in descending order
of xj-values, respectively), and adjusts the values of [and r according to the constraints
that get active. (Active/inactive constraints are indicated with full/dashed arrows below.)

Franz Aurenhammer, Michael Steinkogler, and Rolf Klein 01:5

Algorithm CFF(a,b,C,CR)

l=a,7=0b

repeat
x =min{z; | ¢; € Cp, is active at r}
I = min{l, 2}

y =max{y, | ¢; € Cg is active at [}
r = max{r,y}

untilr =y orr=»

Return the pair (I,7)

Suppose that a function VIS(I,r) is available which returns the first vertex r’ > r such
that (I,7") is visible in the polygon W. (If ' does not exist then n+ 1 is returned.) We now
present an algorithm that uses CFF and VIS as subroutines, and is capable of computing,
in O(nlogn) time, all maximal walks that exist in W. Let P = {(a1,b1),...,(am,bm)} be
the given set of bounding pairs. We assume ay,...,a,, (and thus by,...,b,,) in increasing
order. In the polygon below, (I,7) and (I’,r’) are the two possible maximal walks.

Algorithm MAXWALKS(P,Cr,CRg)
l=am, r=0
Trep =N+ 1
while [> 0 and r < 7¢p do
(17 7’) = CFF(Z, r, CL, CR)
i =min{\ | ay >}
Teand = max{b;,r}
Tvis = VIS(Z; rcand)
y = max{p | all ¢ € C, active at g admit [}
if ryis < min{n,y} and ryis < rep then
Report (I, 7yis)

Trep = Tvis
end if
l=1-1

end while

» Lemma 5.1. Algorithm MAXWALKS is correct.

Proof. The value of r changes only when Algorithm CFF is called, and thus r cannot
decrease. The first call of CFF is with the bounding pair (a,,b1), and the subsequent calls
are with (I,r) for | < a,,. As soon as we have r > by, some constraint in Cg is responsible
for this. So putting the bound r for the next call means no additional restriction. This
implies that, for all I, we have the equality CFF(l,r,Cr,Cgr) = CFF(l,b1,Cr,CR).

We now look at one iteration of the while loop, under the assumption that Algorithm
MAXWALKS worked correctly so far. That is, all maximal walks (', ") with I’ > [have been
reported, and no other walks. Let l,q be the value of [before the iteration. Then (I,r) =
CFF(loia—1, b1, CL, CRr) holds by the former equality. So we have (I,7) = CFF(I',b1,C,CRr)
for lgq > I’ > 1, implying that there is no walk (I’,r") for these I’-values.

There also is no walk (I,7") with ' < 7¢ang, because the bounding pair (a;,b;) as well as
the constraints in C'r need to be respected. Concerning ryis, if ryis > n then no pair (I,r')

EuroCG’18

01:6 Maximal Two-Guard Walks in a Polygon

with ' > rcang is visible, and thus no such pair can be a walk. Further, if ry;; > v then
some constraint in C, is active at ryis but does not admit I, so (I, ryis) is not a walk either.
On the other hand, if ry;s < min{n,y} then (I,) is a walk, because the pair is visible and
fulfills all the constraints. The pair gets reported unless ryis > rrep, in which case (I, ryis) is
not maximal because a larger pair has been reported already. <

CFF can be implemented such that the bounding pair of the last call is remembered.
This way each constraint in Cr, U Cg is handled only once: If a call has been with (I,r), the
next call will be with (I,7") where I’ < [(and thus 7/ > r). Thus only O(n) time is spent in
total for all calls to CFF from Algorithm MAXWALKS.

Computing the thresholds y can also be done in total O(n) time. We remember the
previous value of y, and scan down from this value as long as all active constraints of Cp,
are fulfilled by . The first violating constraint then gives the new value for y.

The function VIS can be performed in logarithmic time, using the techniques in Guibas
and Hershberger [4]. Clearly, the while loop is executed only O(n) times, which gives a
runtime of O(nlogn) for this part, and thus for Algorithm MAXWALKS overall.

6 Concluding remarks

We conclude the paper with a few brief comments.

The polygon example above shows that maximal walks differ in (combinatorial) length,
in general. It is also revealed that minimum forward deadlocks are not the only reason why
maximal walks are not unique.

The number of maximal walks is trivially bounded by n, because no two of them can
have the same [-vertex (or the same r-vertex).

Algorithm MAXWALKS provides each maximal walk in the form of a target pair (I,r),
but not the way how the guards actually move on W. Such a movement can be computed
in O(n) time, by applying the algorithm in [5] to the (already preprocessed) subpolygon
of W defined by s and (I, 7). Notice, however, that a fixed target pair (I,r) may leave to the
guards different ways to perform the walk. Different ways to triangulate W from s to (I,r)
then result, though the dual of any such triangulation has to be a path.

—— References

1 W. Aigner, F. Aurenhammer, and B. Jittler. On triangulation axes of polygons. Information
Processing Letters 115 (2015), 45-51.

2 B. Bhattacharya, A. Mukhopadhyay, and G. Narasimhan. Optimal algorithms for two-guard
walkability of simple polygons. Proc. Workshop on Algorithms and Data Structures, WADS
2001. Springer Lecture Notes in Computer Science 2125, 438-449.

3 B. Chazelle, H. Edelsbrunner, M. Grigni, L.J. Guibas, J. Hershberger, M. Sharir, and J.
Snoeyink. Ray shooting in polygons using geodesic triangulations. Algorithmica 12 (1994),
54-68.

4 L.J. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon. J. Com-
puter and System Sciences 39 (1989), 126-152.

5 C. Icking and R. Klein. The two guards problem. Int’l J. Computational Geometry € Appli-
cations 2 (1992), 126-152.

6 M. Steinkogler. Maximal walks in polygons. Master Thesis, Institute for Theoretical Computer
Science, University of Technology, Graz, Austria, 2017.

7 L.H. Tseng, P. Heffernan, and D.T. Lee. Two-guard walkability of simple polygons. Int’l J.
Computational Geometry & Applications 8 (1998), 85-116.

	Introduction
	Preliminaries
	Extremal walks and obstacles
	Constraints from obstacles
	Computing all maximal walks
	Concluding remarks

