





Preface

The 34th European Workshop on Computational Geometry (EuroCG ’18), was held at Freie
Universitdt Berlin, Berlin, Germany, on March 21—23, 2018. EuroCG is an annual workshop
that combines a strong scientific tradition with a friendly and informal atmosphere. The
workshop is a forum where researchers can meet, discuss their work, present their results, and
establish scientific collaborations, in order to promote research in the field of Computational
Geometry, within Europe and beyond.

We received 78 submissions, which underwent a limited refereeing process by the program
committee in order to ensure some minimal standards and to check for plausibility. We
selected 75 submissions for presentation at the workshop. One submission was later withdrawn.
EuroCG does not have formally published proceedings; therefore, we expect most of the
results presented here to be also submitted to peer-reviewed conferences and/or journals.
This book of abstracts, available through the EuroCG ’18 web site, should be regarded as
a collection of preprints. In addition to the 74 contributed talks, this book also contains
abstracts of the three invited lectures, given by Nina Amenta, Prosenjit Bose, and Rail
Rojas.

Many thanks to all authors, speakers, and invited speakers for their participation, and
to the members of the program committee and all external reviewers for their insightful
comments. We gratefully thank the supporters of EuroCG ’18 for making this event possible
and helping to keep the registration fees low: Freie Universitat Berlin, keylight GmbH, and
the German Research Foundation (DFG grant MU 3501/4-1). Special thanks to all members
of the organizing committee and members of the administration at Freie Universitit Berlin,
for their work that made EuroCG ’18 possible.
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Rigidity and Deformation

Nina Amental

1 UC Davis

Abstract

Download a triangle-mesh model of a 3D bunny, cut a stick for every edge, and attach them
together with a flexible joint at each vertex to re-create the model’s one-skeleton. Would it
stand up or collapse? Bet on “stand up” — Herman Gluck proved in 1975 that almost all
such triangulated one-skeletons are rigid. There are a few examples of non-rigid polyhedra;
that is, there is a motion under which the edge lengths remain fixed but the dihedral angles
change.

What if, instead of fixing the edge lengths, we fixed the dihedrals? Are there motions
which fix the dihedrals but allow the lengths to change? We show an analog of Gluck’s
theorem, that almost all polyhedra are “dihedral-rigid”.

Who cares? Well, deformation is the opposite of rigidity. What can rigidity—and the
examples of non-rigidity—tell us about how we can parameterize, measure and control the
deformations of a mesh? Parameterizing deformations by edge length turns out to be a bad
idea, but we demonstrate that there is reason to be much more hopeful about parameterizing
meshes by their dihedrals.

This is work with Carlos Rojas.

34th European Workshop on Computational Geometry, Berlin, Germany, March 21-23, 2018.

This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.






Online Competitive Routing on Delaunay
Triangulations and their Variants

Prosenjit Bose!

1 Carleton University

Abstract

A fundamental problem in computer science is that of finding a path in a graph. When the
whole graph is available, standard path-finding algorithms can be applied such as Depth-First
Search or Dijkstra’s Algorithm. However, the problem of finding a path is more challenging
in an online setting when at every step of the computation, only local information is available
to the routing algorithm (such as the neighbourhood of the current vertex in the path). The
difficulty is in deciding which edge to follow next in a path with only this local information.
It is even more challenging to find a path with constant spanning ratio.

We will highlight different techniques for finding a short path in various types of Delaunay
graphs in the online setting. We will highlight some of the difficulties involved with routing,
review some of the currently best-known routing algorithms and mention a few open problems.

34th European Workshop on Computational Geometry, Berlin, Germany, March 21-23, 2018.

This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.






Geometric Issues for Self-Driving Cars

Raiil Rojas?!

1 Freie Universitit Berlin

Abstract

In my talk, I will give an overview of a new iteration of the architecture of the autonomous
cars which have been developed at the Dahlem Center for Machine Learning and Robotics,
Freie Universitdt Berlin. I will explain how we mix reactive with deliberative control. I
will explain how we have experimented with geometry-based localization and the ideas we
have for localization and driving under tough weather conditions. In one project we are
investigating swarm behavior in traffic. At the end, I will present some ideas about the
evolution of the commercial introduction of autonomous vehicles in the near future.

34th European Workshop on Computational Geometry, Berlin, Germany, March 21-23, 2018.

This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.






Maximal Two-Guard Walks in a Polygon

Franz Aurenhammer!, Michael Steinkogler?, and Rolf Klein3

1 Institute for Theoretical Computer Science, University of Technology, Graz,
Austria, auren@igi.tugraz.at

2 Institute for Theoretical Computer Science, University of Technology, Graz,
Austria, steinkogler@igi.tugraz.at

3  Universitat Bonn, Institut fiir Informatik, Bonn, Germany,
rolf.klein@uni-bonn.de

—— Abstract
Deciding two-guard walkability of an n-sided polygon is a well-solved problem. We study the related

question of how far two guards can reach from a given source vertex, in the (more realistic) case
that the polygon is not entirely walkable. There can be ©(n) such maximal walks, and we show

how to find all of them in O(nlogn) time.

1 Introduction

We address a structural question on polygons, which is motivated by optimizing so-called
triangulation axes [1|, but is also interesting in its own right: How many adjacent ‘ear
triangles’ can be cut off from a polygon W, starting from a given vertex s? Equivalent is the
following question: How far can two guards reach when they are to walk on W’s boundary,
starting from s in different directions and keeping mutually visible?

Visibility problems of this kind have been studied already in the 1990s, where Icking
and Klein [5] gave an O(nlogn) time algorithm for deciding two-guard walkability of an
n-sided polygon W, from a source vertex s to a target vertex t. A few years later, Tseng
et al. [7] showed that one can find, within the same runtime, all vertex pairs (s,t) such
that W is two-guard walkable from s to ¢. Their result was improved to optimal O(n) time
by Bhattacharya et al. [2]. The algorithm in [5] actually provides a walk for W in case of its
existence but, on the other hand, only a negative message is returned in the (quite likely)
case that the polygon is not entirely walkable.

The present note elaborates on ‘how far’ in the latter case a polygon W is two-guard
walkable — a natural question that has not been considered in the literature to the best of
our knowledge. Such mazximal walks are not unique, in general, which complicates matters.
We present a strategy that finds, in O(nlogn) time, all possible maximal walks that initiate
at a given source vertex s of W. A more detailed description of the results is given in [6].

2 Preliminaries

Throughout, we let W denote a simple polygon in the plane with n vertices, one of them
being tagged as a source vertex, s. For two points  and y on the boundary, OW, of W,
we write < y if z is reached before y when walking on OW from s in clockwise (CW)
direction. For a vertex p of W, pT (repectively, p~) is the CW successor (predecessor)
vertex of p on OW. When p is a reflex vertex (that is, a vertex where the interior angle in W
is greater than ), then the two ‘ray shooting points’ for p in W can be defined, namely,
For(p) as the first intersection point with W in the direction from p~ to p, and Back(p) as
the first intersection point with W in the direction from p™ to p.

According to the aforementioned relation between walks and triangulations, we are only
interested in discrete and straight walks. That is, the guards when moving on OW directly

34th European Workshop on Computational Geometry, Berlin, Germany, March 21-23, 2018.

This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



01:2 Maximal Two-Guard Walks in a Polygon

Jjump’ from a vertex to the respective neighboring vertex (only one guard is allowed to
move at a time), and they never backtrack. A walk in W is now defined as a diagonal (I,r)
of W, I < r, such that the first guard can move CW from s to [, and the second guard
can move CCW from s to r, while keeping visible to each other at each step. An obvious
condition for W to be walkable till (I,7) is that the two boundary chains from s to [ and
to r, respectively (call them L and R), are co-visible in W. That is, each vertex on L is
visible from some vertex on R, and vice versa.

To characterize walkability, we will need a few more concepts, first introduced in [5]. We
say that at a pair (p,q) of its vertices, W forms a:

Forward deadlock if N
p(:ii-:f:g
Back(q) < p < ¢ < For(p). géck@‘)‘For(p)
S
Backward deadlock if F01‘Mck(p)
p < (For(q), Back(p)) < ¢. PR
CW wegde if p < g and there exists no vertex x of W with N
q < For(q) < x < Back(p). "yFor(g)
_~1Back(p)
b

(A CCW wegde is defined in a symmetric way.)

It is not hard to see that the two guards cannot pass beyond deadlocks and wedges
without losing visibility. This will be made specific in Section 4. Moreover, in [5] it has been
shown that these obstacles to walkability are indeed the only ones. By adapting their result
to our setting we get:

» Theorem 2.1. Let (I,r), l < r, be a diagonal of W, and denote with Q) the polygon bounded
by (I,7) and the chains L and R. Then (I,7) is a walk in W iff (1) L and R are co-visible
in Q, (2) Q forms no forward and no backward deadlock, (3) Q forms no CW wedge on L,
and no CCW wedge on R.

3 Extremal walks and obstacles

A walk (I,7) in W is termed mazimal if it cannot be extended by a single guard move.
More precisely, neither (I*,7) nor (I,77) is a walk in W. For finding maximal walks, we
will apply Theorem 2.1, but we have to do so with care since conditions (1) to (3) refer to
a (yet unknown) polygon @, rather than to the input polygon W as in [5].

To this end, for (1) we observe that the chains L and R are co-visible in @ iff they are
co-visible in W: The line segment Ir lies entirely within W, so the part of W different
from 0Q does not obstruct the view within Q.

Concerning (2), we notice that forward deadlocks formed by @ do not depend on the
shape of W \ 0Q), and thus trivially are also forward deadlocks formed by W. By contrast,
for a backward deadlock (p,q) formed by @, the points For(q) and Back(p) in @ may not
be the same as in W. (Namely, if at least one of them lies on Ir). But since these points are
larger than p and smaller than ¢, (p, ¢) is also a backward deadlock in W.

No such property holds for the wedges in (3), however. A wedge (p,q) formed by @ is
not neccessarily also formed by W: The segment I can obstruct the view to vertices = on
OW \ 0Q that prevent (p,q) from being a wedge in W. Fortunately though, such ‘induced’
wedges cannot occur once the co-visibility condition is satisfied; see [6].

In conclusion, it suffices to consider obstacles formed by W rather than by Q.
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For maximal walks, obstacles with extremal positions are relevant (in case of the presence
of obstacles at all, which we will assume in the sequel). A minimal CW wedge on the chain L
is a wedge (p,q) on L where the vertex ¢ is smallest possible. For a minimal CCW wedge
(p,q) on R, in turn, the vertex p has to be largest possible. Such extremal wedges need not
be unique. A representative can be found in O(nlogn) time by adapting an algorithm in [7].

A deadlock (p, q) (either forward or backward) is called minimal if there is no other such
deadlock (p/,q") with p’ < p and ¢’ > q. The minimal backward deadlock is unique, by the
following property: If (p,q) and (p’, ¢') are two backward deadlocks with p < p’ and ¢ < ¢/,
then (p,q’) is a backward deadlock as well.

To find this minimal deadlock, we simply let p and ¢ run through the reflex vertices of W,
starting from s in CW and CCW direction, respecticely, until the deadlock inequalities for
p as well as for ¢ are fulfilled at the same time. This can be done in O(n) time, if W has
been preprocessed accordingly in O(nlogn) time using ray shooting; see Chazelle et al. [3].

Minimal forward deadlocks, on the other hand, are not unique in general. This is one of
the reasons why maximal walks need not be unique. In fact, W can contain ©(n) minimal
forward deadlocks (p;, ¢;); see the figure below for i = 1,2, 3. The following algorithm reports
all of them. The points on OW relevant for this task are the reflex vertices p of W plus their
ray shooting points For(p). We assume their availability in cyclic order around W.

Algorithm MFD

Trace relevant points & in CCW order from s:
if = For(p) and p < x then
Put p to a CW sorted list F
else if z is a reflex vertex ¢ then
Search F for the smallest p with Back(q) < p
if p exists and is unmarked then
Mark p
Report the forward deadlock (p, q)
end if
end if
T = next relevant point
Delete from F' all vertices p with p > x

The proof of correctness of Algorithm MFD is omitted due to lack of space. The algorithm
can be implemented in O(nlogn) time. It scans O(n) relevant points, each being processed
in constant time apart from the actions on F', which take O(nlogn) time in total when a
balanced search tree for F' is used.

4| Constraints from obstacles

Minimal wedges and deadlocks, and also the required co-visibility, give rise to constraints
on [ and r for a maximal walk (I,7) in the polygon W. We will discuss the constraints on [
in some detail. The situation for r is symmetric.

We have to distinguish between absolute and conditional constraints. Among the former
is the list below. The first two constraints stem from the co-visibility of L and R; see [5].

(1) For each reflex p with p > For(p): | < p.
(2) For each reflex p with p < Back(p): | < Back(p).

EuroCG’18



01:4 Maximal Two-Guard Walks in a Polygon

(3) For the minimal CW wedge (p,q) on L: | < q.
(4) For the minimal backward deadlock (p,q): | < p.

The conditional constraints read as follows:

(I) For each pin (1): If r > p then I < p~.

(IT) For each p in (2): If » > Back(p) then I < p.

(III) For (p,q) in (3): If r > ¢ then | < q.

For convenience, we subsume the absolute constraints (1) - (4) into a single one, I < x
(where x is the smallest right-hand side value), and turn it into a conditional constraint:

(IV) If r > s then I < z.

Finally, the minimal forward deadlocks lead to absolute constraints which deserve special
attention. Whereas in the case of a backward deadlock (p, q), neither guard can walk beyond
these vertices, we have the following observation for the avoidance of a forward deadlock
(p,q): Only one of the bounds [ < p and r > ¢ needs to hold. Assume now that & minimal
forward deadlocks (p1,q1),.- ., (P, qr) exist, and let the p;’s be sorted in CW order.

» Lemma 4.1. Each of the following k + 1 pairs of bounds for (I,r) avoids all minimal
forward deadlocks: (p1,s), (P2,q1);- - (Pr, Ge—1), (87, qk)-

Proof. By minimality of the considered deadlocks, we know that the ¢;’s have to be sorted
in CW order. So, for each index ¢ > 2, the observation above tells us that the constraint
I < p; avoids the deadlocks (p;,¢;),--., (Pk,qx), and the constraint r > ¢;_1 avoids the
remaining deadlocks (p1,q1),...,(Pi—1,49i—1). Moreover, the constraint [ < p; suffices to
avoid all k deadlocks, and r > s is trivially fulfilled. The same is true for r > ¢ and [ < s—,
respectively. |

In summary, there are O(n) constraints in total, which can be found in O(nlogn) time
by the results in Section 3.

5 Computing all maximal walks

Section 4 tells us that the goal is to fulfill the constraints in (I) - (IV) simultaneously, though
for each of the bounding pairs in Lemma 4.1 separately. This gives all possible maximal
walks—granted the visibility of the reported vertex pairs. But let us come back to the issue
of visibility later in this section.

For a fized bounding pair (a,b), the constraint satisfaction problem can be transformed
into the following standard form: For two variables [ and r, with bounds a and b, respectively,
there are two sets Cr, and C'g of conditional constraints, of the form

r>y; = [ <x; and lng = r 2>y

respectively, with all values in {0,1,...,n}. (That is, the vertices wp,wsi,...,w, of W,
wo = w, = 8, are identified with their indices.) We want to compute the maximal pair (I, r)
such that

[ <a, r>b, and all c € Cp UCR are fulfilled.

We say that ¢; € Cp, is active at a value r if r > y; holds. Similarly, ¢; € Cr is active
at [ if we have [ < x;. The constraint fulfilling algorithm now simply alternates in scanning
through the sorted sets C, and Cg (in ascending order of y;-values, and in descending order
of xj-values, respectively), and adjusts the values of [ and r according to the constraints
that get active. (Active/inactive constraints are indicated with full/dashed arrows below.)
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Algorithm CFF(a,b,C,CR)

l=a,7=0b

repeat
x =min{z; | ¢; € C, is active at r}
I = min{l, 2}

y =max{y, | ¢; € Cg is active at [}
r = max{r,y}

untilr =y orr=1"»

Return the pair (I,7)

Suppose that a function VIS(I,r) is available which returns the first vertex r’ > r such
that (I,7") is visible in the polygon W. (If ' does not exist then n+ 1 is returned.) We now
present an algorithm that uses CFF and VIS as subroutines, and is capable of computing,
in O(nlogn) time, all maximal walks that exist in W. Let P = {(a1,b1),...,(am,bm)} be
the given set of bounding pairs. We assume ay,...,a,, (and thus by,...,b,,) in increasing
order. In the polygon below, (I,7) and (I’,r’) are the two possible maximal walks.

Algorithm MAXWALKS(P,C, Cr)
l=am, r=0
Trep =N+ 1
while [ > 0 and r < 7¢p do
(I,r) = CFF(,r,Cr,CR)
i =min{\ | ay >}
Teand = max{b;,r}
Tvis — VIS(Z, rcand)
y = max{p | all ¢ € C, active at g admit [}
if ryis < min{n,y} and ryis < rep then
Report (I, 7yis)

Trep = Tvis
end if
l=1-1

end while

» Lemma 5.1. Algorithm MAXWALKS is correct.

Proof. The value of r changes only when Algorithm CFF is called, and thus r cannot
decrease. The first call of CFF is with the bounding pair (a,,,b1), and the subsequent calls
are with (I,r) for | < a,,. As soon as we have r > by, some constraint in Cg is responsible
for this. So putting the bound r for the next call means no additional restriction. This
implies that, for all I, we have the equality CFF(l,r,Cr,Cgr) = CFF(l,b1,Cr,CR).

We now look at one iteration of the while loop, under the assumption that Algorithm
MAXWALKS worked correctly so far. That is, all maximal walks (', ") with I’ > [ have been
reported, and no other walks. Let l,q be the value of [ before the iteration. Then (I,r) =
CFF(loia—1, b1, CL, CRr) holds by the former equality. So we have (I,7) = CFF(I’,b1,C,CRr)
for lojq > I’ > 1, implying that there is no walk (I’,r) for these I’-values.

There also is no walk (I,7") with ' < 7¢ang, because the bounding pair (a;, ;) as well as
the constraints in C'r need to be respected. Concerning ryis, if ryis > n then no pair (I,r')
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with ' > rcang is visible, and thus no such pair can be a walk. Further, if ry;s > v then
some constraint in C7, is active at ryis but does not admit I, so (I, ryis) is not a walk either.
On the other hand, if ry;s < min{n,y} then (I, rs) is a walk, because the pair is visible and

fulfills all the constraints. The pair gets reported unless ryis > ryep, in which case (I, ryis) is
not maximal because a larger pair has been reported already. |

CFF can be implemented such that the bounding pair of the last call is remembered.
This way each constraint in Cr, U Cg is handled only once: If a call has been with (I,r), the
next call will be with (I, ") where I’ < [ (and thus 7/ > r). Thus only O(n) time is spent in
total for all calls to CFF from Algorithm MAXWALKS.

Computing the thresholds y can also be done in total O(n) time. We remember the
previous value of y, and scan down from this value as long as all active constraints of Cp,
are fulfilled by . The first violating constraint then gives the new value for y.

The function VIS can be performed in logarithmic time, using the techniques in Guibas
and Hershberger [4]. Clearly, the while loop is executed only O(n) times, which gives a
runtime of O(nlogn) for this part, and thus for Algorithm MAXWALKS overall.

6 Concluding remarks

We conclude the paper with a few brief comments.

The polygon example above shows that maximal walks differ in (combinatorial) length,
in general. It is also revealed that minimum forward deadlocks are not the only reason why
maximal walks are not unique.

The number of maximal walks is trivially bounded by n, because no two of them can
have the same [-vertex (or the same r-vertex).

Algorithm MAXWALKS provides each maximal walk in the form of a target pair (I,r),
but not the way how the guards actually move on W. Such a movement can be computed
in O(n) time, by applying the algorithm in [5] to the (already preprocessed) subpolygon
of W defined by s and (I, 7). Notice, however, that a fixed target pair (I,r) may leave to the
guards different ways to perform the walk. Different ways to triangulate W from s to (I,r)
then result, though the dual of any such triangulation has to be a path.
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—— Abstract

We study the computation of the diameter and radius under the rectilinear link distance within a
rectilinear polygonal domain of n vertices and h holes. We introduce a graph of oriented distances
to encode the distance between pairs of points of the domain. This helps us transform the problem
so that we can search through the candidates more efficiently. Our algorithm computes both the
diameter and the radius in O(min(n®,n? + nhlogh + x?)) time, where w < 2.373 denotes the
matrix multiplication exponent and x € Q(n) N O(n?) is the number of edges of the graph of
oriented distances. We also provide a faster algorithm for computing the diameter that runs in
O(n?logn) time.

1 Introduction

Diameters and radii are popular characteristics of metric spaces. For a compact set S with
a metric d: S x S — RT, its diameter is defined as diam(S) := maxpyes max,es d(p, q),
and its radius is defined as rad(S) := minyes max,es d(p, ¢). The points that realize these
distances are called the diametral pair and center, respectively. All of these terms are the
natural extensions of the same concepts in a disk and give some interesting properties of the
environment, such as the worst-case response time or ideal location of a serving facility.
Much research has been devoted towards finding efficient algorithms to compute the
diameter and radius for various types of sets and metrics. In computational geometry, one
of the most well-studied and natural metric spaces is a polygon in the plane. This paper
focuses on the computation of the diameter and the radius of a rectilinear polygon, possibly
with holes (i.e., a rectilinear polygonal domain) under the rectilinear link distance. Intuitively,
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this metric measures the minimum number of links (segments) required in any rectilinear
path connecting two points in the domain, where rectilinear indicates that we are restricted
to horizontal and vertical segments only.

Many problems that are easy under the L; or Euclidean metric turn out to be more
challenging under the link distance. For example, computing the shortest path between two
points in a polygonal domain can be done in O(nlogn) time for both Euclidean [8] and L,
metrics [10,11]. However, even approximating the same within a factor of (2 — €) under the
link distance is 3-SUM hard [12], and thus it is unlikely that a significantly subquadratic-time
algorithm is possible.

Computing the diameter and radius is no exception: when considering simple polygons
(i.e., polygons without holes) of n vertices, the diameter and center can be found in linear
time for both Euclidean [1,7] and L; metrics [2]. However, the best known algorithms for
the link distance run in O(nlogn) time [5,16]. Lowering the running times or proving the
impossibility of this is a longstanding open problem in the field. The only partial answer to
this question was given by Nilsson and Schuierer [14,15]; they showed that the diameter and
center can be found in linear time when we are only allowed to use rectilinear paths.

If we consider polygons with holes, the difference becomes even bigger: no algorithm
for computing the diameter and radius under the link distance is known, not even one that
runs in exponential time. In comparison, polynomial-time algorithms are known both for
diameter and radius under L; and Euclidean metrics.

1.1 Results

We introduce the graph of oriented distances, a graph that implicitly encodes the distance
between regions of the domain. In Section 3 we use this graph to transform the problem:
rather than searching pairwise distances in a list of potential candidates for diameter or
center, we transform the problem into a rectangle intersection problem. Intuitively speaking,
we cover the domain with several rectangles, and we find two pairs of rectangles that pairwise
intersect (and satisfy other properties). In particular, once we have found the diametral pair,
the four rectangles that satisfy the property can be used as a witness.

This transformation leads to an algorithm for computing both the rectilinear link diameter
and radius of a rectilinear polygonal domain with n vertices and h holes. The algorithm is
described in Section 4 and runs in O(n*) time, where w < 2.373 is the matrix multiplication
exponent [9]. Alternatively, we can also bound the running time in terms of the number x of
edges of the graph of oriented distances (y will range from (n) to O(n?) depending on P).
With this parameter the running time becomes O(n? + nhlogh + x?). In Section 5 we use a
different approach to obtain an O(n?logn) time algorithm to compute the diameter. All of
the algorithms presented in the paper can be modified to return not only diameter or radius,
but also the points that realize it (i.e., diametral pair and center).

1.2 Preliminaries

A rectilinear simple polygon (also called an orthogonal polygon) is a simple polygon that has
horizontal and vertical edges only. A rectilinear polygonal domain P with h pairwise disjoint
holes and n vertices is a connected and compact subset of R? with h pairwise disjoint holes,
in which the boundary of each hole is a simple closed rectilinear curve.

A rectilinear path w from p € P to g € P is a path from p to ¢ that consists of vertical
and horizontal segments, each contained in P, and such that along 7 each vertical segment is
followed by a horizontal one and vice versa. Recall that P is a closed set, so 7 can traverse
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the boundary of P (along the outer face and any of the h obstacles). We define the link length
of such a path to be the number of segments composing it. The rectilinear link distance
between points p,q € P is defined as the minimum link length of a rectilinear path from
p to g, and denoted by £p(p,q). It is well known that in rectilinear polygonal domains
there always exists a rectilinear polygonal path between any two points p, ¢ € P, and thus
the distance is well defined. Once the distance is defined, the definitions of rectilinear link
diameter diam(P) and rectilinear link radius rad(P) directly follow. For simplicity in the
description, we assume that a pair of vertices do not share the same x- or y-coordinate unless
they are connected by an edge.

2 Graph of Oriented Distances

For any domain P, we virtually shoot a ray left and right from any horizontal segment of
the domain until it hits another segment of P, partitioning it into rectangles. We call this
partition the horizontal decomposition, H(P). Similarly, if we shoot rays up and down from
vertical segments, we get the vertical decomposition, V(P). Observe that both decompositions
have linear size and can be computed in O(nlogn) time with a plane sweep.

Given two rectangles i, j € H(P)UV(P), we use i 1j to denote the boolean operation
which returns t¢rue if and only if (1) the rectangles ¢ and j properly intersect (i.e. their
intersection has non-zero area), and (2) one of i, j belongs to H(P), and the other to V(P).

» Definition 2.1 (Graph of Oriented Distances). Given a rectilinear polygonal domain P we
define the undirected graph G(P) = (H(P) UV(P),{ (h,v) € H(P) x V(P): hMv}).

In other words, vertices of G(P) correspond to rectangles of the horizontal and the vertical
decompositions of P. We add an edge between two vertices if and only if the corresponding
rectangles properly intersect. Note that this graph is bipartite, and has O(n) vertices. From
now on, we make a slight abuse of notation and identify a rectangle with its corresponding
vertex (thus, we talk about the neighbors of a rectangle i € H(P) in G(P), for example).

The name Graph of Oriented Distances is easily explained: consider a rectilinear path
7 between two points in P. Each horizontal edge of 7 is contained in a rectangle of H(P)
and each vertical edge is contained in a rectangle of V(P). A bend in the path takes place
in the intersection of the rectangles containing the two adjacent edges and corresponds to
an edge of G(P). So every rectilinear path 7 has a corresponding path 7" in G(P) and wvice
versa. Moreover, each bend of 7 is associated with an edge of 7'.

» Definition 2.2 (Oriented distance). Given a rectilinear polygonal domain P, let ¢ and j
be two vertices of G(P), let A(i, ) to be the length of the shortest path between ¢ and j in
graph G(P) plus one. We also define A(i,i) = 1.

We first list some useful properties of the oriented distance and then show the relationship
between the oriented distance A(-,-) in G(P) and the link distance ¢p(-,-) in P.

» Lemma 2.3. Let i,j,7',j' be any (not necessarily distinct) rectangles in H(P) U V(P)
such that i M1, and jMj. Then, the following hold: (a) A(i,j) = A(j,1), (b) A@,j) €

» Lemma 2.4. Let p and q be two points of the rectilinear polygonal domain P. If p and q lie
in the same vertical or horizontal rectangle of V(P) or H(P) then £p(p,q) =1 (if p and q share
a coordinate) or £p(p,q) = 2 (if both x- and y-coordinates of p and q are distinct). Otherwise,
leti € H(P), i € V(P), j € H(P) and j' € V(P) be vertices of the graph of oriented distances
such that p € iNi' and g € jNj'. Then €p(p,q) = min{ A(s, ), A(i,5"), A, 5), A, 57) }.
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Intuitively speaking, if we are given two disjoint rectangles 4,j € H(P), then A(3, j)
denotes the minimum number of links needed to connect any two points p € ¢ and ¢ € j
under the constraint that the first and the last segments of the path are horizontal. It follows
that the link distance is the minimum of the four possible options. These O(n?) distances
can be precomputed using algorithms by Mitchell et al. [13] in O(n? + nhlogh) time or by
Chan and Skrepetos [3] in O(n?loglogn).

3 Characterization via Boolean Formulas

Let d = max; jey(pyuv(p) A(i, j) be the largest distance between vertices of G(P). Similarly,
we define 7 = min;ey(pyuy(p) Max;jen(pyuv(p) Ali,j). Note that these two values are the
diameter and the radius of G(P) plus one. We use d and 7 to approximate the diameter
diam(P) and radius rad(P) of a domain P under the rectilinear link distance. First, we
relate the distance between two points p,q € P to the oriented distances between the
rectangles that contain p and ¢. Specifically, from Lemma 2.4, we know that ¢{p(p,q) =
min{ A(4,7), A(i,5), A, §), A(7',5') }, where 4,5 € H(P) are the horizontal rectangles
containing p and ¢, respectively, and ', j € V(P) are the vertical rectangles containing p
and ¢. Similarly, we define lﬁ(p7 q) = max{ A(Z, ), A(i, ), AW, §), A, j') }.

» Lemma 3.1. For any two points p,q € P, leti,j € H(P) andi', 5’ € V(P) be the rectangles
containing p and q, i.e., p € iNi' and g € jNj'. Then, it holds that {(p,q) — 2 < ¢p(p,q) <

This relation allows us to express the rectilinear link diameter of a domain in terms of d
and the radius in terms of 7.

» Theorem 3.2. The rectilinear link diameter diam(P) of a rectilinear polygonal domain P
satisfies diam(P) = d — 1 if and only if there exist i,1',5,j € H(P)UV(P) with i Ni' and
Jnyg’, such that A(i,j) = d and A(i', j') = d. Otherwise, diam(P) = d — 2.

Proof. First observe that for any pair of points p,q € P we have £p(p, q) < lﬁ(p7 q)—1< d—1
by Lemma 3.1. Hence, the diameter of P is at most d—1. Smmla]rly7 by the definitions of d
and (-, -), there must be a pair of points p,q € P so that /(p, q) = d. Again by Lemma 3.1 it
follows that diam(P) > £p(p,q) > {(p,q) —2=d — 2.

Next we show that the diameter is d — 1 if and only if the above condition holds. If
A(i,j) = d and A(7,j') = d, then by Lemma 2.3 and the fact that neither A(4, ;') nor
A(d', j) can be larger than d, we know that A, j) =A@, j) = d — 1. This 1mphes that a
pair of points p € iNé’ and ¢ € j N j" have ¢p(p,q) = d — 1. Thus, the diameter is d — 1.

Now consider any pair p, ¢ and the set of rectangles i,j € H(P) and ¢/, 5" € V(P) with
pe€ini and ¢ € jNj. Recall that £p(p,q) = min{A(4,7), A(i,7), A5, 1), A7, 7)) }. By
Lemma 2.3, A(4,7) and A(¢/, j') must differ by exactly one from A(#, ) and A(i,5’). That
implies that two distances may be d— 1, but if the condition in the lemma is not satisfied, at
most one can be d and the fourth must be d — 2 or less. Therefore, if the condition is not
satisfied for 4,4, 7, j/, then the diameter is indeed d — 2. <

» Theorem 3.3. The rectilinear link radius rad(P) of a rectilinear polygonal domain P
satisfies rad(P) = # — 1 if and only if for all i,7' € H(P)UV(P) with i M4’ there exist j,j' €
H(P)UV(P) with j (1] such that A(i, j) > 7 and A(i', ') > 7. Otherwise, rad(P) =7 — 2.

With the above characterization, we can naively compute the diameter and the radius
by checking all O(n*) quadruples (4,7, j, j') € H(P) x V(P) x H(P) x V(P). However, the
approach can be improved by using G(P).
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» Theorem 3.4. The rectilinear link diameter diam(P) and radius rad(P) of a rectilinear
polygonal domain P consisting of n vertices and h holes can be computed in O(n?+nhlogh +
x?2) time, where x is the number of edges of G(P) (i.e., the number of pairs of intersecting
rectangles of H(P) and V(P)).

4 Computation via Matrix Multiplication

In this section we provide an alternative method to compute the diameter. Although
not described here, a similar approach can also be used to compute the radius. This
method also uses the condition in Theorem 3.2, but instead exploits the behavior of matrix
multiplication on (0,1)-matrices. Recall that, given two (0,1)-matrices A and B, their product
s (AB); ; = 25 (Aik - Brj) = {k: Aig =1ADBg; =1}

We define the (0,1)-matrices I, D and M. Note that we slightly abuse our notation and
use %, j to indicate both matrix indices and their corresponding rectangles.

0 otherwise. 0 otherwise. 0 otherwise.

1 ifiny, 1 if A(i, ) = d, 1 if (ID), . >0,
i = { Dij = { M;; = o
Intuitively, matrix I indicates for each pair of rectangles if they properly intersect and
have different orientations, whereas D indicates which rectangles are at oriented distance d
from each other. For any entry in their product we then have

(ID); ;0 = I{J": (GNJ) A A S) = d) Y.
The matrix M then records which entries in (ID) are non-zero and we get
(DM), 5 =1{j: Diyg=1AMjz =1} = {j: AGG,j) =dA(Ey: jNJ AAGS) = d)}-

So (DM); # > 0 if and only if there exists a pair j, ' for which A(4,j) = d, j M and
A(i,j') = d. By Theorem 3.2 if (DM); ;s > 0 and I, » = 1 for any pair ¢,7, then the
diameter is d — 1 and otherwise it is d — 2.

» Theorem 4.1. The rectilinear link diameter diam(P) and radius rad(P) of a rectilinear
polygonal domain P consisting of n vertices can be computed in O(n*) time.

5 Computing the Diameter Faster

To test the condition of Theorem 3.2 we could simply iterate over each pair of rectangles
i,7 such that A(7,j) = d. For each such pair we could compute all pairs (7', 7") such that
iMi and jMj" and test if A(7/,j') = d. However, doing this naively may take ©(n*) time.
Note however there are only O(n?) unique pairs (i’, ;") to test and regardless of which pair
(i, j) was used to generate it, the diameter of P is d — 1 if and only if at least one pair (i/, j)
has A(i’,j') = d. We show how to more efficiently generate these pairs for the diameter.
Unfortunately for the radius we must remember which pair (4, j) generates each pair (¢, j)
so this optimization doesn’t work for the radius.

» Theorem 5.1. The rectilinear link diameter diam(P) of a rectilinear polygonal domain P
of n vertices can be computed in O(n*logn) time.

Proof. Sketch. First, for each rectangle ¢, we find in O(nlogn) time the set @; of rectangles
at distance d from 4. Then, using a ray-shooting data-structure by Giyora and Kaplan [6],
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we compute the set R; which contains all rectangles j’ that are orthogonal and intersect a
rectangle j € Q;. We then store in a list for each rectangle in j' € Q; the segment i. After
doing this for each rectangle again iterate over all rectangles and use j' to denote the current
rectangle. For each j’, let L;; denote the set of rectangles ¢ with j° € R;, which we stored
in a list. Then using the same ray-shooting data structure we can compute in O(nlogn)
time the set M}, of all rectangles that are orthogonal to and intersect a rectangle i € L.
Then we simply check every pair (¢, j') with ¢’ € L, and if any such pair is at distance d we
report that the diameter is d — 1. Since we iterate over all O(n) rectangles twice and spend
O(nlogn) time on each of them the total running time is O(n?logn). <
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— Abstract

Given two sets of points A and B in a normed plane, we prove that there are two linearly separable
sets A" and B’ such that diam(A’) < diam(A), diam(B’) < diam(B), and A’UB’ = AUB. As a
consequence, some Euclidean clustering algorithms are adapted to normed planes.

1 Introduction and notation

We denote by E? the Euclidean plane, and by M? a normed plane, namely, R? endowed with
anorm | - ||. We call B(z,r) the ball with center x € M? and radius r > 0, and S(x,r) the
sphere of B(xz,r). We use the usual abbreviations diam(A) and conv(A) for the diameter
and the convez hull of a set A, ab for the line segment connecting two points a,b € M2, and
(a, by for its affine hull.

We say that two sets of points in M? are linearly separable (for short, separable) if there
exists a line L such that each set is situated in a different closed half-plane defined by L. In
Section 2, our Theorem 2.3 extends the following result ([4]) to any normed plane.

» Theorem 1.1. Let A and B be two finite sets in E2. Then, there are two separable sets
A" and B’ such that diam(A’) < diam(A), diam(B’) < diam(B), and A’ UB" = AU B.

Given a set S of n points in the plane, a cluster is any non-empty subset of S, and a k-
clustering is a set of k clusters such that each point of S belongs to some cluster. In Section
3, we apply Theorem 2.3 in order to solve some k-clustering problems in any normed plane.

2 Linear separability of clusters

In the rest of this section we work in M? and our objective is to prove the statement of
Theorem 1.1 in this context. Without loss of generality, we assume that diam(A) > diam(B).
Let us denote {u1,us,...,us} the clockwise sequence of points where the boundaries of
conv(A) and conv(B) cross (Figure 1). conv(A) \ conv(B) and conv(B) \ conv(A) consist of
two interlacing sequences of polygons {A1, Ao, ..., Ay} and {B1, Ba, ..., B;} such that (for
convenience, ug; 1 := w1 and Az := Aq): A; touches B; at ug;; B; touches A; 11 at ugitq;
the vertices of any A; belong either to A\ B or to conv(A) N conv(B); the vertices of any
B, belong either to B\ A or to conv(A4) N conv(B). We say that (A;, B;) is a bad pair if
diam(A; UBj) > diam(A). In such a case, A; is a bad set and B, is its bad partner, and vice
versa. If ||a; — b;|| > diam(A) for some a; € A; and b; € B;, then both a; and b; are bad
points, a; is a bad partner of b; (and vice versa), and the segment W is a bad segment.

» Lemma 2.1. Let (A;, Bj) and (Ay, Bjr) be two bad pairs such that A; # Ay and Bj # Bjr.
Let us choose a; € A;,b; € Bj,ay € Ay, by € By such that ij and a; b are bad segments.
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Figure 1 A (blue points) and B (red points) are not separable (left). AU B can be split by L
into new subsets A’ and B’ without increase of the Euclidean diameters (right).

If these bad segments do not cross, then A;, Ay, By, Bj (disregarding symmetric variations)
is the sequence clockwise of these polygons and there is not any bad set from A between Bj
and Bj.

Proof. Let us assume that A;, Ay, Bj, By, a;,ay,bj, and bj satisfy the conditions of the
Lemma. All of them must be situated around conv(A N B). If a;b; Naybj = (), there are
two cases (disregarding symmetric variations) for the relative positions of the polygons (and
points):

Case 1: Ay, By, Ay, B; is the clockwise sequence of the polygons. Since the sum of the
diagonals of the quadrangle a;, b;/, a;r, b; is larger than the sum of two opposite sides, we get
a contradiction:

diam(A) + diam(B) > [la; — air|| +[|bj = bjr|| = [lai = bj[| + [|air = bje[| > 2 diam(A).

Case 2: A;, Ay, By, B; is the clockwise sequence of the polygons. Let us assume that there
exists a bad point a,, € A,, for some m, such that Bj,, A,,, B; is the clockwise sequence.
Let by be a bad partner of a,, for some k. The half-lines starting in a.,, and connecting a,,
with a; and with a;, and the lines (a,,,b;) and (am,bj ), divide the plane into six zones
(see Figure 2). If by is situated in the shaded zone in Figure 2, then ||a,, — bg|| < diam(B)
and a,,by is not a bad segment. If by belongs to any other zone, it is possible to consider

a quadrangle whose vertices are situated in clockwise order like in Case 1, and we get a
contradiction. <

» Remark 1. In the Euclidean subcase, every two bad segments from disjoint bad pairs
(Ai, Bj) and (Air, Bjs) cross ([4]). The property that the longest side of every obtuse triangle
is opposite to the obtuse angle is used in the proof. Nevertheless, this property is not true
for any normed plane, and there exist bad segments that do not cross.

Before splitting the sets A and B, we group all the adjacent bad subsets A; from the
cluster A. Thus, we define a group of bad subsets from A to be a maximal cyclic subsequence
of bad subsets A;. (Intervening subsets B; of the other cluster must not be bad). The same
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Figure 2 If (as,b;) and (a;,b;/) are bad partners, then the shaded zone cannot contain a bad
partner of a,, € A,

is made with cluster B. These maximal cyclic groups are noted by Aj, As, .. .,Ap and
By, Bs,...,Bg. B

We say that (A;, B;) is a bad pair of groups if there exists a bad segment from A; to
Bj. Two pairs of sets (A;, B;j) and (A;/, Bj) cross if there exist two (one from every pair)
bad segments that cross. Similarly, (A;, B;) and (Ay, Bj/) cross if there exist two (one from
every pair) bad segments that cross.

The structure of the rest of the section is similar to that presented by [4], but the proofs
are different due to Remark 1. Some of the these proofs are omitted in this extended

abstract.
» Lemma 2.2. The following holds:

1. Let (Ai, B;j) and (A, Bj/) be two bad pairs such that A; # Ay and Bj # By, If A; and
Ay belong to a group A, for some n, then B; and By belong to a group B, for some t.

2. The number of maximal cyclic groups for A and for B is the same.

3. Let (A;, Bj) and (Ayr, Bjr) be two bad pairs of groups such that A; # Ay and B # By
Then (A;, Bj) and (Ay, Bji) cross.

Proof. Statement 2 is a consequence of 1. In order to prove 1, let us assume that (A;, B;) and
(Air, Bjr) are two disjoint bad pairs such that A;, A; € A, for some n. If B; and B belong
to different groups, there is a bad pair (A,,, Bi) for some m and k such that A,, separates
B; from Bj.. (A;, Bj) and (A, Bj) must cross (Lemma 2.1), and since A; and A; belong
to the same group, only one of the pairs (not both) and (A,,, By) cross. For simplicity, let us
assume that (A;, Bj) and (A, By) cross. There exist a,, € Ap,, b, € By, ay € Ay, bjr € Bjs
that would be situated in an impossible clockwise sequence a,, bg, a7, bjr (similar to Case 1
in Lemma 2.1), and we get a contradiction.

Let us see Statement 3. Let (A;, B;) and (Ay, Bj/) be two bad pairs of groups such
that A; # Ay and B; # Bj. The clockwise order cannot be A;, B, Ay, B; (due to the
arguments used in Case 1 of Lemma 2.1); and neither A, /Lz,Bjr, Bj, because then Bj/ and
Bj cannot be separated by a bad polygon A,, (Lemma 2.1, Case 2). Therefore, the clockwise
order must be A;, Ay, Bj, Bjr, and 3 holds.

<

The groups from A and B are interlacing, and Statement 3 of Lemma 2.2 implies that
there exist a complete matching among the groups, and the number of groups from each
cluster has to be odd.

EuroCG’18
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Let A; be the last bad set of a group (in clockwise order), and let Bj: be the last bad
partner of A;. Let Bj; be the first bad set after A;, and let A; be the first bad partner of
B;. We choose the separating line L to go through the point us; before B; and the point
ugjr 41 after By (see Figure 1). We define B’ to be the points in A U B lying on the same
side of L as B; and Bj/, and A’ as the remaining points.

» Theorem 2.3. Let A and B be two finite sets in M2. Then, there are two linearly separable
sets A" and B’ such that diam(A") < diam(A), diam(B’) < diam(B), A’UB" = AU B, and

perimeter(conv(A)) + perimeter(conv(B)) > perimeter(conv(A’)) + perimeter(conv(B’)).

Proof. We consider A;, Bj, A/, Bjs,L, A" and B’ defined above. Since L cuts all bad pairs,
diam(A’) < diam(A). In order to prove diam(B’) < diam(B), let us consider a,b € B’. If
a,b € B there is nothing to prove. In any other case, let us assume that ||a — b|| > diam(B).
Let us choose a; € A;, bj € Bj, ai € Ay, bjy € By such that (a;,bj) and (ay,b;) are bad
pairs. There are three possible cases.

Case 1: a € conv(A)\conv(B) and b € conv(B)\conv(A). The points {b;, a,b,bj/, a;,a;}
are situated around conv(A) N conv(B) and it is possible to consider a clockwise order. If
{a,b} is the clockwise order of these two points, we observe the quadrangle with vertices
(clockwise) {b;,a,b,a;} and the following contradiction holds:

diam(A) + diam(B) > |la — ay || + ||b — bj|| > ||b; — ai|| + ||a — b|| > diam(A) + diam(B).

If the clockwise order is {b,a}, we obtain a similar contradiction on the quadrangle with
vertices (clockwise order) {a;,b,a,b; }.

Case 2: a,b € conv(A) \ conv(B). Case 1 implies that [|[b — b|| < diam(B) for every
b € (conv(B)\ conv(A))NB’. If {a,b} is the clockwise order of these two vertices, applying
the above arguments to the quadrangle {b;,a,b, a; }:

diam(A) + diam(B) > |la — ay || + [|b — bj|| > ||b; — ai|| + ||a — b]| > diam(A) + diam(B),

which is again a contradiction. If the order is {b,a}, we use the quadrangle {b;,b,a,a; }.
Case 3: a € conv(A) \ conv(B) and b € conv(A) Nconv(B). Since the distance from a is
maximized at some vertex of conv(A4) N conv(B) N conv(B’), we may assume that b is one
of these vertices and apply an analysis similar to Case 1 or to Case 2.
The proof in [4] for the perimeter inequality is valid for M?2. |

3 Some applications to clustering problems

From now on, S is a set of n points in M?. We assume that in our computation model an
oracle answers the required questions about the unit ball of M? (see Section 3.3 of [6]).

3.1 2-clustering problem: minimize the maximum diameter.

Given a metric, the 2-clustering problem of minimizing the mazimum diameter asks about
how to split S into two sets minimizing the maximum diameter. Avis [1] solves the problem
in E? looking for two separable sets with the following algorithm (O(n? log® n) time): sort
the distances d; between the points of S into increasing order (O(n?logn) time); locate the
minimum d; that admits a stabbing line! (using [5] for the stabbing line) by a binary search.
We obtain the following as a consequence of Theorem 2.3.

LA stabbing line for a set of segments is a line that intersects every segment of the set.
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» Corollary 3.1. Given a set of n points in M?, the 2-clustering problem of minimizing the
mazimum diameter can be solved in O(n> log2 n) time using the algorithm presented by Avis.

The similar approach of Asano et al. ([2], that reduces the cost of Avis’ approach to O(nlogn)
time using a maximum spanning tree) could be used as well, but as far as we know, an
efficient method to build a maximum spanning tree for any normed plane is not known.

3.2 2-clustering problem: constraints over the diameters

Given two fixed numbers dy > dy > 0, Hershberger and Suri ([8]) solve in O(nlogn) time the
problem of dividing S into two sets S; and Ss, such that diam(S7) < d; and diam(Ss) < do
in E?. They use the fact that if ||a — b|| > di, then B(a,ds) N B(b,d1) can always be split
into two subsets whose diameters are at most d; and da, respectively. Nevertheless, the
following example shows that this cannot be extended to M2. Let us consider a = (0,0),
b= (—9.81,6.24), and the strictly convex norm whose unit sphere is bounded by the two arcs
of circles with center at (0,10) and in (0, —10), respectively, and radius 5v/13 (see Figure
3). Let {r = (—-9.39,72), s=(-8.24,s2)} € S(a,1) and {p,q} = S(a,1) N S(b,1.1), such
that 7o > 0, so > 0, and {p,, s, q} is the clockwise order on S(a,1). Then, ||a — b|| > 1.1,
min{||s — pll, I — al, I — qll} > 1.1 and min{Jlr — pll, s — qll} > 1, and 8 = {p,q,r, 5} €
B(a,1) N B(b,1.1) cannot be divided into two subsets whose diameters are at most 1.1 and
1, respectively.

Figure 3 S = {p, ¢, 7, s} cannot be divided into two subsets with diameters less than or equal to
1.1 and 1, respectively.

Theorem 2.3 can help to solve this problem in any normed plane as follows. Build the
graph (S, Ey4, ) with the points of S and the set of edges F4, connecting two points of S at
distance more than d; (in O(n?logn) time). Check if E4, has a stabbing line (in O(nlogn)
time with the algorithm presented in [5]). If the stabbing line does not exist, there is no
solution (Theorem 2.3). If some stabbing lines exist, check if one of them split .S into two
subsets with the required diameters.

EuroCG’18
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3.3 k-clustering problems

Let us consider the k-clustering problem of minimizing F to the diameters (equivalently,
to the radii), where F is a monotone increasing function F : R¥ — R that is applied
to the diameters (equivalently, to the radii) of the clusters. For instance, F can be the
mazximum, the sum, or the sum of squares of the diameters (or the radii). Capoyleas, Rote
and Woeginger (see Lemma 8 and Theorem 9 in [4] for details) design an algorithm that
solves these geometric k-clustering problems in polynomial time. Using Theorem 2.3 and a
result of Banasiak [3] describing precisely the intersection of two balls, we prove the following
statements. The proofs are omitted in this extended abstract.

» Theorem 3.2. Let S be a set of n points in M?. Consider the k-clustering problem of
minimizing a monotone increasing function F : RF — R that is applied to the diameters
or to the radii of k subsets of S. Then there is an optimal k-clustering such that each pair
of clusters is linearly separable. A solution can be obtained by the algorithm presented by
Capoyleas-Rote- Woeginger, and it takes polynomial time for the case of the diameters.

3.4 3-clustering problems: minimize the maximum diameter

» Theorem 3.3. Given a set of n points in M? and d > 0, we can determine in O(n3 log® n)
time whether there is a partition of S into sets A, B,C with diameters at most d, and
construct in O(n? log® n) time a 3-partition of S such that the largest of the three diameters
is as small as possible.

Proof. (Scheme) A specific approach by Hagauer and Rote proves this result in E2. For
the first statement, the authors use some lemmas (from Lemma 3 to Lemma 6 in [7]) and
Theorem 1.1. Theorem 2.3 extends Theorem 1.1, and we prove results similar to the rest
of lemmas in [7] for any normed plane using the notion of Birkhoff orthogonality instead
of the Euclidean one. Regarding the complexity of the algorithm, we can justify that the
data structure introduced by Hershberger and Suri ([8]) is usable in the same way that in
E2. Finally, a binary search on the (Z) distances occurring in S solves the optimization
problem. <

—— References

1 D. Avis. Diameter partitioning. Discrete Comput. Geom., 1:265-276, 1986.

2 T. Asano, B. Bhattacharya, M. Keil, and F. Yao. Clustering algorithms based on minimum
and maximum spanning trees. Proc. 4th ACM Symposium on Computational Geometry,
252-257, 1988.

3 J. Banasiak. Some contributions to the geometry of normed linear spaces. Math. Nachr.,
139:175-184, 1988.

4 V. Capoyleas, G. Rote, and G. Woeginger. Geometric clustering. J. Algorithms, 12:341-356,
1991.

5 H. Edelsbrunner, H.A. Mauer, F.P. Preparata, A.L. Rosenberg, E. Welzl, and D. Wood.
Stabbing line segments. BIT, 22:274-281, 1982.

6  P. Gritzmann, and V.L. Klee. On the complexity of some basic problems in computational
convexity: I. Containment problems. Discrete Math., 136:129-174, 1994.

7 J. Hagauer, and G. Rote. Three-clustering of points in the plane. Comput. Geom., 8:87-95,
1997.

8 J. Hershberger, and S. Suri. Finding tailored partitions. J. Algorithms, 12:431-463, 1991.




Coxeter triangulations have good quality

Aruni Choudhary?!, Siargey Kachanovich?, and Mathijs
Wintraecken?

1 Max Planck Institute for Informatics, Saarland Informatics Campus
Saarbriicken, Germany
2  Université Cote d’Azur, Inria, France

—— Abstract
Coxeter triangulations are triangulations of Euclidean space based on a single simplex. By this we
mean that given an individual simplex we can recover the entire triangulation of Euclidean space
by inductively reflecting in the faces of the simplex. In this paper we establish that the quality
of the simplices in all Coxeter triangulations is O(1/v/d) of the quality of regular simplex. We
further investigate the Delaunay property (and an extension thereof) for these triangulations. In
particular, one family of Coxeter triangulations achieves the protection O(1/d?). We conjecture
that both bounds are optimal for triangulations in Euclidean space.

1 Introduction

1.1 Motivation and related work

Well shaped simplices are of importance for various fields of application such as finite element
methods and manifold meshing. Poorly-shaped simplices may induce various problems in
finite element method, such as large discretization errors or ill-conditioned stiffness matrices.
A simplex is well shaped if its quality is good, which can be expressed in terms of various
quality measures. Some examples of quality measures are: the ratio between minimal height
and maximal edge length ratio called thickness, the ratio between volume and a power of the
maximal edge length called fatness, and the inradius-circumradius ratio. Bounds on dihedral
angles can also be included in the list of quality measures. We stress that there are many
other quality measures in use and authors often find useful to introduce measures that are
specific to whatever problem they study. Finding triangulations, even in Euclidean space, of
which all simplices have good quality is a non-trivial exercise in arbitrary dimension.
In this paper we shall discuss Coxeter triangulations.

» Definition 1.1. A monohedral' triangulation is called Cozeter triangulation if all its
d-simplices can be obtained by consecutive reflections through facets of the d-simplices in
the triangulation.

There are four families of Coxeter triangulations and five exceptional ones. All three
two-dimensional Coxeter triangulations and the simplices of the three three-dimensional
Coxeter triangulations are illustrated in Figure 1. For an extended introduction we refer
to the pioneering paper on reflection groups by Coxeter [10] and the classical book on Lie
groups and algebras by Bourbaki [5]. Another classical reference book is “Sphere packings,
Lattices, and Groups” by Conway and Sloane [9].

To our knowledge, these are the triangulations with the best quality in arbitrary dimension.
In particular, all dihedral angles of simplices in Coxeter triangulations are 45°, 60° or 90°,
with the exception of the so-called G5 triangulation of the plane where we also can find an

L A triangulation of R? is called monohedral if all its d-simplices are congruent.
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Figure 1 Above: Coxeter triangulations in R?. Below: simplices of Coxeter triangulations in R®
represented as a portion of a cube.

angle of 30°. This is a clear sign of the exceptional quality of the simplices involved. Our
goal is to exhibit the extraordinary properties of Coxeter triangulations and promote their
use in the Computational Geometry community.

The notion of Coxeter triangulations was introduced to the computational geometry
community by Dobkin, Wilks, Levy and Thurston in [11], where they tackled the problem of
contour-tracing in R?. The choice of Coxeter triangulations was motivated by the following
requirements:

It should be easy to find the simplex that shares a facet with a given simplex.

It should be possible to label the vertices of all the simplices at the same time with indices
0,...,d, in such a way that each of the d + 1 vertices of a d-simplex has a different label.
The triangulations should be monohedral, meaning that all simplices are congruent.

All simplices should be isotropic, meaning that they should be roughly the same in all

directions.

Coxeter triangulations exactly fit these requirements. After comparing the inradius-circumradius
ratio of the simplices in the triangulations Dobkin et al. chose the A; Coxeter triangulation
as the underlying triangulation for their contour-tracing algorithm.

The same A, Coxeter triangulation appeared in the works by Adams, Baek and Davis [1]
and Choudhary, Kerber and Raghvendra [7], among others.

The three-dimensional Coxeter triangulation As has attracted attention in the 3D mesh
generation community for the high-quality of its simplices. The vertex set of this triangulation
is also known as the body-centred cubic lattice, or bee lattice, and its tetrahedron is sometimes
referred as Sommerville’s type Il tetrahedron or simply bee-tetrahedron. This tetrahedron
has been shown to be the best-conditioned space-filling tetrahedron out of all space-filling
tetrahedra used in the 3D mesh community by a number of conditioning measures.

Apart from quality, we are also interested in the stronger requirement of protection [2],
which is specific to Delaunay triangulations. It has been proven that protection guarantees
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good quality [2]. Some algorithms were introduced for the construction of a protected set,
such as the perturbation-based algorithms in [3] and [4]. Both of these algorithms take a
general e-net in R? as input and output a -protected net with & of the order just Q(2_d25).
The d-dimensional Coxeter triangulation A4 provides us another extremity. As we will see in
the following, this highly-structured triangulation is Delaunay with protection O(d%e). This
protection value is the greatest in a general d-dimensional Delaunay triangulation we know.

The Coxeter triangulations we study are intricately linked with root systems and root
lattices. Delaunay triangulations of the root lattices have been studied by Conway and
Sloane [9] and Moody and Patera [12]. These triangulations are different from the ones we
study: the vertex sets we use are not necessarily lattices (see Theorem 4.1).

1.2 Contribution

In this paper we give explicit expressions of a number of quality measures of Coxeter
triangulations for all dimensions, presented in Section 4. This is an extension of the work
by Dobkin et al. [11] who presented a table of the values of the inradius-circumradius ratio
for the Coxeter triangulations up to dimension 8. We also provide explicit measures of the
corresponding simplices in the full version of the current paper [8, Appendix B], allowing the
reader to compute quality measures other than the ones listed.

In Section 2, we state the theorem of optimality of the regular d-simplex for each of the
chosen quality measures. This theorem justifies the definition of the normalized versions of
these quality measures.

In Section 3, we established a criterion to identify if any given monohedral triangulation
is Delaunay.

The proofs of the statements can be found in the full version [8], as well as extra
introductory material.

1.3 Future work

The simplex qualities, defined in Definition 2.1, of the four families of Coxeter triangulations
behave as O(1/v/d) in terms of dimension. We conjecture that this quality is optimal for a
general space-filling triangulation in R%. In addition, the d-dimensional Coxeter triangulation
A has the relative Delaunay protection O(1/d?). We further conjecture that it is optimal for a
general space-filling triangulation in R?. These conjectures are motivated by the extraordinary
lower and upper bounds on the dihedral angles of simplices in Coxeter triangulations; they
are precisely 45°, 60° or 90° for the four families. Moreover the circumcentres of the simplices
of Ay lie very far inside the simplices.

2 Quality definitions

The quality measures we are interested in, we call aspect ratio, fatness, thickness and radius
ratio. Their formal definitions are as follows:

» Definition 2.1. Let h(c) denote the minimal height, r(¢) the inradius, R(c) the cir-
cumradius, vol(c) the volume and L(o) the maximal edge length of a given d-simplex
0.

The aspect ratio of o is the ratio of its minimal height to the diameter of its circumscribed

ball: a(0) = ook

The fatness of o is the ratio of its volume to its maximal edge length taken to the power

d: ©(0) = 757
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4:4 Coxeter triangulations have good quality

The thickness of o is the ratio of its minimal height to its maximal edge length: 6(o) =

h(o)
L(o)"
The radius ratio of o is the ratio of its inradius to its circumradius: p(o) = ;(((;))

To be able to compare the presented quality measures between themselves, we will
normalize them by their respective maximum value. As we show, all of these quality measures
are maximized by regular simplices.

» Theorem 2.2. Out of all d-dimensional simplices, the reqular d-simplex has the highest
aspect ratio, fatness, thickness and radius ratio.

For a quality measure k we will define the normalized quality measure &, such that for
each d-simplex o, &(0) = %, where A is the regular d-simplex. Theorem 2.2 ensure that

the quality measures p, &,  and © take their values in [0, 1] surjectively.

3 Delaunay criterion for Coxeter triangulations

Many of the provably good mesh generation algorithms are based on Delaunay triangulations
[6]. This motivated us to investigate if Coxeter triangulations have the Delaunay property.
We established the following criterion, extending the work by Rajan [13] on triangulations
consisting of self-centered simplices.

» Definition 3.1. A simplex is called self-centred if it contains its circumcentre inside or on
the boundary.

» Theorem 3.2. A Cozeter triangulation is Delaunay if and only if its simplices are self-
centred.

Because some of the triangulations that interest us here are Delaunay, we will also look
at their protection value.

» Definition 3.3. The protection of a d-simplex ¢ in a Delaunay triangulation on a point
set P is the minimal distance of points in P \ o to the circumscribed ball of o:

§(o) = ir}gf\ d(p, B(c)), where B(o) is the circumscribed ball of o.
peE o

The protection § of a Delaunay triangulation 7 is the infimum over the d-simplices of the
triangulation: § = inf,c7 (o). A triangulation with a positive protection is called protected.

We define the relative protection 3(0) of a given d-simplex o to be the ratio of the
8(c)
R(o) "

The relative protection & of a Delaunay triangulation 7 is the infimum over the d-simplices
of the triangulation: § = inf,c7 0(c). We can determine if a Coxeter triangulation is not
protected with the help of the following theorem.

protection to its circumscribed radius: 6(o) =

» Theorem 3.4. 1. A Delaunay triangulation of R% where a simplex with mazimal circum-
radius contains the circumcentre on its boundary is not protected.

2. If a simplex of a Coxeter triangulation contains the circumcentre on its boundary, then
the triangulation is non-protected Delaunay.

3. If a simplex of a Coxeter triangulation contains the circumcentre strictly inside, then the
triangulation is Delaunay with a non-zero protection.
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4 Main result

In this section we present a table with explicit expressions of quality measures of Coxeter
triangulations. In addition to that we also identify which Coxeter triangulations are Delaunay
and give their protection values. Finally, we identify which Coxeter triangulations have
vertex sets with lattice structure.

» Theorem 4.1. The normalized fatness, aspect ratio, thickness and radius ratio of simplices
in Cozxeter triangulations, as well as Delaunay property are:

Fatness ©'/¢ Aspect Ratio & | Thickness 6 | Radius Ratio p | Delaunay?
Aq, 23/2 2vd
T¥2/d 6d d+1 6d
d odd (va+T) \/ @@y \/ @+1)(d+2) v
Aa, 23/2(\/aFT)t—2/4 2
d even £/ d(d+2) Vd+2
B 21/241/d dv2 1 2d X
d Va(varn) (d+1)vVd+2 dt1 VaFz(1+(d—1)v?2)
C V2 V2d 1 2vd v
d Va( r4_1)1/d dt1 CES) 2+(d—1)v2
D 21 2+2/d d\/i 1 d\/ﬁ x
d \/E(\/m)l/d’ (d+1)v/d+4 dt1 (d—1)vd+a
2 2/ 64 2 1 1
Es ) 137781 7 /id 2 X
> 1 7V13 V21 1413
Er 1</177147 104 24 117 X
E 8/ 1 8v19 2V19 8v19 X
8 3240 171 57 95
7 8/ 1 4/2 25 12
Fy 08 a5 a5 FTorsva) v
g V2 1 1 2
G2 3 3 2 1+/3 v

Out of them, only A family triangulations have a non-zero relative protection value equal
to:

VA +2d+24-Vd2+2d 12
Vd? +2d

Only A family, C family and Dy triangulations have vertex sets with lattice structure.

(S5

For the proof, refer to the full version [8]. The corresponding quality measures for the
regular d-simplex A (which does not correspond to a triangulation in general) are:

Fatness © | Aspect Ratio a | Thickness 6§ | Radius Ratio p
1 [/d+1 d+1 atl 1
Al @y 5T &l vV %a a

All simplex quality measures in the table above are normalized with respect to the regular
simplex. Note that the fatness values in the table are given with power 1/d. It is due to the
fact that fatness is a volume-based simplex quality, and taking the (1/d)-th power allows a
better comparison. Also note that all normalized simplex qualities for the families Ay, By,
Cy and Dy behave as O(1/+/d). As illustrated for fatness and radius ratio in Figure 2, A4
achieves the greatest simplex quality among the four families of Coxeter triangulations in
each dimension d.
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Figure 2 The visual representation of the normalized fatness and the radius ratio for simplices of

Ag, By, Cq and Dy triangulations.
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—— Abstract

We introduce stripe closeness and stripe remoteness, two combinatorial measures that capture
how close together or far apart a set of query points lies within another set of points. The idea
behind these concepts is that we look at all possible projections of the point set to a line and
count the number of points that lie between the query points. For two points in a point set, the
notion of stripe closeness can be seen as a combinatorial distance measure. We give bounds on
the stripe closeness of two closest points. Further, we analyze stripe remoteness for triples in
point sets and show that there are always three points that have high stripe remoteness.

1 Introduction

Let P be a set of points in general position (i.e., no three points on a line) and let a and b
two points of P. How far is a from b? The common answer to this question is of course the
Euclidean distance of a and b. However, this distance depends on the embedding of P and is
not invariant under affine transformations. In many settings where point sets occur, we are
not interested in actual coordinates of the points, but only their combinatorial structure (e.g.,
their allowable sequence or their order type). In these settings it seems natural to define a
distance measure that only depends on the combinatorial structure of the point set.

For points on a line, there is a natural combinatorial distance measure: For any two
points a and b in P we define the distance of a and b as the number of points of P that lie
between a and b. Alternatively, we can also count the points that are not between a and b and
define the distance between the total number of points and the number of these points. We
can extend this idea for more query points. We define the remoteness of a one-dimensional
point set ) with respect to a one-dimensional point set P as follows: Let a and b be the
two extreme points of ). Then the remoteness of ) with respect to P is the number of
points of P that are between a and b. In particular, if Q) consists of two points, then a small
remoteness can be considered to have a small combinatorial distance. We generalize this
concept to R? by considering all projections of the two-dimensional point set to a line.

A stripe s = (£1,42) is a pair of two parallel lines 1,5 in the plane. We say that the
area of the plane that lies between the two lines is inside the stripe and denote it by int(s),
while the rest of the plane is outside of the stripe, denoted by out(s). We consider ¢; and
{5 to be both inside and outside of s, that is, int(s) Nout(s) = ¢; U /3. Let P be a planar
point set in general position. For any stripe s we define ip(s) := |{p € P | p € int(s)}|
and op(s) := [{p € P | p € out(s)}| as the number of points of P inside and outside of
s, respectively. Let @ be another set of points in general position. We define the stripe
remoteness of () with respect to P as follows: consider all the stripes for which all of @Q lies
inside. Among those, pick one that has the smallest number of points of P inside. The stripe
remoteness of () with respect to P, denoted by instripep(Q), is the number of points of P
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5:2 A combinatorial measure of closeness in point sets

inside this stripe. Using the notation above, we can write this as

instripep(Q) := min  ip(s)
$:QCint(s)
Note that if |Q] = 2 and @ C P, then instripe(Q)) = 2 as we can always choose both ¢; and
£5 to be the line through the two points. Hence, stripe remoteness is not a good candidate
for a combinatorial distance measure. But for |@Q| > 2 the situation is non-trivial. A point
set @@ having high stripe remoteness in P can be interpreted in the following way: In every
projection to a line, there are two points of @ that have high distance w.r.t. P (i.e., the
number of projected points of P between them is large). We show that for every point set P
in general position, there are 3 points in P whose stripe remoteness is in (| P]).

Note that in the one-dimensional case we might as well count the number of points that
are not between a and b. The fewer such points there are, the further a is from b. We can
also extend this idea to more points and two dimensions: We say that a stripe s is between
Q if all points of @ are in out(s) and each connected component of out(s) contains at least
one point of Q; this is denoted by @ < s. We define the stripe closeness of (Q with respect to
P as the minimal number of points of P outside a stripe that is between @, i.e.,

outstripep(Q) = s%ifs op(s) .

This measure is non-trivial already for |Q] = 2. We may define
dp(a,b) := |P| — outstripep({a,b}) + 1 .

This corresponds to the maximum number of points strictly inside a stripe s.t. one of a and
b is on each of the two lines defining the stripe. It is not too hard to check that dp is a
metric when defining dp(a,a) := 0; note that (somewhat counterintuitive) the additive 1 is
needed for the triangle inequality. Also note that any point set P contains two points a and
b such that dp(a,b) = |P| — 1. A point set @ having high stripe closeness can be interpreted
in the following way: In every projection to a line, there are two points of () with no other
point of () and only few points of P between them. We show that for every point set P in
general position, we can find a subset of 2 points that have linear stripe remoteness. For
the combinatorial distance measure dp(a,b), this implies that there are always two points of
distance at most (1 — ¢)|P|, for some constant ¢. We will see that this is asymptotically tight.

Projections of multivariate data to one and two dimensions is common in data analysis
(see, e.g., [5]). However, distances usually do not only depend on the combinatorial properties
of the point set. Combinatorial distance measures for two points a and b in a finite set P
may be defined via the size of the intersection P N R of P and a region R that contains a
and b. More specifically, so-called region-counting distance functions have been used [3,6]:
we are given two points p and ¢q as well as a region R; translate, rotate, and scale both the
points and R such that p and ¢ coincide with a and b, and measure the distance as the size
of the intersection with P and the transform of R. These measures have been used for point
searching and nearest-neighbor problems [3,4,6]. However, they are not invariant under affine
transformations. This is a property fulfilled by our approach; the distances are equivalent for
all point sets with the same allowable sequence (i.e., there is a bijection between the point
sets such that the order of the slopes defined by all point pairs is preserved). Our approach
of taking the minimum or maximum is inspired by combinatorial properties of single points
w.r.t. the point set, e.g., the Tukey depth [7] of a point p (which is the minimal number of
points contained in a half-plane that also contains p). See [2] for a survey on depth measures.
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2 Stripe Remoteness

In this section we prove the following result:

» Theorem 2.1. Let a be the unique zero of f(z) = 223 —32%—62+1 in [0, 1] (o = 0.155792).
Then for every € > 0 there is an ng € N such that for every n > ng any set P of n points in
general position contains three points pi, pa, ps for which instripep({p1, p2,ps}) > (o — €)n.

This result can also be phrased in a slightly less technical manner:

» Corollary 2.2. Let P be a set of n points in general position. Then P contains three points
P1,D2,P3 such that any stripe with p1,pa, ps inside has Q(n) points of P inside.

Proof of Theorem 2.1. Let P be a point set of n points in general position. We want to
show that there are 3 points such that every stripe with them inside has at least ¢ points
inside, where ¢ = (o — €)n for any € > 0. Let A be the dual line arrangement of P under the
point-line-duality, in which we map a point p = (zp,y,) to a line p* : y = z,x + y, (we may
assume w.l.o.g. that no two points have the same z-coordinate). In the dual setting, a stripe
translates into a vertical line segment, and the points that lie inside the stripe correspond to
the lines intersected by the segment. Hence, in the dual setting, we want to find three lines

such that any vertical line segment intersecting these three lines intersects at least ¢ lines.

We will show that there are three such lines in the following way: for every triple T" of lines,
we look at the shortest vertical line segment sp(—o0) that intersects the three lines and lies
on an (arbitrary) vertical line to the left of the leftmost crossing of the arrangement. We list
all the lines crossed by sp(—o00) in a list Ly(—o00). We then sweep the arrangement from left
to right, always looking at the shortest vertical line segment sp(z) intersecting the triple
and update the list Ly (z) of lines crossed by it, whenever necessary. Clearly, an update is
only necessary after the sweeping line passes over a crossing, so we only need to consider

one z-coordinate between any two consecutive crossings ¢; and c;41, which we denote by x;.

Additionally, let g be an x-coordinate to the left of the first crossing ¢;. We say that the
triple T of lines is wvalid after crossing c; if during the whole movement from left infinity to
x; (or, equivalently, shortly after the ith crossing), the list of crossed lines Ly contains at
least ¢ lines, that is, |Lp(x;)| > ¢ for all j € {0,...,4}. In particular, any triple that is valid
after the last crossing satisfies the desired properties.

The triples T that are valid before the first crossing are the ones for which s7(z) intersects
at least k lines, for k > ¢. As sr(xg) is the shortest line segment intersecting 7', the topmost
and bottommost intersected lines have to be lines of T, the third line of T being one of the
remaining k — 2. There are n + 1 — k pairs of lines with exactly k — 2 lines between them,
thus the total number of triples that are valid before the first crossing is

- 1
Z(k—Q)(n—i—l—k):6(0—7@—1)(202—cn—lOc—n2+4n—|—12) .
k=c

Moving over a crossing ¢;, a triple T becomes invalid only if s7(x;_1) intersects exactly ¢
lines, the topmost or the bottommost line is one of the lines of crossing ¢ and the second
line in the crossing is not in 7. More precisely, let ¢; be the crossing of two lines a and b
where a is above b before the crossing. Let T be a triple that is valid after crossing ¢;_1 and
that contains a where a is the topmost line intersected by sr(z;—1). If b is also in T', then
st(x;) intersects the same lines as sp(x;—1), only that a and b have switched places, so T is
still valid after crossing ¢;. If sy(x;_1) intersects more than c lines, T is still valid after the
crossing ¢;. As the bottommost intersected line has to be in T, and a triple with b does not
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become invalid, at most (¢ — 3) triples can become invalid at crossing ¢;, as right before it
there are ¢ — 2 lines between a and the bottommost line, one of them being b. The same
arguments hold if b is the bottommost line intersected by sp(z;—1), so the number of triples
that become invalid at crossing ¢; is at most 2(¢ — 3). Thus the total number of triples that
are still valid after sweeping over all (g‘) crossings of A is at least

Bln) =3 (k—2)(n+1—k) —2(c—3) (;‘)
k=c

(6]

3 n 902 2, 7cn+ llc_'_n3 +5n2 17n 9
— —2"-en"+—+—+ =+ ———-—F-2.
3 2 2 3 6 2 3

In particular, if ¢ is linear in n, that is, ¢ = ~yn, this is a polynomial of degree 3 with
leading coefficient g — l; —v+ %. This leading coefficient is larger than 0 in the interval
(0,1) if and only if v < a. Hence, for v = a — €, we have that lim,,_,(8(n)) = oo, so for n
large enough, there is at least one triple that is still valid after the last crossing. |

On the other hand, there are point sets where instripe({p1, p2,p3}) < (1 — €)n for any
three points p1,p2, ps: Let P be a set of points in convex position and let @ = {p1,p2,ps}
be any three points of P. Let hy, ho and hg be the number of points along the boundary of
the convex hull between p; and po, p2 and p3 and p3 and p1, respectively. By the pigeonhole
principle, one of these number, without loss of generality h, is at least "T_l Consider the
stripe defined by the line through p; and p, and the parallel line through ps. This stripe has
Q inside, but all the points between p; and ps, of which there are at least %‘1 many outside.

3  Stripe Closeness

We proceed with showing our bounds on the stripe closeness of two points.

» Theorem 3.1. Let a = /5 — 2~ 0.23607. Then for every € > 0 there is an ng € N such
that for every n > ng any set P of n points in general position contains two points p1,ps for
which outstripep({p1,p2}) > (a0 — e)n + 2.

Again, the result can be phrased in a less technical manner:

» Corollary 3.2. Let P be a set of n points in general position. Then P contains two points
p1, D2 such that any stripe with p1,ps outside has Q(n) points of P outside.

Proof of Theorem 3.1. Let P be a set of n points in general position. As in the proof of
Theorem 2.1, we will work in the dual setting, only that now we want to find a pair of lines ¢;
and /5 such that every shortest vertical line segment intersecting the pair only intersects few
lines, namely at most ¢ := (1 — @ + €)n many. As the points outside of a stripe correspond
to the lines not intersected by the dual vertical line segment, the existence of such a pair of
lines shows the claimed result, as for a shortest vertical line segment intersecting ¢; and ¢,
these two lines must be the topmost and bottommost intersection, and we can thus shorten
every segment slightly, such that at least n —c+2=n—(1—-a+en+2=(a—€e)n+2
many lines are not intersected.

We will again show the existence of such a pair of lines using a sweeping argument. For
any pair R of lines, let sgr(x) be the shortest vertical line segment intersecting R at that
z-coordinate and let Lr(x) be the respective list of intersected lines. Again, let x; be an
z-coordinate after the crossing c; and before the crossing c;+1. Analogously to triples in
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the previous section, we call a pair of lines R wvalid after crossing c; if during the whole
movement from left infinity to xz;, the list of crossed lines Lt contains at most ¢ lines, that
is, |[Ly(zg)| < cfor all k € {0,...,i}.

The number of pairs that are valid before the first crossing can be computed as

C

Z(n+1—k):%(c—1)(2n—c) .

k=2

Let now ¢; be the crossing of two lines a and b where a is above b before the crossing. Let
£1, 05 be a pair of lines and let £; be above ¢y at the xz-coordinate of the crossing ¢;. Assume
that the pair £1, /2 becomes invalid at the crossing ¢;. Then sy, ¢,}(z;-1) crosses exactly ¢
lines and either £; = b or {3 = a, as in all other cases the segment s, 4,1(7;) crosses c or
more lines. In particular, at each crossing at most two pairs become invalid. However, the
number of initially valid pairs is strictly smaller than two times the number of crossings,
and we therefore need to be more thorough. Note that if £ = b, the pair can only become
invalid if there are at least ¢ — 1 lines under the crossing, that is, if the crossing is above
the c-level of the arrangement. Similarly, if /s = a, the pair only becomes invalid if the
crossing is below the (n — ¢ — 1)-level. Alon and Gyori [1] have shown that the number of
crossings below the (n — ¢ — 1)-level is at most (n — ¢ — 1)n, if (n —c—1) < %. Indeed
n—c—l=n—(l-aten-l=an—en—-1<gasa< %7 thus by symmetry we get that
in total at most 2(n — ¢ — 1)n pairs become invalid. So the number of pairs that are still
valid after the last crossing is at least

c 2

c c
=3 (ntl—k) —2n—c—1n=—= ¢ owlan .
B(n) kﬁ(”"’ k) —2(n—c—1)n 5 —|—3cn+2 n“+n

If ¢ is linear in n, that is, ¢ = ~yn, this is a quadratic polynomial with leading term — 772 +3y—2.
This leading term is larger than 0 in the interval (0,1) if and only if vy >3 — /5 =1—a.

Hence for v =1 — a + ¢, we have that lim, . (8(n)) = 0o, so for n large enough, there is at
least one pair that is still valid after the last crossing. |

On the other hand, we may have outstripe({p1,p2}) < (1 — €)n for any two points p1, pa.

» Theorem 3.3. For anyn > 12 there exist point sets P of n points in general position such
that for every pair of points p1,p2 in P there is a stripe with p1,ps outside but at least | % |
points of P inside.

Proof Sketch. See Figure 1 for an accompanying illustration. Let m be the smallest integer
that is divisible by 3 such that m > n > 12. Let a, b and ¢ be three points that span an

2. Let a; and as be the two points on the line

equilateral triangle with side length %m
through a and b that have distance %m from a, with a; being closer to b. Similarly, let by
and bs be the two points on the line through b and ¢ that have distance ém from b, with by
being closer to ¢ and let ¢; and ¢y be the two points on the line through ¢ and a that have
distance %m from ¢, with ¢; being closer to a. Place n points as follows: Place %' points on
the line segment between a; and as such that the first point has distance % to a; and any
two consecutive points have distance 1 and call this point set A. Do the same for the line
segments between by and b, and between c¢; and ¢y to get point sets B and C|, respectively.
If necessary, take away 1 point from B and possibly another one from C. Finally, wiggle the
point set slightly so that it is in general position.

It can be shown that if we project the segment c;cy onto the line through a and b such
that the image lies entirely in the segment ajas, then the length of this image is smaller
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Figure 1 Construction for Theorem 3.3.

than 1. By symmetry, the lengths of the projections of ajas onto b1bs and of biby onto cico
are also smaller than 1. If p; and p, are in the same set, w.l.o.g. A, it thus follows that there
is a stripe with pi, p2 outside and C' inside. On the other hand, if p; and ps are in different
sets, w.l.o.g. A and B, it can be easily argued that there is also such a stripe. |

4 Conclusion

We defined a combinatorial distance measure on point sets and showed that there are always
points which are sufficiently close. The approach gives rise to several open problems.

The distances are equivalent for all point sets with the same allowable sequence. However,
there can be two point sets with the same order type (i.e., there is a bijection between them
such that the corresponding triples are oriented in the same way) for which the distance is
different for two corresponding pairs. Reasonable generalizations of stripes for this setting
could be double wedges. Can we get analogous bounds there?

Our result gives an upper bound on the distance between closest points when the stripe
is required to be orthogonal to the line defined by the points. (This corresponds to a
region-counting distance function with a stripe orthogonal and between its two reference
points.) Is there a linear lower bound in that setting?

While our bounds are asymptotically tight, the gap between the constant factors are
large. A natural open problem is to close these gaps.
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—— Abstract

The elastic geometric shape matching (EGSM) problem class is a generalisation of the well-
known geometric shape matching problem class: Given two geometric shapes, the ‘pattern’ and
the ‘model’, find a single transformation from a given transformation class that, if applied to the
pattern, minimizes the distance between the transformed pattern and the model with respect to
a suitable distance measure.

In EGSM, the pattern is divided into subshapes that are transformed by a ‘transformation
ensemble’, i.e., a set of transformations. The goal is to minimize the distance between the union
of the transformed subpatterns and the model in object space as well as the distance between
specific transformations of the ensemble. The ‘neighborhood graph’ encodes which translations
should be similar.

We present an FPTAS for EGSM instances for point sequences under translations with fixed
correspondence where the neighborhood graph is a simple cycle.

1 Introduction

In classical geometric shape matching (GSM) problems, one is given a pattern P and a model
@, both from a class S of geometric shapes, along with a distance measure d : S x S — RS‘ .
The task is to find a single transformation ¢ from a given transformation class 7 acting on
S, so that d(t(P), Q) is minimized.

Matching geometric shapes is a problem that occurs in many applications such as character
recognition, logo detection, human-computer-interaction, etc., and in a variety of different
scientific fields, e.g., robotics, computer aided medicine, drug design, etc., and thus has
already received a considerable amount of attention. We refer to the survey papers by Alt et
al. [1] and Veltkamp et al. [4] for an extensive overview.

Many geometric registration problems (where the task is to align two shapes in different
coordinate systems), e.g., between the coordinate system of an operation theatre and the
coordinate system of a 3D-model of a patient acquired during a pre-operative MRI scan, can
be modelled as a GSM instance by appropriately choosing S and d. There, the transformation
that minimizes the distance between both geometric shapes is then used as the mapping
from the pattern space into the model space.

In many applications, where local distortions and complex deformations may occur, such as
soft tissue registrations, GSM problems are too restrictive because a single transformation
is chosen to match the entire pattern to the model. This issue is addressed by the elastic
geometric shape matching (EGSM) framework, a generalisation of GSM. Here, the pattern is
partitioned into subshapes and instead of one single transformation, a so-called transformation
ensemble is computed. Each subshape of the pattern is transformed by an individual
transformation of the ensemble in order to minimize the distance between the transformed
pattern and the model. Also, the ‘consistency’ of the ensemble is guaranteed by forcing the
transformations acting on some neighboring subshapes of the pattern to be similar with respect
to a suitable similarity measure for the class of transformations at hand. The dependencies
between the transformations of an ensemble are encoded in a so-called neighborhood graph.
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In [3], the authors considered several variants of this problem for different distance measures
and graph families, including an algorithm that solves a variant of the problem for trees
where only translations in a fixed direction are allowed in O(n?logn) time. In this paper,
we focus on EGSM for point sequences under translations with fixed correspondence where
the neighborhood graph is a simple cycle.

Problem Statement. In the following, everything is stated in R?, ||- || denotes the Euclidean
norm and translations are represented by translation vectors. All index arithmetic is modulo
n.

» Problem 1.1. Given two sequences of points P = (pg,...,pn—1) (the pattern) and Q =
(90, - yGn-1) (the model), find a sequence of translations T = (to,...,tn—1), so that the
function v(T, P, Q) = max{maxo<i<n ||¢; — (pi + &:)||, maxo<i<n ||[ti — tix1||} s minimized.

Measuring the distance of the points (¢;+p;) and ¢; in model space is the same as measuring the
distance of the points ¢; and ¢; —p; in translation space. This is why Problem 1.1 can be studied
in translation space entirely: Let ¢; :== ¢; — p; for 0 < i < n and C := (cg,...,¢n—1). The
function (T, P, Q) can be rewritten as (7T, C) := max{maxo<i<n ||¢; — t;||, maxo<;<n ||t; —
tiv1ll}. We refer to points in translation space (i.e. translations) simply as points.

Basic Definitions. Let c,u,v € R? and r > 0. D,(c) denotes the disk with radius r centered
in ¢ and 9D, (c) denotes its boundary. We define I,.(¢,u,v) := D,(c) N D,(u) N D, (v).

For a given sequence C' = (cq, ..., cp—1), we define §* := miny (T, C). We call a sequence
of points T = (to,...,tn—1) d-admissible (for C), it v(T,C) < 6. A sequence, that is
0*-admissible is called an optimal sequence. We will use the symbol T™ to denote an optimal
sequence. A point ¢ is called (0, %)-admissible (for C), iff there is a d-admissible sequence T’
so that T' = (to,...,t; = t,...,t,—1). Strictly speaking, §* and the concepts of admissibility
depend on C, but since C' is part of the input, we refrain from including C' in the notation.

Previous Work and our Contribution. In [3] and in [2], the authors discussed several
variants of EGSM problems. However, there are no results regarding problem instances,
where the neighborhood graph is a simple cycle. In particular, there is no literature, that
deals with efficient exact or approximation algorithms for Problem 1.1 and we do not know,
if the problem is NP-hard.

In this paper, we provide an FPTAS for Problem 1.1 and prove that it computes a (1 + €)-
approximation to 6* in O (6_1/2 (log 6_1>2 n?log n) time or in O ((log e_l) e 2n?log n) time
for some € > 0.

2 Our Results

Due to space limitations, the proofs of all lemmata and all figures have been omitted.
We define §3) = ~(C, C).

» Lemma 2.1. C gives a 3-approzimation to 6*, i.e., 6(3) < 35*.

Lemma 2.1 is the basis for the construction of our FPTAS, since it implies, that every (6*,0)-
admissible point lies within the disk Dgs)(cg). A simple way to get a (1 + €)-approximation
to ¢* for some € > 0 is to sample ¢y from a dense enough €giq-grid (a grid where the distance
between samples is at most €giq) that covers Dy (co). We call the points of this grid
translation-samples. Here, €giq = © (e6©)). We also sample the value § of the objective
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function on the interval [%6(3),(5(3)] with sample-distance e, = © (66(3)). We call the
samples on [%6(3),5(3)] radius-samples. We then test for every radius-sample 0, whether
there exists a solution T" so that v(T”,C) < § and a translation-sample is the ith component
of T". This test is a variant of a problem that has already been studied in [3], where the
authors give an algorithm that solves this problem for paths in O(n?logn). Consequently,
this simple FPTAS runs in O (¢ ®n?logn) time.

This result can be improved in several ways. The first obvious improvement is to perform a
binary search on [%5(3), §®)], which improves the run-time to O ((log 6*1) e 2n?log n)
The second idea is based on Lemma 3.1 below, which says, that for every § > ¢*, there is a
d-admissible sequence T containing a point ¢; that lies on 0Ds(c;) for some i. Consequently,
we do not have to sample the whole disk Dgs)(¢;) for the current radius-sample §, but to
only sample 0Ds(c;). Unfortunately, there is no way to identify the disks (the ¢;) with this
property, hence it is no longer possible to pick an arbitrary disk and sample it, but we have to
sample the boundary of all disks. This changes the run-time to O ((loge™!) e~*n3logn). Of
course, this is only an improvement if e~! > n. On the other hand, this strategy enables us
to apply another modification: We can approximate each dDs(c¢;) by a regular polygon with
0] (e’l/ 2) vertices. Due to the convexity of the problem, we can then perform a binary search

on the edges of this polygon and get an FPTAS that runs in O (6_1/2 (log 6_1)2 n3log n)
time. This gives us the following tradeoff between precision and input size:

» Theorem 2.2. We can compute a (1 + €)-approximation to 6* in O ((log 6’1) € 2n’log n)
time or in O (6_1/2 (log 6_1)2 n3log n) time.

Since it is very clear how to implement the approximation when sampling the interior of
Dy (co), we elaborate on the improvements of the second strategy.

3 A Detailed Description

On (4,7)-Admissible Points. The reason why it suffices to sample the boundaries of all
disks rather than sampling the interior of one disk with a grid is, that any optimal solution 7
contains a key-point: A (6*,¢)-admissible point ¢t} of T* = (t§,...,t5_,) is called a key-point,
iff 5« (co,t_q,t7, 1) = {t;} and t € ODs=(c;).

» Lemma 3.1. For every optimal sequence T* = (t§,...,t5_1), there is an index 0 < i <n
so that ti is a key-point.

On Computing ¢*. There is at least one index 0 <4 < n for every T* = (¢§,...,t5_;), so
that ¢ is a key-point, which implies, that ¢} € dDs-(¢;). Since we have no way of determining
the index ¢, so that ¢} is a key-point, the boundaries of all disks have to be sampled in order
to find a suitable approximation to ¢}. Since we do not know the optimal radius 6* either,
we have to sample the boundary of all disks for dense enough radius-samples in [%5(3), 5(3)].
For every index 4, let 6} be the smallest (not necessarily a sample-radius) value, so that
there is a (d;,)-admissible point ¢; € 0Ds:(c;). In order to compute ¢* from the values
05,--.,05_1, we need the following observation:

» Lemma 3.2. §* = min0§i<n (5:

Consequently, in order to find 6*, it suffices to compute §; for all 0 < i < n.
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Let T() be a solution so that §(9) = (T, C) < (1 4 €)6*. Let tl(-é) denote a (1 + €)-
approximation to a (6;,¢)-admissible point ¢; with ¢; € 9Ds: (¢;). Let 51(6) be the radius-
sample of tge). In order to prove that a binary search for §; on [%6(3), 53] works for every
index 4, we need one more characteristic of (4, )-admissible points.

» Lemma 3.3. Let 6 > 0 be so that there is a (5, i)-admissible point t; € 0Ds(c;). Then
there is at least one (8,1)-admissible point on dDs(c;) for all § > 6.

Consequently, a binary search for J; on [%6(3),6(3)] can be carried out for every index
0 <¢ < n and it remains to determine a suitable sample-distance €,p;: Since we aim for a
(1 + €)-approximation, we have to guarantee, that 69 < (1 + €)0*. Hence, it suffices to find
some 61(6) € [67,0] + €df] for each 0 < ¢ < n and we have to choose €p; (the density of the
radius-samples) subject to € and §(3). The analysis on how €obj has to be chosen exactly will
be carried out in Lemma 3.6, since it also depends on our final improvement, in particular
on the polygons that will be used to approximate the boundaries of all disks.

In order to describe the final improvement in more detail, we need to briefly explain the
‘propagation along the path’ decision algorithm A1l of [3], that, given a radius-sample §, a

translation-sample ¢; and an index ¢, decides, whether ¢; is (6, ¢)-admissible.

An Algorithm for Paths. A point t; € Ds(c;) is (6,i)-admissible iff there are points
tit1s---ytn_1, to,...,t;—1 so that all constraints encoded in (T, C) are met. This chain
of constraints can be interpreted as a path that starts and ends at ¢;. In [3], the authors
introduced an algorithm, that solves this problem for the case that only translations in a
fixed direction are allowed. This algorithm can also be applied in our setting and then runs
in O(n?logn) time and space. Starting at one end of the path, the basic idea is to propagate
‘admissible regions’, i.e., sets of translations that satisfy the current prefix of constraints,
along the path. This is done by inflating them (i.e., computing the Minkowski sum of the
region at hand and Djy) and intersecting the result with the admissible region encoded in the
subsequent node of the path. This strategy can be applied iteratively until either ¢; is met
again (in which case the algorithm returns YES) or the intersection of two regions is empty at
some point. In this case the algorithm returns NO along with the tuple (k(¢;), p(t;)), where
k(t;) is the index of the first node that was not reached, and u(t;) is the Euclidean distance
between the inflated version of the last non-empty admissible region and its succeeding
admissible region.

Approximating the Boundary of a Disk with a Polygon. The simplest approach that tests,
if there is a (1 + €)-approximation to a key-point on dDjs(c;) is to pick k = © (e726®)
suitably distributed translation-samples on 0Ds(¢;) and propagate all of them according
to algorithm Al. In that way, O(k) propagations (i.e., calls to algorithm A1) have to be
carried out. This number can be reduced to O(k/?log k) by exploiting the convex structure
of the admissible regions that occur during the propagation process: The main idea is to
approximate 0Ds(c;) by a regular polygon with O(k'/?) vertices and to perform a binary
search on each of its edges with a sample-distance that depends on € and 6.

Let Pjp(c;) (or Ps(c;) in short) denote the inscribing regular polygon of dDs(c;) with p
vertices. By a slight abuse of notation, we identify Ps(c;) with its boundary, since we solely
operate on the boundary of the polygons at hand. Also, let all such polygons be concentric.

» Lemma 3.4. Let p = [31/4776_1/2—‘ and let the edges of Ps(c;) be sampled with sample-
distance €cqge 50 that €cqge < %5(3)6. Then, there is a translation-sample t € Ps(c;) for every
point u € 0Ds(c;) so that ||t — ul| < %5(3)6.
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Strictly speaking, p depends on €, but we refrain from including € in the notation.

In the remainder, we will show, that the binary search among the samples on one edge of
Ps(c;) can be carried out in O (log e 'n?log n) time. Here O (n2 log n) is the time that is
needed to carry out the propagation process for a single translation-sample ¢ by algorithm
A1l. Since this approach builds on several properties of the tuple (k(¢), u(t)) returned by
algorithm A1, we have to introduce some of them first: The following lemma describes the
dependency of the tuple on the translation-samples of one edge of Ps(c;).

» Lemma 3.5. Let s and s’ be two NO-instances of algorithm Al for a given radius-sample
§, i.e., Al(s,d,i) = (No, (k(s),u(s))) and Al(s',8,i) = (No, (k(s"),u(s"))), and let t € ss'.
Then, either A1(t,0,1) = YES, or Al(t,d,i) = (NO, (k(t), u(t))). In the latter case the tuple
(k(t), u(t)) has the following properties:

1. k(t) > min{k(s), k(s")},

2. if k(t) = k(s) = k(s'), then p(t) < max{u(s),pu(s')}.

Moreover, if k(t) = k(s) = k(s') for all points t € ss', the function f — [0,1], x —
w((1 —x)s + xs’) is strictly convez.

As a consequence of the convexity of function f, in order to test if there is a (4, 7)-admissible
point on the line segment ss’ (which means, that there is a point on t € ss’ so that the
propagation of ¢ with radius-sample § is successful) a binary search can be carried out among
the samples along the line segment ss’.

The runtime depends on the number of translation-samples that have to be evaluated, which
is O (log ecdgcfl) for sample-distance €.qge. Since every propagation takes O(n?%logn) time,
the procedure runs in O (1og ecdgc*1n2 log n) time.

Since all edges of Ps(c;) have to be considered, evaluating the edges of one polygon takes
O (p 10g €cdge 12 log n) time.

We already know from Lemma 3.4, that the length of an edge of Ps(c;) is at most 25mp~1.
With €eqge < %(5(3)6 and p = (31/47%_1/2}, the number of translation-samples, that have to
be propagated, is

o (25) e () (G () o). o

—1/2

which leads to a runtime of O (6 log e 'n?log n) in total for the evaluation of one polygon
and a fixed radius-sample.

For technical reasons, we also need to state the following insight:

» Lemma 3.6. Let § := 6* + €op; and let s and s’ be the endpoints of the circular arc of
(0,1)-admissible points on 0Djs(c;), then ||s — s'|| > €op;.

Let the sample-distance of the points on the edges of P5(c;) be €edge = §65(3) and let
€obj = Y2e6(®). Then there is a translation-sample on Ps(c;) that is a (1 + €)-approzimation
to t}.

Description and Analysis of the Algorithm. We first describe the algorithm: At the start,
the value of a 3-approximation to ¢* is computed in O(n) time. Except for basic arithmetic
operations, the algorithm consists of four nested loops: The first loop iterates over all of the

n input points of the sequence C'. For every such point a binary search for § € [%6(3), (5(3)]

up to accuracy €obj = %6(3)6 is carried out; this takes O(loge™!) steps. In each step of

this binary search all p = [3Y/47e=1/2] € O (¢71/2) edges of Ps(c;) are inspected, and on
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translation-sample is propagated with algorithm A1 for paths, which takes O(n?logn) time

each of them a binary search among €O (%) translation-samples is performed. Each

per call. This gives a total runtime of O (6_1/2 (log 6_1)2 n3log n)

If 69 < §®) is returned, it is valid since there was a translation-sample that has been
propagated successfully and therefore is part of a §(9)-admissible sequence T'. This also means
that the very translation-sample that establishes 6(¢) is propagated and together with the
intermediate steps of the propagation gives a T', which then serves as a witness. If there was
no successful propagation, 6(9) = ¢ is returned and we know from Lemma 2.1 that there is
always a 0(*)-admissible sequence.

Now we analyse the precision of the algorithm: The precision of the binary search on § is
€obj < %(5(3)6; also, all polygons are concentric by construction. If Ps(c;) and Psic,,(c;)
are two polygons with circumradii that differ by €.p;, the distance between any point on
Ps(c;) and the polygon Ps,,(c;) is at most ep; and vice versa. Every edge of these two
polygons is sampled with points of distance €sqqe, and with Thales’ theorem it follows that for
every translation-sample on Ps(c;) there is a translation-sample on Ps . (c;) with distance
%5(3)6 or less and vice versa. Combined with Lemma 3.4, we have that for every ¢ there is
a translation-sample in D.(¢;) for every (,4)-admissible point ¢; € dDs(c;). According to
Lemma 3.6, one of the following two cases holds: Either there is at least one (d, i)-admissible
translation-sample on Pj(c;) for every 6 > §* + %5(3)6 so that the line segment of all (4,1)-
admissible points on one of the edges of this polygon is at least %5 ()¢ long, or one vertex of
the polygon is a (6, ¢)-admissible point and since all polygons are concentric, this vertex is
(8, 1)-admissible for every dDs(c;) with § > 6*. We consider the radius-samples d, § + €opj and
5+ 2¢,1j, Where 6= 0* +( —é€obj for some 0 < ¢ < €qpj. Since § < &*, none of the propagations
for this ¢ are successful. A short analysis leads to S"’eobj < 0"+ €gbj < 5+260bj < 0+ %5(3)5.
Due to Lemma 3.6, this means, that for radius-sample 0 4 2¢,p; the two endpoints of the
circular arc of (5 + 2€5b;, ¢)-admissible points in DSH%M (ci) have a distance of at least eqp;,
which is why there is at least one translation-sample on the inscribing polygon of this disk, that
is propagated successfully and the algorithm returns §(¢) = ¢ + 2€0pj < 0%+ %(5(3)6 < (1+€)d*
as the approximation to §*. Hence the algorithm computes a (1 + €)-approximation to §* for
Problem 1.1.

It also returns a ((5(6)7 1)-admissible point t(©) from which an §(-admissible sequence T
can be computed in O(n?logn) time.
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—— Abstract
We propose the group diagram as a representation for multiple trajectories representing one
or several moving groups. Given a distance threshold, a similarity measure and a minimality
criterion a minimal group diagram is a minimal representation of the groups maintaining the
spatio-temporal structure of the groups’ movement. We give hardness results and approximation
algorithms for computing several variants of the group diagram.

1 Introduction

A moving object, called entity, is described by its location at n time stamps and a linear
interpolation inbetween each two consecutive time stamps. The corresponding trajectory
therefore is a polygonal line. Given k trajectories, each of complexity n forming one or
several (overlapping, i.e., splitting and merging) groups we introduce the group diagram as a
means of compactly representing these groups. We propose the following general definition:

» Definition 1.1. A group diagram (GD) is a geometric graph with vertices augmented by
a temporal component, that represents all input trajectories 7. We say the graph represents
a trajectory T € T if there is a similar path P in the graph, that is 7" and (the geometric
representation of) P are similar under a given similarity measure. We say a group diagram is
minimal if it is minimal in size, either with respect to its number of edges or the total length
of edges.

We consider GD which are built from the input trajectories, i.e., edges of the GD are
represented by subtrajectories of the input and two edges share a vertex if the endpoints of
the corresponding subtrajectories are within distance d from each other. Endpoints of edges
with no d-distance neighbor have degree one. Vertices in the graph are hence embedded
as the set of end points of incident edges. We will use such graphs in the following. Note
that we could transform these into planar embedded graphs, for instance by choosing and
connecting to the midpoint of the point set of a vertex.

As similarity measure we consider three popular measures on trajectories: the Fréchet
distance, equal-, and similar-time distance. Figure 1 illustrates several trajectories. The
subtrajectories forming a minimal GD for the given trajectories are highlighted in red.

Minimizing the number of edges or their total length seems intuitively reasonable. However
both can lead to strange effects illustrated in Figure 2 which shows two simple examples (one
or two trajectories of complexity 1). In the left figure the input consists of a single trajectory
of length 6d and the GD with minimal length consists only of the red points, which is a bad
representation of the movement. In the right picture, the GD minimizing the number of
edges consists of the two input trajectories, although we would like the common movement
between A and B to be represented by only one representative. To prevent these effects we
make the following further requirements.

When minimizing number of edges, we require that as much as possible is jointly repre-
sented. Given a subtrajectory 7 of an edge of a GD G, let ¢(7) denote all subtrajectories
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Figure 2 unintuitive GD with minimal edge length (left)
Figure 1 Illustration of GD. and minimal number of edges (right).

of the input trajectories within distance at most d to 7 and let G := ¢(¢(7)) denote the
union of all subtrajectories within distance at most d to a curve in ¢(7). Furthermore, we
define A; := G N GE. We now demand that for each subtrajectory 7 the resulting set A,
is a minimal representation for ¢(A,).

When minimizing the total length, we require that no clusters are artificially split up to
reduce the length. Formally, we require that no subgraph of the GD can be contracted,
i.e., substituted by a subgraph of smaller size (but possibly larger length).

Related Work Two related notions to the GD are the grouping structure and flow diagrams.
The grouping structure is the unique graph representing all density-connected groups traveling
at equal-time [6]. A flow diagram is a minimal (in the number of vertices) diagram representing
segmentations of all input trajectories. In a flow diagram nodes represent criteria and edges
transitions between criteria [3]. The grouping structure is a specialization of the GD, which
uses the equal-time distance, and density connectedness as inner group distance. The flow
diagram can be seen as generalization of the GD (after switching between vertices and edges)
where criteria are more general than small distance of the trajectories. Computing a GD with
Fréchet distance as distance measure is also highly related to map construction algorithms,
where the goal is to determine the underlying network of a set of trajectories [1]. Similar
modeling choices (edges, similarity measure, and minimality condition) occur in the problem
of finding a representative (median, middle, ...) trajectory of a set of similar trajectories.

Complexity Analysis By a reduction from the known NP-complete DOMINATING-SET
problem for a grid graph [7] we can show that the decision problem for GD is NP-complete
for all variants we consider.

» Theorem 1.2. Given an integer l, deciding whether there exists a GD of size l is NP-
complete for both | denoting the edge length and | denoting the edge number, and for both
Fréchet distance and equal-time distance as similarity criteria.

In the following two sections we give approximation algorithms and their experimental
evaluation on a real data set. Due to space limitations many details, in particular proofs, are
omitted in this extended abstract, and will be given in the full version.

2 Approximation Algorithms

Our approach is based on a natural formulation of the problem as a SET-COVER instance,
which we first build and then solve approximately. To do so, we use the following concepts. A
cluster is a set of trajectories called cluster curves that are all similar (under some similarity
measure) to one representative of the cluster. Each edge in a GD can be identified with a
representative of a cluster of subtrajectories from the input. We first detect all relevant cluster
representatives and then we select a minimal set of these clusters where the union covers
the complete input. Thus our approach is to construct and solve a SET-COVER instance
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with universe U consisting of all segments of the input trajectories. To make this approach
computationally feasible we segment the trajectories such that we only need to consider
subtrajectories starting and ending at vertices of the segmentation as cluster representatives.

As we construct and approximately solve a SET-COVER instance we obtain approximation
algorithms in both cases, minimizing the total size of the GD and minimizing the length.
When minimizing length for the Fréchet distance we additionally make a small additive error
for each edge of the GD, see Lemma 2.2.

To take the two different minimality criteria into account we can formulate a weighted
SET-COVER problem where we assign a weight to each representative (subset) depending
on which minimality condition we choose: unit weight for number of edges and length of
representative for edge length. Next we show how to implement this approach for the different
distance measures.

2.1 Fréchet Distance

Recall that the Fréchet distance between two curves 7 and o is defined as the infimum over all
reparameterizations o and S of [0, 1] of the maximum over all ¢ € [0, 1] of ||7(a(t))—o(B(t))]] [2].
To compute a minimal GD with Fréchet distance as similarity measure we use a sweep
algorithm with two moving points a and b along every trajectory and report all relevant
clusters represented by the subtrajectory between the current positions of a and b as described
in [4].

» Definition 2.1. A cluster representative 7 which represents the cluster ¢(7) is irrelevant if it
can be extended to 7/ such that ¢(7’) contains only extended curves of ¢(7) and |e(T)| = |e(7)|
and no other trajectory not in the cluster enters a d-tube around one of the cluster curves.
If a cluster representative cannot be extended in such a way the representative and the
corresponding cluster are relevant.

» Lemma 2.2. When minimizing size, there always exists a minimal GD solution where
edges correspond to relevant cluster representatives. When minimizing length, this solution
adds at most an additive error of 2de, where d is the distance threshold and e is the number
of edges of an optimal solution.

Note that this additive error is tight: Consider an input setting of trajectories of complexity
one and length greater than 2d, where always two trajectories are congruent and the pairs are
within distance greater than d. Here, only the whole trajectories are relevant and therefore
each representative (whole trajectory) is 2d longer than a minimal representative (middle
part with distance d to endpoints).

When each segment has length greater than 4d, which is the case in our experiments, we
have a multiplicative error of at most 2 when using only relevant representatives.

Segmentation First we observe that using the seg-

R . :SD<:: mentation given by the input vertices does not suffice

¢ " 'i * for a minimal representation, e.g., in the case of par-
llel li ith different starti ints. To obtai

Figure 3 Inserting new vertices. The atle’ hes wi FHerent starting ponts. Lo obtaill a

vertices from the input are shown as

disks whereas the newly added ones are
marked as squares. Firstly, for every vertex v of the input data we add a

vertex to every segment which has distance to v less
than or equal to d (see Figure 3a) at the point along the segment where the distance to v is

sufficiently fine partition of the trajectories we con-
sider two different triggers for inserting a new vertex.
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minimal (type 1). Secondly, we add a new vertex if the distance between two segments is
less than d for the first time and if the distance exceeds d again (type 2) (see Figure 3b).

» Lemma 2.3. After two steps of inserting new vertices all relevant clusters start and end
at vertices.

From Lemma 2.3 it follows that we can use the vertices of the trajectories after two steps
of vertex insertion as the event points of the sweep algorithm. For each trajectory 7 we move
b to the right until the representative is relevant and all cluster curves of the corresponding
cluster start and end at vertices. Then we report this cluster as one subset of the SET-COVER
instance, set a to the position of b and proceed like this until we reach the end of 7.

» Theorem 2.4. Let N be the complexity of a trajectory after two steps of vertex insertion.
Given a GD instance using Fréchet distance we can compute in O(k*N3) time a SET-COVER
instance of size U] = O(kN) and |S| = O(kN), the solution of which solves the GD instance.

» Remark. The value N is in O(k*C?n), where C is a constant bounding the number of
intersections of one segment with all segments of the input (see the full version for details).
Note that this is linear in the dominating parameter n, since k < n.

2.2 Equal- and Similar-Time Distance

Next we want to compute a GD based on equal-time distance as similarity measure [5]. A
path P within a group diagram is similar to an input trajectory 7 if for any ¢ in the domain
of 7 the Euclidean distance dist(P(t),7(t)) is at most d. The following observation follows
directly from the linear interpolation between two vertices of a trajectory.

» Remark. Given two piecewise-linear trajectories 7, 1o with vertices at the locations
corresponding to the time stamps ¢1, ..., t,,. Then if dist(r (t;), 72(¢;)) < d and
dist(Tl(ti+1),T2(ti+1)) S d we have diSt(Tl(t),TQ(t)) S d for all t € (tiati—l-l)'

Segmentation Using this observation we insert a sufficient number of time stamps and
corresponding vertices additional to the input vertices to ensure that between consecutive
time stamps the pairwise equal-time distance of the trajectories does not change with
respect to threshold d. We do this by simulating equal-time distance first, i.e., inserting
(by interpolation) a vertex to each trajectory for the at most kn different time stamps.
Subsequently, we consider only the common time interval of all trajectories. Then we
compare all segments between two consecutive time stamps in a second step.

Let AB and CD be two segments of different trajectories between two consecutive time
stamps i and i + 1. If dist(AB;,CD;) < d holds for t = t; and t = t;,1 the segments are
at equal-time distance at most d for all ¢ € (¢;,¢;+1) and we do not need to insert any new
vertices. If dist(AB;,CD;) < d holds for i but not for i + 1 the equation dist(AB;,CD;) = d
has exactly one solution ts in (¢;,%;+1) and we insert a new vertex to all trajectories (if
possible) at the corresponding locations at ts (split event). Analogously we calculate 5 and
insert new vertices if the inequality holds for t = i + 1 but not for t = ¢ (merge event). Lastly,
if the inequality does not hold for ¢ = i nor for ¢t = i + 1 the equation dist(AB;, CD;) = d
has either no solution or exactly two solutions ty,in and tyax in I. In the first case we can
conclude that the segments do not share a part where the equal-time distance is less than or
equal to d. In the latter case we obtain one merge and one split event between ¢t = ¢ and
t =14+ 1. Again, we insert vertices to every trajectory at time i, and tpax.

» Lemma 2.5. The segmentation takes O(k*nlogn) time. After this process each of the k
trajectories has at most k>n vertices.
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Computing the GD For computing the GD we proceed in the following way. Between each
two consecutive time stamps in V' we compute one subset for each segment, which contains
the indices of all other segments within equal-time distance at most d. The distance between
two segments is the maximum of the Euclidean distance between the two starting points of
the segments and their two ending points.

Then we solve the SET-COVER instance and report the segments which correspond to the
selected subsets. When minimizing the total edge number of the GD we have to ensure that
the representation does not change when not necessary in terms of minimality. Otherwise the
GD consists of edges that could be concatenated. This can happen because the solution of
the SET-COVER in general is not unique. To maintain one representation as long as possible
we check if the representation R,;q between the previous two time stamps still represents all
segments between the current two timestamps and if the size of R4 equals the size of the
current solution. In this case we maintain R,;q and proceed with the next time stamp. This
additional step is not necessary when minimizing the total edge length as the sum of the
length of a minimal length representation between a series of consecutive time stamps within
a time frame from start ¢ to end time t. is at most the minimal length of a representation
looking at the whole interval [ts, ] at once.

» Lemma 2.6. For each time stamp we can compute the k sets of the SET-COVER instance
in O(k?) time.

» Theorem 2.7. Given a GD instance using equal time distance, we can compute in O((k® +
k*logn)n) time O(k3n) SET-COVER instances each of size [U| =k and |S| = k the solution
of which solves the GD instance.

Similar-time Distance Equal-time distance may be too restrictive for some applications,
for example for entities which travel the exact same route, but such that each entity reaches
each position with a small delay. We use the term similar-time distance when we allow a
bounded time shift when comparing two positions.

3 Experiments

In order to investigate the usability of our definition of a group diagram and the described
algorithms for real world data we performed experiments on data of migrating greater white-
fronted geese (Anser a. albifrons) with parents and two juveniles. For each animal we had
approximately 2000 positions which were collected in half-hourly bursts of 20 GPS positions
in 1 Hz resolution. The distance between two entities is computed based on their positions
on the earth’s surface only. A group diagram shows when a subgroup (or one single entity)
separates from the rest of the group (or from a subgroup) and when a subgroup joins another
subgroup. Detecting and visualizing split and merge events is an interesting application
of the group diagram to help answering questions like: When is the family flying close
together, so that it can be represented by only one member and when do we need more
representatives? For which distance does the family stay "together' the whole time or a
given percentages of the whole observation period? We computed group diagrams based on
bounded equal-time and a-similar-time distance as similarity measure for one family (two
adults and two juveniles) for distances d = 3,5, 10, 20, 40, 80, 160, 320, 640, 1280 meters and,
for each distance, we set the allowed time shift to o = 0,10 seconds. We give a summary of
the experiments here, for more details and an evaluation of the experimental computation
time see the full version of the paper.
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o
distance in meters

Figure 4 Representability of Figure 5 Family members Figure 6 Difference of repre-
the family for increasing distance split when flying over a lake and sentability of the family while fly-
values. merge after passing the lake. ing over land and over water.

Number of Representatives for equal- and similar-time distance In Figure 4 the average
number of representatives needed to represent the whole family is plotted against the distance
thresholds for bounded equal-time distance and similar-time distance as similarity criteria.
For small distances (10 m and 20 m) the impact of allowing a time shift of 10 seconds is
greater than the impact of doubling the distance. As distance increases it becomes the
dominating parameter for the size of the group diagram. The reason for this observation
most likely is the formation of the flock while flying. If the entities of the flock are flying
within a V-formation or in a line two entities are represented with only one representative
even if their distance is greater than the given threshold when we allow a small time shift.
The impact of a time shift would be less if the birds were flying next to each other rather
than behind each other like in a line or a V-formation.

Migration Over Water and Over Land During the migration one can observe that when
the family is flying over surfaces of water they tend to separate more from each other than
while flying over solid ground. One example of this phenomenon is shown in Figure 5 for a
bounded equal-time distance of 160 meters. Figure 6 shows the difference in the number of
representatives needed for flying over solid ground and flying over water. One interesting
observation is that the values differ the most between 10 and 100 m.
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1 Introduction

We study an agglomerative clustering problem motivated by interactive glyphs in geo-
visualization. GlamMap [5] is a visual analytics tool for the eHumanities which allows the
user to interactively explore metadata of a book collection. Each book is depicted by a
square, color-coded by publication year, and placed on a map according to the location of its
publisher. Overlapping squares are recursively aggregated into a larger glyph until all glyphs
are disjoint. As the user zooms out, the glyphs “grow” relative to the map to remain legible.
As glyphs start to overlap, they are merged into larger glyphs to keep the map clear and
uncluttered. To allow the user to filter and browse real world data sets at interactive speed
we hence need an efficient agglomerative clustering algorithm for growing squares (glyphs).

Formal problem statement. Let P be a set of points in R?. Each point p € P has a
positive weight p,,. Given a “time” parameter ¢, we interpret the points in P as squares.
More specifically, let O, (¢) be the square centered at p with width ¢p,,. For ease of exposition
we assume all point locations to be unique. Furthermore, we refer to P as a set of squares
rather than a set of center points of squares. Observe that initially, i.e. at ¢ = 0, all squares
in P are disjoint. As t increases, the squares in P grow, and hence they may start to intersect.
When two squares 0, (¢) and O, (t) intersect at time ¢, we remove both p and ¢ and replace
them by a new point z = kp + (1 — k)g, with & = py/(Pw + quw), of weight z, = puw + Guw.
Our goal is to compute the complete sequence of events where squares intersect and merge.

Results. We present a fully dynamic data structure that can maintain a set P of n disjoint
growing squares. Our data structure can report the first time two squares in P intersect,
and supports updates (inserting or deleting a square) in O(log7 n) amortized time. Queries
asking whether a query square [J; currently intersects a square [J,, in P take O(log3 n) time,
and the space usage is O(n(lognloglogn)?). Using this data structure we can compute the
agglomerative clustering for n squares in O(na(n)log” n) time. Here, a is the extremely
slowly growing inverse Ackermann function. To the best of our knowledge, this is the first
fully dynamic clustering algorithm which beats the straightforward O(n?logn) time bound.
This abstract focuses on the update and query times for our data structure. Omitted proofs
and detailed bounds on space usage, as well as related discussions on the relation between
canonical subsets in dominance queries, can be found in the full version [4].

Related Work. Funke, Krumpe, and Storandt [6] introduced so-called “ball tournaments”.
Their input is a set of balls in R? with an associated set of priorities. The balls grow
linearly and whenever two balls touch, the lower priority ball is eliminated. The goal is to
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compute the elimination sequence efficiently. Funke and Storandt [7] show how to compute
an elimination sequence for n balls in O(nlog A(logn + A?~1)) time in arbitrary dimensions
and in O(Cnpolylogn) time for d = 2, where C' denotes the number of different radii and
A the ratio of the largest to the smallest radius. Ahn et al. [2] recently developed the first
sub-quadratic algorithms to compute elimination orders for ball tournaments. Their results
apply to balls and boxes in two dimensions or higher. Specifically, for squares in 2D they
can compute an elimination order in O(n log* n) time. Their results critically depend on the
fact that the elimination priorities are given and that they have to handle only deletions.

Alexandron et al. [3] present a dynamic and kinetic data structure for maintaining
the convex hull of points moving in R2. Their data structure processes (in expectation)
O(n?Bs42(n)logn) events in O(log?n) time each. Here, B5(n) = As(n)/n, and A\y(n) is the
maximum length of a Davenport-Schinzel sequence on n symbols of order s. Agarwal et al. [1]
present dynamic and kinetic data structures for maintaining the closest pair and all nearest
neighbors. The expected number of events processed is roughly O(n?Bs;2(n) polylogn), each
of which can be handled in O(polylogn) expected time.

2 Geometric Properties

Let ¢, denote the bottom left vertex of a square [ , and let 7, denote the top right vertex
of O,. Furthermore, let D(gq) denote the subset of points of P dominating ¢, and let
L(q) ={¢, | p € D(¢)} denote the set of bottom left vertices of the squares of those points.

» Observation 2.1. Let p € D(g) be a point dominating g. The squares 0, (t) and 0,(t)
intersect at time ¢ if and only if () dominates £,(t) at time ¢.

Consider a line v with slope minus one, project all
points in Z(t) = {rq(t)} U L(g)(t), for some time ¢,
onto ~, and order them from left to right. Observe
that, since all points in Z move along lines with
slope one, this order does not depend on the time t.
Moreover, for any point p, we have r,(0) = £,(0) = p,
so we can easily compute this order by projecting
the centers of the squares onto v and sorting them.
Let D~ (q) denote the (ordered) subset of points in
D(q) that occur before ¢ in the order along v, and
let D" (q) denote the ordered subset of D(q) that
occur at or after ¢ in the order along . We define
L~ (q) and L*(q) analogously (see Fig. 1).

» Observation 2.2. Let p € D(q) be a point dom-
inating point g, and let ¢* be the first time at which
r = 14(t*) dominates ¢ = £,(t*). We then have that

Figure 1 The projection of the square
centers and relevant corners onto line .

gz <71y and Ky =Ty if and Only lfp S D_(q)’
ly =75 and £, <7, if and only if p € D*(q).

Observation 2.2 implies that the points p in D~ (g) will start to intersect [J, at some time
t* because the bottom left vertex £, of [, will enter [J; through the top edge, whereas the
bottom left vertex of the (squares of the) points in Dt (g) will enter [J, through the right
edge. We thus obtain the following result.
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» Lemma 2.3. Let t* be the time that a square O, of a point p € D(q) touches O,. We have
(i) re(t™)y = Lp(t™)y, and £,(t*) is the point with minimum

y-coordinate among the points in L™ (q)(t") at time t* if pe D™ (q), and
7 re(t)e = £,(t) s, and €,(t") is the point with minimum
(it) q(t") P ’ p p

x-coordinate among the points in L™ (q)(t*) at time t* if p€ D (q).

3 A Kinetic Data Structure for Growing Squares

We describe a data structure that can detect intersections between all pairs of squares [, [,
in P such that p € D% (q). We build an analogous data structure for p € D™ (g), and then
use four copies of these data structures, one for each quadrant, to detect the first intersection
among all pairs of squares.

3.1 The Data Structure

Our data structure consists of two three-layered trees T and T, and a set of certificates
linking nodes from T and T#. These trees essentially form two 3D range trees on the
centers of the squares in P, taking the third coordinate p., of each point to be their rank in
the order (from left to right) along the line 4. The third layer of T* doubles as a kinetic
tournament tracking the bottom left vertices of squares. Similarly, T tracks the top right
vertices of the squares.

The Layered Trees. The tree T* is a 3D-range tree storing the center points in P. Each
layer is implemented by a BB[a] tree [8], and each node p corresponds to a canonical subset
P, of points stored in the leaves of the subtree rooted at . The points are ordered on
z-coordinate first, then on y-coordinate, and finally on 7y-coordinate. Let L, denote the set
of bottom left vertices of squares corresponding to the set P,, for some node p.

Consider the associated structure X% of some secondary node v. We consider X% as
a kinetic tournament on the z-coordinates of the points L, [1]. More specifically, every
internal node w € X corresponds to a set of points P, consecutive along the line ~. Since
the vy-coordinates of a point p and its bottom left vertex ¢, are equal, this means w also
corresponds to a set of consecutive bottom left vertices L,,. Node w stores the vertex ¢, in
L,, with minimum z-coordinate, and will maintain certificates that guarantee this [1].

The tree T7 has the same structure as T7: it is a three-layered range tree on the center
points in P. The difference is that a ternary structure X ¥, for some secondary node v, forms
a kinetic tournament maintaining the maximum z-coordinate of the points in R,,, where R,
are the top right vertices of the squares (with center points) in P,. Hence, every ternary
node z € X stores the vertex r, with maximum z-coordinate among R,. Let XX and X%
denote the set of all kinetic tournament nodes in T'* and T*, respectively.

Linking the Trees. Next, we describe how to add linking certificates between the kinetic
tournament nodes in the trees 7% and T that guarantee the squares are disjoint. More
specifically, we describe the certificates, between nodes w € X* and z € X!, that guarantee
that the squares [J,, and O, are disjoint, for all pairs ¢ € P and p € D" (q).

Consider a point q. There are O(log2 n) nodes in the secondary trees of TF, whose
canonical subsets together represent exactly D(q). For each of these nodes v we can then
find O(logn) nodes in X% representing the points in L*(g). So, in total q is interested in a
set Q% (g) of O(log®n) kinetic tournament nodes. It now follows from Lemma 2.3 that if we
were to add certificates certifying that 7, is left of the point stored at the nodes in Q¥ (q) we
can detect when [, intersects with a square of a point in D*(q). However, as there may
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Ei

Figure 2 The points m* and m" are defined by a pair of nodes z € Xﬁ, with v" € T/, and
w € XEF, with v € Ty, If w € Q%(M*) and 2z € Q(m") then we add a linking certificate between the
rightmost upper right-vertex rq, ¢ € P., and the leftmost bottom left vertex £,, p € P,.

be many points ¢ interested in a particular kinetic tournament node w, we cannot afford to
maintain all of these certificates. The main idea is to represent all of these points ¢ by a
number of canonical subsets of nodes in T, and add certificates to only these nodes.

Consider a point p. Symmetric to the above construction, there are O(log®n) nodes
in kinetic tournaments associated with 77 that together exactly represent the (top right
corners of) the points ¢ dominated by p and for which p € DT (q). Let Q®(p) denote this set
of kinetic tournament nodes.

Next, we extend the definitions of Q¥ and QF to kinetic tournament nodes. To this
end, we first associate each kinetic tournament node with a (query) point in R3. Consider a
kinetic tournament node w in a tournament X, and let u be the node in the primary T*
for which v € T},. Let m" = (mingep, ¢z, minyep, by, min.cp, ¢y) be the point associated
with w (note that we take the minimum over different sets P,, P,, and P, for the different
coordinates), and define Qf(w) = Q(m®). Symmetrically, for a node z in a tournament
XI with v € T, and u € TR, we define m* = (maxqep, @z, Maxpep, by, Maxcep, ¢y) and
QL (2) = QL (m?). See Fig. 2.

We now add a linking certificate between every pair of nodes w € X% and z € X for
which (i) w is a node in the canonical subset of z, that is w € Q¥ (2), and (ii) vice versa,
z € Q% (w). Such a certificate will guarantee that the point 7, currently stored at z lies left
of the point ¢, stored at w.

» Lemma 3.1. FEvery kinetic tournament node is involved in O(log3 n) linking certificates,
and thus every point p is associated with at most O(log6 n) certificates.

We now argue that we can still detect the first upcoming intersection.

» Lemma 3.2. Consider two sets of elements, say blue elements B and red elements R, stored
in the leaves of two binary search trees TP and T, respectively, and let p € B and q € R,
with q < p, be leaves in trees T® and TT. There is a pair of nodes b € T® and r € T, such
that (i) p € Py and b € C(TE, [max P,,0)), and (i) q € P. and r € C(T%, (—oc, min P)),
where C(T%, 1) denotes the minimal set of nodes in T° whose canonical subsets together
represent exactly the elements of SN 1.
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» Lemma 3.3. Let O, and O,, with p € D (q), be the first pair of squares to intersect, at
some time t*. There is a pair of nodes w, z that have a linking certificate that fails at time t*.

From Lemma 3.3 it follows that we can now detect the first intersection between a pair of

squares O, O, with p € D*(g). We define an analogous data structure for when p € D~ (g).

Following Lemma 2.3, the kinetic tournaments will maintain the vertices with minimum and
maximum y-coordinate for this case. We then again link up the kinetic tournament nodes in
the two trees appropriately.

Space Usage. Our trees T* and TF are range trees in R3, and thus use O(n log? n)
space. However, it is easy to see that this is dominated by the space required to store
the certificates. For all O(nlog®n) kinetic tournament nodes we store at most O(log® n)

certificates (Lemma 3.1), and thus the total space used by our data structure is O(nlog® n).

In the full version [4], we show that the number of certificates that we maintain (and thus
the space used by our data structure) is actually only O(n(logn loglogn)?).

3.2 Inserting or Deleting a Square

At an insertion or deletion of a square J,, we proceed in three steps. (1) We update TE and
TR, restoring range tree properties, and ensure that the ternary data structures are correct
kinetic tournaments. (2) For each kinetic tournament node in X affected by the update,
we query T'® to find a new set of linking certificates. We update X® analogously. (3) We
update the global event queue.

» Lemma 3.4. Inserting or deleting a square in T takes O(log3 n) amortized time.

Clearly we can update T'% in O(log3 n) amortized time as well. Next, we update the linking
certificates. We say that a kinetic tournament node w in T is affected by an update if (i)
the update added or removed a leaf node in the subtree rooted at w, (ii) node w was involved

in a tree rotation, or (iii) w occurs in a newly built associated tree X (for some node v).

Let X denote the set of nodes affected by update i (X of T is defined analogously). For
each node w € X%, we query T® to find the set of O(log® n) nodes whose canonical subsets
represent Q% (w). For each node z in this set, we test if we have to add a linking certificate
between w and z. As we show next, this takes constant time for each node z, and thus
O(3,; |XF|log® n) time in total, for all nodes w (analogously for X;%).

We have to add a link between a node z € Qf(w) and w if and only if we also have
w € QF(z). We test this as follows. Let v be the node whose associated tree X' contains w,
and let u be the node in T whose associated tree contains v. We have that w € Q¥ (z) if
and only if u € C(T*,[m}, )), v € C(T,, [m;,0)), and w € C(X}, [mZ,00)). We can test
each of these conditions in constant time:
» Observation 3.5. Let ¢ be a query point in R!, let w be a node in a binary search tree T,
and let x,, = min P, of the parent p of w in T', or x,, = —oo if no such node exists. We have
that w € C(T,[g,00)) if and only if ¢ < min P, and ¢ > x,,.

Finally, we delete all certificates involving no longer existing nodes from our global event
queue, and replace them by all newly created certificates. This takes O(logn) time per
certificate. We charge the cost of deleting a certificate to when it gets created. Since every
node w affected creates at most O(log®n) new certificates, all that remains is to bound
the total number of affected nodes. Here we can use basically the same argument as when
bounding the update time.

» Lemma 3.6. Inserting a disjoint square into P, or deleting a square from P takes O(log7 n)
amortized time.
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3.3 Running the Simulation

All that remains is to analyze the number of events processed, and the time to do so. Since
each failure of a linking certificate produces an intersection, and thus an update, the number
of such events is at most the number of updates. To bound the number of events created by
the tournament trees we use an argument similar to that of Agarwal et al. [1].

» Theorem 3.7. We can maintain a set P of n disjoint growing squares in a fully dynamic
data structure such that we can detect the first time that a square O, intersects with a square
O,, with p € D™ (q). Our data structure uses O(n(lognloglogn)?) space, supports updates
in O(log7 n) amortized time, and queries in O(log®n) time. For a sequence of m operations,
the structure processes a total of O(ma(n)log®n) events in a total of O(ma(n)log” n) time.

To simulate the process of growing the squares in P, we now maintain eight copies of the
data structure from Theorem 3.7: two data structures for each quadrant (one for DT, the
other for D7). Using these data structures we obtain the following agglomerative glyph
clustering solution.

» Theorem 3.8. Given a set of n initial square glyphs P, we can compute an agglomerative
clustering of the squares in P in O(na(n)log” n) time using O(n(lognloglogn)?) space.
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—— Abstract

We use the concept of production matrices to show that there exist sets of n points in the plane

that admit (41.77") crossing-free geometric graphs. This improves the previously best known
bound of €2(41.18") by Aichholzer et al. (2007).

1 Introduction

A geometric graph on a set S of n labeled points in the Euclidean plane is a graph with vertex
set S in which an edge is represented by a straight line segment between the corresponding
vertices. In this work, we are interested in the number of crossing-free geometric graphs
on a set of n points, i.e., geometric graphs in which all segments are interior-disjoint. It is
easy to see that, for any n points, this number is at least exponential in n. In 1982, Ajtai
et al. [2] showed that the upper bound on this number is also exponential. Currently, it is
known that any set of n points admits not more than O(187.53™) crossing-free graphs [13].
While it is known that the number of crossing-free graphs is minimized if the point set is
in convex position [1], not much is known about sets maximizing this number. The best
known example by now is the so-called double-zig-zag chain [1], with €(41.18™) crossing-free
graphs. As usual, such lower-bound constructions rely on describing a family of point sets
with convenient structural properties. In this paper, we improve this bound by showing that
another well-known family of point sets, a generalization of the double-zig-zag chain, admits
Q(41.77™) crossing-free graphs. This generalization has also been used for similar bounds on
triangulations [5], but the number of general crossing-free graphs on this configuration was
not known. The method that allows us to analyze these point sets is the use of production
matrices, which we consider interesting on its own.

This method works by implicitly arranging the graphs in a generating tree, describing a
rule to produce a graph from one on fewer points. Consider a partition of the set of graphs
on i < n points into n parts according to their degree at a special root vertex, and represent
the cardinality of each part in a vector ¢*. The first element of ¥ is the number of graphs
with the root vertex having degree 0, the second one that of graphs with root vertex with
degree 1, and so on. We then devise how to generate graphs on ¢ + ¢ points with a new root
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9:2 A New Bound on the Number of Plane Graphs

vertex from the graphs counted in #%, and again give the cardinalities of their parts in a
vector 7*¢ (for some small positive number ¢). Our point sets will allow us to devise an n x n
production matriz A such that 7¢ = A7®. We obtain the number of graphs on n vertices in
" = AJ™ from the graphs on a constant number ng of vertices, with j = (n — ng)/c. We
can then use the Perron-Frobenius theorem to obtain a lower bound on the elements of A’
when j tends to infinity by approximating the largest eigenvalue of the matrix. This gives us
a lower bound on the number of crossing-free graphs on such a point set.

For points in convex position, generating trees have been described for triangulations [10],
spanning trees [6], and other crossing-free graphs [7]. They are the basis of the ECO
method [3]. The term production matriz was introduced in [4], a similar concept is known
as AGT matriz [11]. Together with Seara, the authors already addressed characteristic
polynomials of production matrices for geometric graphs [8].

In the next section, we define the family of point sets used, and provide production
matrices to count subgraphs in its different parts. In Section 3, we argue that bounds on the
Perron roots of the matrices give us a lower bound on the number of crossing-free graphs.

2 Generalized double zig-zag chains and the new lower bound

Basically, our point sets will be described as sequences (s1, ..., ;). Consider any graph G
drawn on the first ¢ + 1 vertices. If we replace every edge s;s;y+1 by the edge s;s; for all
j <i+1 (and disregard duplicates and loops), we obtain a graph G’ that we call the parent
of G. Our sets will be such that G’ is crossing-free. In the other direction, we can select
some edges incident to s; in G’ and replace them by edges incident to s;11 in a way that G’
is the parent of the new graph G, and such that G is crossing-free. We say that G produces
@7 and the edges incident to s;41 are inherited. The degree of s; in G determines how many
graphs can be produced from it. For our construction, s; is thus the root vertex, and the
vector @' contains the number of graphs with root vertex s; of degree j, for 0 < j < n.
While this captures the basic idea of our proofs, we will actually have to use more involved
constructions, in which we add a constant number of points at once and add edges, some
inherited, and some not, in a well-defined, local way.

2.1 The generalized double-zig-zag chain

Let Zi be a set of n = 2z points with z =1 (mod (k + 1)) that is arranged in the following
way. Consider two z-monotone circular arcs facing each other as in Fig. 1, such that each
point on one arc can see each point on the other arc (where two points can see each other if
the interior of the line segment connecting them does not intersect one of the arcs). On each
arc, we place [n/(k + 1)] points. Consider the segment between two consecutive such points
s and t on the lower arc. We now place a “flat” circular arc between s and ¢ with circle
center above the arc, and place k points on it; here, flat means that moving the center of the
arc up (and thus the k points on it) does not change the set of crossing-free graphs drawable
on Zj. We call the group formed by s, ¢, and the k points in between them a pocket. We
place k such points between each pair of consecutive points of the lower arc (obtaining the
lower chain), and also in an analogous way on the upper arc (resulting in the upper chain).
See Figure 1 for an example of Z5, where each pocket consists of four points.

The points along the lower arc, including pockets, are labeled, from left to right, p1,...,p.,
and those on the upper arc q1, ..., q,. Observe that the segment between any two consecutive
points p;p;+1 is not crossed by any other segment between two points of the set, and thus
can co-exist with any other edge in a crossing-free graph. For this reason, these edges will be
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Figure 1 A generalized double-zig-zag chain Z>. The arcs for the construction are dotted, the
solid edges are not crossed by any segment between two points.

P

p;

new vertices
Pi-1 Pi+1 Pi-1 Di+1
Pi—2 Dit2 Pi—2 Dit2

new vertices

Pi+3

Figure 2 Part of an almost convex chain with two interior vertices (i.e., k = 2). Vertices p;_2
and p;+1 are leading vertices. The other vertices are regular. Since p;42 is a regular vertex, any
edge incident to p;+2 present in a plane graph can be obtained by inheriting an edge from the
previous vertex p;4+1. The example shows p;42 inheriting two edges from p;+2. The last inherited
edge (dashed) may also be kept at p;4+1 without influencing the degree of p;2.

disregarded first in our counting, and will be considered in the end by multiplying by a factor
of 2. Also note that the construction consists of two almost convex polygons [9]. Therefore
we focus on counting the graphs with edges below the path (p1,...,p,) (and, symmetrically,
above the path (¢1,...,q.)) called the outer part, and edges which connect vertices of the
two paths, which are in the inner part. Our bound is obtained on Zs.

2.2 Production matrices for the outer part

In this section we deduce matrices to count the number of plane graphs with edges below
the path (p1,...,p.), as in Figure 2. Recall that a chain is composed of a series of pockets;
each pocket forms a reflex chain of four vertices. The first and last vertices are convex, while
the two middle ones are reflex. The first (say, with smallest index) reflex vertex is called the
leading vertex of the chain. All other vertices we call regular.

We will present a matrix to count the number of plane graphs after adding one whole
pocket. This matrix will be the product of three matrices, one related to each new vertex
of the pocket p;11,pitra, pits (recall that p; coincides with the last vertex of the previous
pocket).

2.2.1 Matrix for regular vertices

Consider a regular vertex like p; 4o (refer to Figure 2). Assume that the vector #**!, containing
the number of plane graphs for each possible degree of p;11, is known. The plane graphs
where p; 2 has degree 0 are equal to all the graphs counted in #**1. This gives a first row of
1s in the matrix. If p; ;o has degree 1, it needs to inherit one edge from p;41. If the degree of
pi+1 is 0, this is not possible, thus we get a zero in the first column of the second row. As
soon as p;+1 has degree at least 1, p;;2 can inherit one edge from p;11. Moreover, there is
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1 1 1 1 1 1 1 1 1 1 1 1 0O 0 0 0O O O
0 2 2 2 2 2 1 2 2 2 2 2 2 1 1 1 1 1
00 2 2 2 2 o1 2 2 2 2 3 4 3 3 3 3
R= 0 0 0 2 2 2 ¢= 00 1 2 2 2 X = 1 4 5 4 4 4
0 0 0 0 2 2 00 0 1 2 2 01 4 5 4 4
0O 0 0 0 0 2 00 0 0 1 2 0 0 1 4 5 4
Table 1 Matrices for computing the outer part, for n = 6.
b new vertices b new vertices
Pi—1 Pi+1 Pi+1
Pi—2 Pit2 Pi—2 Pi+2

Figure 3 When edges pi11pi—2 and p;+1pi—3 are not included, p;+1 can inherit edges from p;
(left). The example shows p;11 inheriting two edges from p;. The last inherited edge (dashed)
may be kept without influencing the degree of p;+1. The case when edges pi11pi—2 or piy1pi—3 are
included is shown to the right. In the example p;+1pi—2 is included, and p;+1 inherits two edges
from p;_2. The dashed edge can be optionally kept.

the option of keeping (a copy of) the inherited edge incident to p;11 without creating any
crossing. In total, for each graph in which p;; has degree at least one, that gives two ways
for making p; 4o have degree 1. Thus the rest of the row is made of 2s.

The following rows are analogous, shifted by one column every time: in order for p;;o to
have degree k, k edges need to be inherited from p; 1, thus the minimum degree for p;41 is k.
Since we can always choose to keep the last inherited edge incident to p;41, we get 2 options
every time. This results in matrix R in Table 1. Exactly the same matrix applies to p;ys.

2.2.2 Matrix for leading vertices

Leading vertices like p;;1 in Figure 2 require a different approach, as there are edges incident
to p;+1 that cannot be obtained by inheriting from p; (i.e., edges p;+1Pi—1, Pit1Pi—2, Pi+1Di—3,
as piPi—1, PiPi—2, PiPi—3 are not in the outer part). To take this into account, we consider
two cases, depending on whether edges p;+1p;—2 or p;+1p;—3 are included or not.

Case 1: Edges p;+1pi—2 and p;+1p;—3 are not included. When p;1p;—2 and p;+1pi—3
are not included, p;+1 can inherit edges from p; (notice that all edges from p; cross p;y1pi—o
and p;11pi—3). See Figure 3 (left).

The plane graphs where p;, 1 has degree zero are, as before, all the ones counted in 7,
thus this gives a first row of 1s in the matrix. If p;;; has degree one, it either inherited one
edge from p; or is connected to p;_1. Thus if p; has degree zero, there is only one possibility:
using edge p;11p;—1. That gives a 1 in the first column of the second row. As soon as p; has
degree at least one, p;11 can inherit one edge from p;, with the additional option of keeping
the inherited edge incident to p;; note that in this case using also p;+1p;—1 is not considered
because that would increase the degree of p; 1 by one. In total, for each possible degree of p;,
that gives two ways for making p; 1 have degree one. Thus the rest of the row is made of 2s.

The following rows are analogous. Consider the kth row (k > 3). If p; has degree k — 2
or less, it is impossible for p;;1 to obtain degree k. When p; has degree k — 1, there is one
possibility: to inherit all edges incident to p; and add edge p;+1p;—1. If p; has degree at
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6 0 0 0 0 O 2 1 1 1 11
10 6 0 0 0 O 0 3 2 2 2 2
Q= 5 10 6 0 0 O - 00 3 2 2 2
1 5 10 6 0 O 0 0 0 3 2 2
0 1 5 10 6 0 0 0 0 0 3 2
0 o0 1 5 10 6 0 0 0 0 0 3

Table 2 Matrices for computing the inner part, for n = 6.

least k, then p;41 can inherit k edges from p;, with the additional option of keeping the last
inherited edge incident to p;, giving two options for every possible degree of p;. This leads to
the matrix C' in Table 1.

Case 2: At least one of p;;1p;—2 and p;;1p;—3 is included. In this case we proceed
essentially by using p;_o as “previous” vertex, but considering also the three special edges

{Pi+1Pi—1,Di+1Pi—2, Pi+1Di—3}, which cannot be inherited from p;_o. Refer to Figure 3 (right).
We defer the details to the full version. The result for this case is matrix X, shown in Table 1.

2.3 Production matrices for the inner part

The number of graphs on the inner part can be bounded similar to [1]. However, in the
full version, we show how to obtain a lower bound using production matrices, based on two
additional matrices, Q and F' shown in Table 2.

2.4 Putting things together

The final production matrix for the outer part is obtained by combining matrices R, C, and

X. For each of the two regular vertices it is enough to multiply the previous vector by R.

For the leading vertex we need to combine the two cases, thus we need to add up C and
X. However, the reasoning in X uses p;_» instead of the previous vertex p;. Thus prior
to multiplying by X, we need to recover the vector corresponding to p;_o: for this we first

multiply twice by R~!. Thus the final combined matrix for the outer part is R?(C'+ X - R=2).

In the full version we show that a lower bound on the number of plane graphs in the inner
part is given by the combined matrix (FFR + 2R)Q.

3 A lower bound using the eigenvalue

All our production matrices are non-negative. The zero entries are exactly those below a
sub-diagonal. Thus, they are irreducible and primitive (Frobenius’ test for primitivity holds,
cf. [12, p. 678]). Let A be a production matrix of fixed size m x m. We know therefore that

A n T
lim () _PT g

n—oo \ T q_Tﬁ

where 77 and ¢ are the Perron vectors of A and AT, respectively, and 7 is the Perron root (i.e.,
largest eigenvalue) of A [12, p. 674]. As these values are constant and each entry of A™ is in
©(r™), this provides a means of obtaining the asymptotic number of elements constructed
by the production matrix: multiplying the initial degree vector with A’ gives the degree
vector for ci < m points. However, there is one caveat. The exponent n tends to infinity, and
we thus cannot use this to argue about matrices of size n. The matrix size must be fixed.
However, for obtaining lower bounds, we can take the nth power of a (m x m) production
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matrix for some constant m to obtain a lower bound on the number of graphs on n vertices.
In the first iteration where we add a point larger than the size of the matrix, we do not count
some graphs with high degree at the last point. These are also not taken into account in the
next iteration etc., where we also produce graphs of smaller degree at the last point. Still, the
degree vector gives a lower bound on the number of graphs. We may thus obtain the Perron
root r of a constant-size production matrix and know that the number of graphs on n vertices
in that class is in Q(r™) for all our considered instances. For the matrix R?*(C'+ X - R=2), the
largest eigenvalue is at least 124.22239555, when taking the constant-size production matrix
large enough. For the inner part, the largest eigenvalue of the matrix (FFR + 2R)Q is at
least 5380.90657056 (see the full version). Accounting for the 2™ ways to add edges along the
chains, we get Q((+/124.22239555 - v/5380.90657056 - 2)™) = Q(41.773981586™) crossing-free
graphs (eigenvalues computed using Mathematica 11.2 with m = 1024).

4 Conclusion

We slightly improved the current lower bound on the maximum number of crossing-free
geometric graphs on n points using production matrices. Applying production matrices to
families of well-structured point sets appears to be an easy way of obtaining bounds for
certain types of graphs (e.g., triangulations). It is also easy to mix the pocket sizes. However,
our current approach results in an increasing number of cases when considering generalized
double-zig-zag chains with larger pockets.
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Figure 1 Optimal foldings of a linear layout with three different aspect ratios, as computed by
our algorithm: process tree [8] computed from the 2012 Business Process Intelligence Challenge [1].

1 Introduction

Linear layouts are a simple and natural way to draw a graph: all vertices are placed on
a single line and edges are drawn as arcs between the vertices. Despite its simplicity, a
linear layout can be a very meaningful visualization if there is a particular order defined
on the vertices. Common examples of such ordered—and often also directed—graphs are
event sequences and processes: public transport systems tracking passenger check-in and
check-out, banks checking online transactions (see Fig. 1 for an abstracted view of such a log),
or hospitals recording the paths of patients through their system, to name a few. A main
drawback of linear layouts are the usually (very) large aspect ratios of the resulting drawings,
which prevent users from obtaining a good overview of the whole graph. In this paper we
present a novel and versatile algorithm to optimally fold a linear layout of a graph such that
it can be drawn effectively in a specified aspect ratio, while still clearly communicating the
linearity of the layout (see Fig. 1).

Exact problem statement. We focus on the linear layout of graphs which have an order
defined on their vertices. Specifically, our input consists of a graph G = (V, E) with a total
order on the vertices V. We are also given the desired aspect ratio p, or equivalently the
width W, and height Hy, of the drawing. Our goal is now to draw G as clearly as possible,
in a way that communicates the total order of the vertices effectively, while minimizing
the unused (empty) space in the drawing. In a classic graph drawing setting vertices are
points in the plane and edges are drawn arbitrarily close to each other as (thin) lines. In any
practical scenario, however, vertices carry associated data, often visualized as labels, and
lines need to be spaced well for readability. We capture both constraints by associating a
block B; of a specified width and height with each vertex v;. This block represents the area
needed to draw the vertex v;, which may represent the size of the corresponding label, or
even a (recursive) drawing of a subgraph represented by v;. B; also reserves the necessary
space to draw the edges surrounding v; clearly.
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Results. We describe an algorithm which optimally “folds” a given input graph (with a
specified order and vertex blocks) for a desired target aspect ratio. The main ingredient of
our approach is an algorithm which computes an optimal partition of the input graph and its
associated blocks over the various folds, without changing the order. That is, we are solving
a packing problem (packing blocks onto rows) while respecting a given order of the blocks.
Our algorithm works at interactive speed for reasonably sized layouts.

Related work. A linear layout of a graph G is an ordering on its vertices. A linear layout
can be visualized by drawing all vertices on a line, in the given order, and drawing the edges
as arcs on one side of the line. A book embedding is a linear layout of which the edges are
partitioned into a number of sets (called pages) of non-crossing edges. For any graph the
minimum number of pages needed for a book embedding (over all possible linear layouts) is
called the book thickness. Determining the book thickness of a graph is NP-hard, and the
problem stays NP-hard even if we are given a fixed linear layout [4]. For a more complete
overview of linear layouts, we refer to the survey by Dujmovié¢ and Wood [3].

Packing rectangles has been an active area of research in both algorithms and operations
research. For our purposes two types of packing problems are particularly relevant: (two-
dimensional) bin packing and strip packing. Bin packing is already NP-hard in one dimension
(see for example [6]), which implies that both two-dimensional bin packing and strip packing
are NP-hard as well [7].

Generally packing problems allow reordering of the blocks, while we have to display
the blocks in order, which significantly reduces the complexity of the problem. There are
some algorithms for on-line strip packing which preserve the order of the blocks. A natural
approach here is nezt-fit, which greedily places as many blocks as possible onto a row, before
moving to the next row. While there are no bounds on the quality of the solution obtained [2],
it performs reasonably well in the average case [5]. To the best of our knowledge the exact
variant which we are studying in this paper has not been treated in the literature yet.

2 Folding algorithm

Our strategy is to fold the linear layout into multiple rows, where the vertices are ordered
alternatingly from left to right and from right to left. In other words, we assign the vertices
to rows, such that all vertices in the same row are consecutive in the given order. We call
this assignment a folding of G. We can distinguish between two types of edges: spine edges
(those between two consecutive vertices in the order) and connectors (the other edges). Spine
edges can be drawn along the folded path (spine) itself; connectors must be placed next to it.
We first consider the following problem: given a maximum w;
width W, minimize the height H of the resulting drawing. For

each vertex v; € V we specify a block B;, that represents the T
area needed to draw the vertex, including possibly its label. !
We specify a block B; by its width w;, its top-height A7, and B """""""""""""""""""""
its bottom-height h? (see Fig. 2). We separate top-height hi

and bottom-height so that blocks do not need to be centered
vertically on the spine. Our goal is now to compute a folding
for the blocks B; such that all blocks are disjoint and the
total height is minimized. This packing problem is the core of
our algorithm and is described in Section 2.1. Then, in Section 2.2 we show how to draw
connectors and how to adapt the block sizes to create space for the connectors.

Figure 2 Width (w;), top-
height (k) and bottom-height
(hP) of a block, spine dotted.
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2.1 Packing blocks

We first consider the problem in its full generality. That is, we can place the blocks anywhere
we want along the spine, as long as the width of the drawing is at most W (see Fig. 3
(left)). In this version of the problem it can be beneficial to leave extra space between two
consecutive blocks along the spine to avoid two high blocks sharing the same z-coordinate.
Unfortunately we can show that minimizing the height is then NP-hard.

Figure 3 Packing blocks: rows can overlap vertically as long as the blocks do not overlap (left),
rows cannot overlap vertically (right).

» Theorem 2.1. If rows are allowed to overlap vertically, the problem of minimizing the
drawing height is NP-hard, even if we assume that all blocks are vertically centered on the
spine (their top and bottom heights are equal) and the assignment of blocks to rows is given.

Proof sketch. By reduction from 3-SAT (see Fig. 4). We create a grid of blocks in which a
column represents a variable and a pair of rows represents a clause. Between the variable
columns, we put columns containing “spacer blocks” that are slightly less tall than the blocks
in the variable columns. We set H and W such that spacer blocks need to be stacked on top

of each other and that variable blocks on consecutive rows need to be next to each other.

Necessarily, the variable blocks on even rows are on top of each other and the variable blocks
on odd rows as well, forming “zigzag” configurations. A zigzag that begins on the left (on the
top row of each clause) is interpreted as true, and one that begins on the right is interpreted
as false. We represent each literal in a clause by a tiny block in the corresponding variable
column. We place this tiny block (top row for positive and bottom row for negative literals)

such that it requires additional horizontal space on a row if and only if the literal is false.

Hence, to ensure that in every clause at least one literal is satisfied, we set the width W such
that the rows just fit with two extra tiny blocks, but not with three. |

:}cl

B .}02

: e

Figure 4 Instance corresponding to (z1 V z2 V —x4) A (mz2 V —x3 V x4) A (mz1 V —23 V 24).

c Ca C3
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We restrict the problem so that different rows cannot overlap vertically (see Fig. 3 (right)). In
that setting there is no need to put extra space between two consecutive blocks on the same
row, as the height of a row is simply determined by the maximum (top or bottom) height of
the blocks in a single row. We use dynamic programming to compute the optimal folding of
the blocks. To that end, we first precompute the height H][i, j] (1 <i < j < n) of a row that
contains the blocks B;, ..., B;. Since we separate the top-height and the bottom-height of a
block, we define H[i,j] = HT[i,7] + HE[i, j], where HT[i, j] and H®[i, j] are the top-height
and bottom-height of a row consisting of blocks B;,. .., B;, respectively. If the total width
of the blocks B,, ..., B; is larger than W, then we set HT [i, j] and H®[i, j] to co. We thus
get the following for HT[i, j] (and similar for H2[i, j]).

HT[i,j] _ max,;gkgj hz if ZJ:i Wi S W;

00 otherwise.
All entries of H[i,j] can be computed in O(n?) time. Next, let T'[i] (0 <4 < n) describe the
minimum height of a folding involving the blocks By, ..., B;. We then need to choose how
many blocks we will place on the last row. This results in the following recurrence for T'[i].

an 0 if i =0;
1 =
min g<i<i{T[k] + H[k + 1,i]} otherwise.

The minimum height is then given by T'[n]. As a result, the minimum height and the
corresponding folding can be computed in O(n?) time.

2.2 Connectors

Spine edges can be drawn by adding a sufficient margin to the width of blocks and using
the resulting space between blocks to draw the edges. However, connectors need to be
drawn between rows, and we need to ensure that there is enough space to draw them. We
can reserve this space by changing the height of the blocks in the dynamic programming
formulation, to include the width of adjacent connectors.

We first assume that the connectors are properly nested. That is, if e;; (i < j) is a
connector between B; and B;, and ey (k < 1) is another connector between By, and B; where
i <k, then j <k or [ < j. This implies that the connectors can be drawn without crossings
on one side of the spine. If the connectors are not properly nested, crossings may be needed;
we discuss how to handle such crossings in Section 2.3.

We assume that all connectors are routed along the right
side of the drawing. Hence on left-to-right rows, incoming and
outgoing connectors go along the top of the row, while on right-
to-left rows, they go along the bottom (see Fig. 5). Therefore,
the height of a row can differ depending on whether it is drawn
left-to-right or right-to-left. To accommodate for this we split
HiJi, j] into two different tables: H_,[i, 5] and H.[i, j].

We show how to compute H_,[i, j] in the presence of con- Figure 5 Connectors are

nectors (H,_[i,j] can be computed similarly). We consider all routed along the right side of
the drawing. (Blocks without

incident connectors omitted.)

connectors that start or end at a block By with ¢« < k < j. For
each such connector e;; we determine the interval of blocks
above which eg; must be drawn. Now, for every block By, we add 7 weonn to h{ to represent
the space needed by connectors above By, where ry is the number of connectors that need
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to be drawn above Bj and weonn is the space needed per connector. We can then compute
H_,[i,j] by taking the maximum of h{ over all i < k < j. To compute 7y, efficiently for
every block, note that r is simply the number of connector intervals that contain k. Since
the intervals are nested, we can build a tree (or forest in general) on the intervals where an
interval I is a descendant of an interval I if and only if I; is contained in I5. The leaves of
this tree are formed by the individual blocks. The value r is then simply the depth of By in
this tree, which can easily be computed for all blocks in O(m) time, where m is the number
of connectors. Thus, we can compute a single entry of H_, [, j] in O(m + |j — i + 1|) time.
Finally, to draw the connectors that span multiple rows, we need to reserve space on
the right side of the drawing. Unfortunately we cannot incorporate this into the dynamic
programming algorithm. Instead we compute the nesting depth of the connectors, that is, the
size of the largest set of connectors where, for every two connectors, one is always properly
contained in the other. This is the largest number of connectors that we may need to draw
next to each other on the right side of the drawing in the worst case. The nesting depth is
independent from the folding and can hence be precomputed. We then subtract weonn times
the nesting depth from W before we compute the optimal folding. Note that, based on the
folding, we may not need all of this additional space on the right side of the drawing. In that

case we push the connectors as far to the right as possible to create some visual separation.

We note that, due to our versatile setup, we can also show additional information on
connectors. In fact, we can add an additional block or even sequences of blocks on a single
connector by using our algorithm recursively. We can incorporate blocks on connectors by
changing the width weonn of a connector. As a result, connectors can have different widths;
our algorithm can easily be adapted to this scenario.

2.3 Crossing connectors

We now consider the case where the connectors are not properly nested. Here we may have
connectors that cross each other, which we want to avoid as much as possible. Even if we
already know the order of the vertices along the spine, minimizing the number of crossings
in this situation is still known to be NP-hard (see Section 1). We therefore use a heuristic to
obtain a low number of crossings: we compute a maximum set of properly-nested connectors,
remove them and iterate until no connectors are left. This results in a collection of sets
Ey,...Ex. We then draw each set of connectors separately as described in Section 2.2,
ignoring any crossings among the different sets.

To find the largest subset of properly-nested connectors, we use the following dynamic
programming formulation. We first order the connectors such that e;; < ey if ¢ <k, or if
t==kand j > Letecp,...,cn, be the resulting ordered set of connectors, and let f(i) be
the index of the first connector in the order that has B; as a starting block. Now we define
T[i,j] (1 <i<m+1,0<j <n) as the size of the largest subset of connectors among
Ci,...,Cm that are properly-nested and all end at a block before or at B;. Now, for every
connector in order, we simply need to choose whether we want to include the connector in
our set or not. We obtain the following recurrence (here we assume that ¢; = ey;).

0 ifi=m+1;
Tli,jl = T[i +1, 4] if 1> 7
max{T[i+ 1,1+ T[f(1),j]+1,T[i +1,5]} otherwise.

The size of the largest subset of properly-nested connectors is given by T[1,n]. It can be
computed in O(mn) time, where n is the number of blocks and m is the number of connectors.

EuroCG’18
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2.4 Aspect ratio

So far we have presented an algorithm that, given a maximum
width W, computes the minimum height H (W) of a folding of the
graph. Our goal is to find a folding that has a particular aspect
ratio p: we need to find a width W such that W/H (W) = p. As o
H (W) is non-increasing as W increases (see Fig. 6), we can use
a binary search to find the width W for which W/H(W) = p.
As the initial lower bound for W we take the maximum width of
all blocks, because the drawing can never be narrower than that; 0 Wopt w
as the upper bound we use the sum of the widths of all blocks.
Since H(W) is not continuous, we may not be able to obtain
the exact correct aspect ratio, but the binary search will at least
find the width W at which our folding algorithm jumps over the
aspect ratio p. The resulting drawing then may have some unused height, but the drawing is
as close to the correct aspect ratio as possible. More precisely, the binary search maximizes

HA W = pH

Figure 6 The height of
a drawing is a descending
function of its width.

the size of the vertices (labels) in the resulting drawing. That is, if we are given a drawing
area of size Wy x Hy (with aspect ratio p, so Wy/Hy = p), and we scale our drawing by a
factor « to fit the drawing area (that is, a- W < Wy and «- H < Hy), the binary search
results in a drawing that maximizes a.
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1 Introduction

The performance of a particular algorithm is usually judged with respect to a variety of
criteria, with the two most common being solution quality and running time. In the context
of algorithms for time-varying data, a third important criterion is stability. We say that
an algorithm is stable if small changes in the input result in small changes in the output.
The stability of algorithms or methods has been well-studied in a variety of research areas,
such as numerical analysis, machine learning, control systems, and topology. In contrast, the
stability of combinatorial algorithms for time-varying data has received little attention in the
theoretical computer science community so far. Here it is of particular interest to understand
the tradeoffs between solution quality, running time, and stability. As an example, consider
maintaining a minimum spanning tree of a set of moving points. If the points move, it might
have to frequently change significantly. On the other hand, if we start with an MST for the
input point set and then never change it combinatorially as the points move, the spanning
tree we maintain is very stable — but over time it can devolve to a low quality and very long
spanning tree.

Our goal, and the focus of this paper, is to understand the possible tradeoffs between
solution quality and stability. This is in contrast to earlier work on stability in other research
areas, such as the ones mentioned above, where stability is usually considered in isolation.
Since there are currently no suitable tools available to formally analyze tradeoffs involving
stability, we introduce a new analysis framework. Our framework allows for three types of
stability analysis with increasing degrees of complexity: event stability, topological stability,
and Lipschitz stability. We demonstrate the use of our stability framework by applying it to
kinetic Euclidean minimum spanning trees. We believe that there are many interesting and
relevant questions to be solved in the general area of algorithmic stability analysis and we
hope that our framework is a first meaningful step towards tackling them.

Related work. Stability is a natural point of concern in more visual and applied research
areas such as graph drawing, (geo-)visualization, and automated cartography. For example,
in dynamic map labelling [2], the consistent dynamic labelling model allows a label to appear
and disappear only once, making it very stable. There are very few theoretical results, with
the noteworthy exception of so-called simultaneous embeddings [3] in graph drawing, which
can be seen as a very restricted model of stability. However, none of these results offer any
real structural insight into the tradeoff between solution quality and stability.

In computational geometry there are a few results on the tradeoff between solution quality
and stability. Specifically, Durocher and Kirkpatrick [5] study the stability of centers of
kinetic point sets, and define the notion of x-stable center functions, which is closely related
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to our concept of Lipschitz stability. In later work [6] they consider the tradeoff between
the solution quality of Euclidean 2-centers and a bound on the velocity with which they can
move. De Berg et al. [4] show similar results in the black-box KDS model. One can argue
that the KDS framework [8] already indirectly considers stability in a limited form, namely
as the number of external events. However, the goal of a KDS is typically to reduce the
running time of the algorithm, and rarely to sacrifice the running time or solution quality to
reduce the number of external events.

2 Stability framework

Intuitively, we can say that an algorithm is stable if small changes in the input lead to small
changes in the output. More formally, let II be an optimization problem that, given an
input instance I from a set Z, asks for a feasible solution S from a set S that minimizes (or
maximizes) some optimization function f:Z x & — R. An algorithm 4 for IT can be seen as
a function A: Z — S. Similarly, the optimal solutions for II can be described by a function
OPT:7Z — S. To define the stability of an algorithm, we need to quantify changes in the
input instances and in the solutions. We can do so by imposing a metric on Z and S. Let
dz: T x 1 — R>q be a metric for Z and let ds: S x § = R>¢ be a metric for §. We can
then define the stability of an algorithm A: Z — S as follows.

St(A) = max 98ADAT))

rrer  dg(I,I') )

This definition for stability is closely related to that of the multiplicative distortion of metric
embeddings, where A induces a metric embedding from the metric space (Z,dz) into (S, ds).
The lower the value for St(A), the more stable we consider the algorithm A to be. There are
many other ways to define the stability of an algorithm given the metrics, but the above
definition suffices for our purpose.

For many optimization problems, the function OPT may be very unstable. This suggests
an interesting tradeoff between the stability of an algorithm and the solution quality. Un-
fortunately, the generic formulation of stability provided above is very unwieldy. It is not
always clear how to define metrics dz and ds such that meaningful results can be derived.
Additionally, it is not obvious how to deal with optimization problems with continuous input
and discrete solutions, where the algorithm is inherently discontinuous, and thus the stability
is unbounded by definition. Finally, analyses of this form are often very complex, and it is
not straightforward to formulate a simplified version of the problem. In our framework we
hence distinguish three types of stability analysis: event stability, topological stability, and
Lipschitz stability.

Event stability follows the setting of kinetic data structures (KDS). That is, the input (a
set of moving objects) changes continuously as a function over time. However, contrary to
typical KDSs where a constraint is imposed on the solution quality, we aim to enforce the
stability of the algorithm. For event stability we simply disallow the algorithm to change the
solution too rapidly. Doing so directly is problematic, but we formalize this approach using
the concept of k-optimal solutions. As a result, we can obtain a tradeoff between stability
and quality that can be tuned by the parameter k. Note that event stability captures only
how often the solution changes, but not how much the solution changes at each event.

Topological stability takes a first step towards the generic setup described above. However,
instead of measuring the amount of change in the solution using a metric, we merely require
the solution to behave continuously. To do so we only need to define a topology on the solution
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space S that captures stable behavior. Surprisingly, even though we ignore the amount of
change in a single time step, this type of analysis still provides meaningful information on
the tradeoff between solution quality and stability. In fact, the resulting tradeoff can be seen
as a lower bound for any analysis involving metrics that follow the used topology.

Lipschitz stability finally captures the generic setup described above. As the name suggests,
we require the algorithm to be Lipschitz continuous and we provide an upper bound on the
Lipschitz constant, which is equivalent to St(.A). We are again interested in the quality of the
solutions that can be obtained with any Lipschitz stable algorithm. Given the complexity of
this type of analysis, a complete tradeoff for any value of the Lipschitz constant is typically
out of reach, but results for sufficiently small or large values can be of interest.

Remark. Our framework makes the assumption that an algorithm is a function A: Z — S.
However, in a kinetic setting this is not necessarily true, since the algorithm has history.
More precisely, for some input instance I, a kinetic algorithm may produce different solutions
for I based on the instances processed earlier. We generally allow this behavior, and for
event stability this behavior is even crucial. However, for the sake of simplicity, we will
treat an algorithm as a function. We also generally assume in our analysis that the input is
time-varying, that is, the input is a function over time, or follows a trajectory through the
input space Z. Again, for the sake of simplicity, this is not always directly reflected in our
definitions. Beyond that, we operate in the black-box model, in the sense that the algorithm
does not know anything about future instances.

In the remainder we focus on topological stability, all omitted material (the description of
event and Lipschitz stability, as well as proofs) can be found in the full version [9].

3 Topological stability

Topological stability analysis is applicable to a wide variety of problems and enforces
continuous changes to the solution. Even though it does not capture stability in its entirety,
as changes can happen in infinitesimally short time, topological stability still illustrates
clearly how solutions and their quality have to change as the input changes.

3.1 Topological stability analysis

Let IT be an optimization problem with input instances Z, solutions S, and optimization
function f. An algorithm A:Z — S is topologically stable if, for any (continuous) path
7:[0,1] = Z in Z, Ax is a (continuous) path in S. To properly define a (continuous) path
in Z and S we need to specify a topology 77 on Z and a topology 7s on S. Alternatively
we could specify metrics dz and ds, but this is typically more involved. We then want to
analyze the approximation ratio of any topologically stable algorithm with respect to OPT.
That is, we are interested in the ratio

: [, A1)
prs(I1, Tz, Ts) = inf SUD T OPT(D)) (2)
where the infimum is taken over all topologically stable algorithms. Naturally, if OPT is
already topologically stable, then this type of analysis does not provide any insight and
the ratio is simply 1. However, in many cases, OPT is not topologically stable. The above
analysis can also be applied if the solution space (or the input space) is discrete. In such cases,
continuity can often be defined using the graph topology of so-called flip graphs, for example,
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based on edge flips for triangulations or rotations in rooted binary trees. We can represent a
graph as a topological space by representing vertices by points, and representing every edge
of the graph by a copy of the unit interval [0,1]. These intervals are glued together at the
vertices. In other words, we consider the corresponding simplicial 1-complex. Although the
points in the interior of the edges of this topological space do not necessarily represent proper
solutions, we can still use this topological space in Equation 2 by extending f over the edges
via linear interpolation. It is not hard to see that we need to consider only the vertices of the
flip graph (which do represent proper solutions) to compute the topological stability ratio.

Lower bounds. When proving lower bounds on the topological stability of a problem we
want to force any algorithm that continuously updates the solution to produce a particularly
bad intermediate result. We first show that updating a certain configuration continuously
will always result in an intermediate solution of low quality, no matter which algorithm is
used. We then also provide a particular motion that forces an update to the solution in that
configuration. Updating the solution at any other point during the motion should lead to an
even worse result. The motion and the described configuration together allow us to prove
a lower bound on the topological stability ratio. In this abstract we do not describe the
motions for the lower bound proofs; the complete proofs can be found in the full version [9].

3.2 Topological stability of EMSTs

Our input consists of a set of n points where each point has a trajectory. We require that the
trajectories are continuous. The goal is to maintain a combinatorial description of a short
spanning tree on these points, whose length stays close to optimal. To define this properly,
we need to define a topology on the input space, but for a kinetic point set with n points in
d dimensions we can simply use the standard topology on R as T7. To apply topological
stability analysis, we also need to specify a topology on the (discrete) solution space. As
the points move, the minimum spanning tree may have to change at some point in time by
removing one edge and inserting another edge. Since these two edges may be very far apart,
we do not consider this operation to be stable or continuous. Instead we specify the topology
of S using a flip graph, where the operations are either edge slides or edge rotations [1, 7].
The optimization function f, measuring the quality of the EMST, is naturally defined for the
vertices of the flip graph as the length of the spanning tree, and we use linear interpolation
to define f on the edges of the flip graph. For edge slides and rotations we provide upper
and lower bounds on ppg(EMST, 7z, 7s).

Edge slides. An edge slide is defined as the operation of moving one endpoint of an edge to
one of its neighboring vertices along the edge to that neighbor. More formally, an edge (u,v)
can be replaced by (u,w) if w is a neighbor of v and w # w. Since this operation is very local,
we consider it to be stable. Note that after every edge slide the tree must still be connected.

» Lemma 1. If Ts is defined by edge slides, then prs(EMST, Tz, Ts) < 2.

Proof. Consider a time where the EMST has to be updated by removing an edge e and
inserting an edge e’, where |e| = |¢/|. Note that e and €’ form a cycle C' with other edges of
the EMST. We now slide edge e to edge €’ by sliding it along the vertices of C. Let z be the
longest intermediate edge when sliding from e to ¢’ (see Fig. 1(a)). To allow x to be as long
as possible with respect to the length of the EMST and as such achieving an upper bound
on prs, the EMST should be fully contained in C. By the triangle inequality we get that
2|z| < |C|. Since the length of the EMST is OPT = |C|—|e|, we get that || < OPT /2+]e|/2.
Thus, the length of the intermediate tree is |C| — 2le| + |z| = OPT —|e| + [z| < 2 OPT. <



W. Meulemans, B. Speckmann, K. Verbeek and J. Wulms 11:5

» Lemma 2. If Ts is defined by edge slides, then prs(EMST, Tz, Ts) > ”TH

Proof. Consider a point in time where the EMST has to be
updated by removing an edge e and inserting an edge ¢’, where
le] is very small. Let the remaining points be arranged in a circle
with diameter D, as shown in the figure on the right. We get
that OPT < wD, where OPT is the length of the EMST. Simply
sliding e to €' will always grow e to be nearly the diameter
of the circle at some point, as shown by the red dashed line.
More precisely, e will grow to length at least D — ¢, and we can
make ¢ arbitrarily small by using a sufficient number of points.

Alternatively, e (in the red configuration) can take a shortcut by
sliding over another edge f. This is only beneficial if |e| + |f| < D —e. However, if f helps
e to avoid becoming a diameter of the circle, then e and f, as chords, must span an angle
larger than 7 together. Hence, by triangle ine/quality, le| + |f] > D. Thus, for any € > 0,

OPT+D OPT+OPT/n a4l -
pTS(EMST,,]-I,,]tS‘)ZW—E>T—E—%—€N1318—E <

Edge rotations. Edge rotations are a generalization of edge slides, that allow one endpoint
of an edge to move to any other vertex. These operations are clearly not as stable as edge
slides, but they are still more stable than the deletion and insertion of arbitrary edges.

» Lemma 3. If Ts is defined by edge rotations, then prs(EMST, Tz, Ts) < %.

Proof. Consider a time where the EMST has to be updated by removing an edge e = (u, v)
/|.

and inserting an edge ¢’ = (u/,v"), where |e| = |¢/|. Note that e and ¢’ form a cycle C with

other edges of the EMST. We now rotate edge e to edge e’ along some of the vertices of C.

Let x be the longest intermediate edge when rotating from e to e’. To allow x to be as long
as possible with respect to the length of the EMST, the EMST should be fully contained in
C. We argue that |z| < OPT /3 + |e|, where OPT is the length of the EMST. Removing e
and €’ from C splits C' into two parts, where we assume that u and v’ (v and v') are in the
left (right) part. First assume that one of the two parts has length at most OPT /3. Then we
can rotate e to (u,v’), and then to e’, which implies that |z| = |(u,v")] < OPT /3+ |e| by the

triangle inequality (see Fig. 1(b)). Now assume that both parts have length at least OPT /3.

Let er, = (a,b) be the edge in the left part that contains the midpoint of that part, and let
er = (¢,d) be the edge in the right part that contains the midpoint of that part, where uy,

and ug are closest to e (see Fig. 1(c)). Furthermore, let Z be the length of C'\ {e, €', er, er}.

Figure 1 (a): Illustration for Lemma 1. (b) and (c): Hlustrating the two cases for Lemma 3.
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Now consider the potential edges (u,d), (v,b), (v, ¢), and (v',a). By the triangle inequality,
the sum of the lengths of these edges is at most 4|e| 4+ 2|er| + 2|eg| + Z. Thus, one of these
potential edges has length at most |e| + |er|/2 + |er|/2 + Z/4. Without loss of generality
let (u,d) be that edge (the construction is fully symmetric). We can now rotate e to (u,d),
then to (u/,d), and finally to €’. As each part of C' has length at most 2 OPT /3, we get that
|(v',d)] < OPT /3+|e| by construction. Furthermore we have that OPT = |e|+|eL|+|er|+ Z.
Thus, |(u,d)| < le|+|er|/2+|er|/2+ Z/4 = OPT /3+2|e|/3+ |eL|/6+ |er|/6 — Z/12. Since
e needs to be removed to update the EMST, it must be the longest edge in C. Therefore
|(u,d)| < OPT /3 + |e|, which shows that |z|] < OPT /3 + |e|. Since the length of the
intermediate tree is OPT —|e| + |z| < %OPT, we obtain that prs(EMST, 77, Ts) < %. <

» Lemma 4. If Ts is defined by edge rotations, then, prs(EMST, Tz, Ts) > 10—-2v/2

= 9-2V2°

Proof. Consider a point in time where the EMST has to be updated
by removing an edge e and inserting an edge €’. Let the remaining
points be arranged in a diamond shape as shown in the figure on the
right, where the side length of the diamond is 2, and |e| = |¢/| = 1.
Now we define a top-connector as an edge that intersects the vertical
diagonal of the diamond, but is completely above the horizontal
diagonal of the diamond. A bottom-connector is defined analogously,
but must be completely below the horizontal diagonal. Finally, a
cross-connector is an edge that hits both diagonals of the diamond.

Note that a cross-connector has length at least 2, and a top- or bottom-connector has length
at least |e| = 1. In the considered update, we start with a top-connector and end with a
bottom-connector. Since we cannot rotate from a top-connector to a bottom-connector in one
step, we must reach a state that either has both a top-connector and a bottom-connector, or a
single cross-connector. In both options the length of the spanning tree is 10 — 21/2, while the
minimum spanning tree has length 9 —2v/2. Thus pps(EMST, 77, Ts) > % ~ 1.162. <«
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—— Abstract
We consider a variant of the art gallery problem where all guards are limited to seeing to the
right inside a monotone polygon. We show that the problem is NP-hard if guards are restricted
to be at the vertices of the polygon.

1 Introduction

An instance of the art gallery problem takes as input a simple polygon P. If these edges do
not intersect other than at the vertices in V', then P is called a simple polygon. The edges
of a simple polygon give us two disjoint regions: the interior and exterior of the polygon.
For any two points p, ¢ € P, we say that p sees q if the line segment pg does intersect the
exterior of P. The art gallery problem seeks to find a set of points G C P such that every
point p € P is seen by a point in G. We call this set G a guarding set. In the point guarding
problem, guards can be placed anywhere in the interior of P. In the vertex guarding problem,
guards are only allowed to be placed at V. The optimization problem is thus defined as
finding the smallest such G.

Art gallery problems are motivated by applications such as line of-sight transmission
networks in terrains, signal communications and cellular telephony systems and other
telecommunication technologies as well as placement of motion detectors and security cameras.

1.1 Previous Work

The question of whether guarding simple polygons is NP-hard was independently confirmed by
Aggarwal [2] and Lee and Lin [15]. They showed that the problem is NP-hard for both vertex
guarding and point guarding. Along with being NP-complete, Brodén et al. [6] and Eidenbenz
[8] independently proved that point guarding simple polygons is APX-hard. This means
that there exists a constant € > 0 such that no polynomial-time algorithm can guarantee an
approximation ratio of (1+¢) unless P=NP. Ghosh provides a O(log n)-approximation for the
problem of vertex guarding an n-vertex simple polygon in [10]. This result can be improved
for simple polygons using randomization, giving an algorithm with expected running time
O(nOPT?1og,n) that produces a vertex guard cover with approximation factor O(log OPT)
with high probability, where OPT is the smallest vertex guard cover for the polygon [7].
Bhattacharya et. al claim a constant factor approximation for guarding simple polygons
using vertex guards in [4]. Assuming integer coordinates and a specific general position,
Bonnet and Miltzow present an algorithm for finding a point guard cover with approximation
factor O(log OPT) in [5]. King and Kirkpatrick provide a O(loglog OPT)-approximation
algorithm for the problem of guarding a simple polygon with guards on the perimeter in [12].
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Additional Polygon Structure. Due to the inherent difficulty in fully understanding the
art gallery problem for simple polygons, there has been some work done guarding polygons
with some additional structure. A simple polygon P is z-monotone (or simply monotone)
if any vertical line intersects the boundary of P in at most two points. Let [ and r denote
the leftmost and rightmost point of P respectively. Consider the “top half” of the boundary
of P by walking along the boundary clockwise from [ to r. We call this the ceiling of P.
Similarly we obtain the floor of P by walking clockwise along the boundary from r to [.
Notice that both the ceiling and the floor are z-monotone polygonal chains, that is a vertical
line intersects it in at most one point. Krohn and Nilsson [14] give a polynomial-time constant
factor approximation algorithm for point guarding monotone polygons. They also proved
point guarding and vertex guarding a monotone polygon is NP-hard [13, 14].
a-Floodlights. Motivated by the fact that many cameras and other sensors generally are
not able to sense in 360 degrees, previous works have considered the problem when guards
have a fixed sensing angle a for some 0 < o < 360. This problem is often referred to as
the a-floodlight problem. 180°-floodlights are sometimes referred to as half-guards. Some
of the work on this problem has involved proving necessary and sufficient bounds on the
number of a-floodlights required to guard (or illuminate) an n vertex simple polygon P,
where floodlights are anchored at vertices in P and no vertex is assigned more than one
floodlight, see for example [17, 9, 16]. From an approximation complexity standpoint, it is
known that computing a minimum cardinality set of a-floodlights to illuminate a simple
polygon P is APX-hard for both the point guard and vertex guard variants [1, 3]. Other
works in this area include considering the problem where o < 180°.

1.2 Our Contribution

In this paper, we consider guarding monotone polygons with half-guards that can see in one
direction, namely to the right. Let p.xz denote the z-coordinate of a point p. We modify the
definition of sees to be the following: a point p sees a point ¢ if the line segment pg does not
intersect the exterior of P and p.xz < q.xz. A constant factor approximation for this problem
was given in [11].

Our main result is to show that vertex guarding a monotone polygon with half-guards is
NP-hard. Krohn and Nilsson [14] obtained a similar NP-hardness result using full guards,
but guards were required to see in all directions. The reduction could not be trivially tweaked
to show the half-guard problem is NP-hard.

In Section 2, we provide a high level overview that vertex guarding a monotone polygon
with half-guards is NP-hard. Section 3 provides the details of the proof.

2 NP-Hardness for Vertex Guards

The reduction is from 3SAT. A 3SAT instance (X, C) contains a set of Boolean variables,
X ={x1,x9,...,2,} and a set of clauses, C = {c1,ca,...,cn}. Each clause contains three
literals, ¢; = (x; V@, Va;). A 3SAT instance is satisfiable if a satisfying truth assignment for
X exists such that all clauses ¢; are true. We show that any 3SAT instance is polynomially
transformable to an instance of vertex guarding a monotone polygon using half-guards.
We construct a monotone polygon P from the 3SAT instance such that P is guardable by
K = (24 m)n+ 1 or fewer guards if and only if the 3SAT instance is satisfiable.

The high level overview of the reduction is that certain vertices represent the truth values
of the variables in the 3SAT instance. All starting patterns are placed on the ceiling on
the left side of the polygon, see Figure 1. We assume that all guards can see only to the
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right. In these starting patterns, one must choose one of two guardset locations in order to
guard distinguished vertices for that particular pattern. A distinguished vertex is a vertex
that is seen only by a small number of specific vertices. In each variable pattern, similar
to a starting pattern, certain vertices will represent a truth assignment of true and certain
vertices will represent a truth assignment of false for some variable. This information is
then “mirrored rightward” going from the ceiling, to the floor and then back to the ceiling
such that there is a consistent choice of the z; vertices or the T} vertices for each variable.
This differs from previous results where variable information was mirrored from the “left
side” of the polygon to the “right side” of the polygon and then back to the left side. A
distinguished clause vertex is placed to the right of the variable patterns such that only the
vertices representing the literals in the specific clause can see the clause distinguished vertex.
A high level example of the entire reduction is shown in Figure 1.

» Theorem 1. Finding the smallest vertex guard cover for a monotone polygon using half
guards is NP-hard.

3 Hardness Details

Figure 1 A high level overview of the reduction.

Starting Pattern: This pattern appears along the left side of the monotone polygon a total
of n times, one corresponding to each variable, see Figure 2. In each pattern, there are 3
distinguished vertices: {hg4, h10, h13}. These vertices are seen by a specific subset of vertices
in each starting pattern. It is important to note that no other vertex outside of this starting
pattern sees these distinguished points. Let v;(p) be the set of vertices that see p. Note that
all vertices in v;(p) lie to the left of p or on the vertical line that contains p.
Let’s assume we are considering the starting pat-
hy tern for variable ;. wv;(h19) = {hi0, ho,z;}, vi(h13) =
{h12,h13, %}, vi(ha) = {hs,ha, ho, h11,h12,h14}. One
should note that one guard does not see all of the distin-
guished points. Two guards are necessary and sufficient.
The only possible combinations of vertex guards that see
each distinguished vertex are: {z;,hi2},{T;, ho}. If the
second option is chosen, then it appears that the x; vertex

hs
Zj h7

ho hiihi h14h16 is unseen. However, the polygon is drawn in such a way

Y h such that the leftmost point in the polygon sees x; for all
hio h 15 17 j, see Figure 1.

' Variable Pattern: On the floor of the polygon to the

Figure 2 A starting pattern. right of the n starting patterns are the first n variable

patterns, one for each variable, that verify and propagate

the assigned truth value of each variable. The variables are in reverse order from the initial

starting pattern. The variables are ordered from x1,xs, ..., x, in the starting patterns from

left to right. However, the variables are ordered from x,,x,_1,...,21 in the first grouping

of variable patterns from left to right. When the variables are “mirrored” rightward again to
the ceiling, the ordering will again reverse. See Figure 1 for a high level overview.

EuroCG’'18
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A single variable pattern is shown in Figure 4. Similar to the starting pattern, there are 3
distinguished vertices located at {vq, v5,v7}. The visibility for these points within this pattern
are as follows: v;(ve) = {v1,v2, 2, v6,T;, vs},vi(vs) = {vs,2;}, v (v7) = {v7,T;}. It should
be noted that v, is not seen by another vertex outside of this pattern. One guard within this
pattern is necessary to guard this distinguished vertex. Along with these visibilities, vy is
seen by the T; vertex in the starting pattern representing x;. vs does not see the x; vertex
from the starting pattern because it is angled in such a way that its line of sight is “above”
the z; vertex in the starting pattern. v; is seen by the x; vertex in the starting pattern
representing x;. The reason it is not seen by Z; is because the Z; vertex in the starting
pattern is being blocked by h7 in the starting pattern. Figure 3 shows how the starting
patterns are connected to variable patterns.

Variable patterns are connected to other variable patterns

in a similar fashion. Consider a set of n variable patterns on T

the floor representing one mirroring of the variables. At the far R L

right of these patterns is a vertex called c;. This vertex will . !
7T

block our z; and T; vertices from seeing too far to the right. so
Consider a single variable z; being mirrored from the floor to W
the ceiling. In Figure 5, the ceiling variable pattern is simply
an inverted floor variable pattern. The vs vertex in the ceiling
variable pattern sees the Z; vertex in the floor variable pattern
and not the x; vertex in the floor variable pattern because the
angle of the polygon blocks it. v; in the ceiling variable pattern
sees the x; vertex in the floor variable pattern but not the T; vertex in the floor variable
pattern because it is being blocked by cs.
Different variable patterns that represent different
Vo variables will not affect each other. For example, take the

Figure 3 Starting pattern
interacting with first variable
gadget.

starting pattern for an arbitrary x; and call the vertices
that see the distinguished vertices in that starting pattern
the X; set. Now consider the variable pattern for x;
Tj  TjU8 and look at the variable patterns to the left of z; on the
floor. None of X; can see the distinguished vertices of
variable patterns to the left of the variable pattern for
x; because the distinguished vertices in those variable
patterns are angled too far to the “right.” None of X,
can see distinguished vertices of variable patterns to the

U1 U3

Vs

Figure 4 Variable pattern x;. ) ) )
right of the variable pattern for x; because h; or hig is

blocking them from seeing too far right, see Figure 2.

In a similar fashion, variable patterns will not affect other variable patterns when mirroring,
see Figure 6. The variable pattern on the ceiling for x; will not be seen by the previous
variable pattern on the floor for z;11 because the angle of the polygon in the variable pattern
for z; on the ceiling is too steep. In other words, the distinguished vertices for x; on the
ceiling will not be able to be seen from that far left. The vertices in the variable pattern on
the ceiling for x; will not be seen by the previous variable pattern on the ceiling for z;_;
because the ¢y vertex will block them.
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We allow one guard to be placed in a single variable pattern.

T; T,
No single guard is able to see all of the distinguished points. — N fi/ﬁ%

Therefore, one must rely on previously placed guards to help see £ T . ?f’/z

at least 1 of the distinguished points in the variable pattern. If J Y/l—ﬂ _ } ,2,—\/
we choose x; in the starting pattern or in some previous variable

pattern, we see the vy vertex in the subsequent variable pattern. Figure 5 An example of

The only guard in the variable pattern that sees vy and vs is @ variable being mirrored.
x;. If we choose Z; in the starting pattern or in some previous

variable pattern, the distinguished points that are unseen are vy and v; in the subsequent
variable patterns and the only guard in the variable pattern that sees them is z;. In this
second case, x; is seen by that previously placed guard that also sees vs.

Clauses: For each clause ¢ in the boolean formula, there is a

sequence of variable patterns z1,...,z, along either the ceiling —"—"--—2==—
. . /"/7?;;’ c
or the floor of the polygon. Immediately to the right of the <=z ” I 2
K3

variable patterns exists a clause pattern. A clause pattern
consists of one vertex such that the vertex is only seen by the
variable patterns corresponding to the literals in the clause; see
Figure 7. The distinguished vertex of the clause pattern is the
c3 vertex. This vertex is seen only by specific vertices in its

Figure 6 An example of
multiple variables being
mirrored.

respective sequence of variable patterns.

To see how a clause is placed in the polygon, consider Figure
8 that represents the clause 1 V T3 V x5. Initially, all z; and T;
vertices in their respective variable patterns are blocked from L
seeing the c3 clause point by their respective vg vertex. Consider T1 11 Cs
the example clause of 1 V T3 V x5. In the case of 1 and x5,
their respective vg vertices have been lowered just enough such Figure 7 A clause gadget

C2

that the vg vertex is no longer blocking them from seeing cs. to the right of ;.
However, vg is still blocking 7 from seeing cs. In the case of T3,

the vg guard is lowered enough such that T3 sees c3. To keep x3 from seeing c3, we raise the
vg vertex just enough so it blocks z3 from c3. It should be noted that these small tweaks do

not affect the mirroring of variable truth values. None of the x; or T vertices were moved.

Their position with respect to the key blocker of ¢y is the same. Therefore, ¢y still blocks
each respective vertex from seeing too far to the right.

Putting it all together: We choose our truth value for
each variable in the starting variable patterns. The truth
values are then mirrored in turn between variable patterns

on the ceiling and the floor. In the example of Figure 8

the 3SAT clause corresponds to ¢ = x1 V T3 V x5. Hence,

Figure 8 The clause a vertex guard placement that corresponds to a truth

(v1 VT3V vs). assignment that makes cs true, will have at least one

guard on z1,T3 or x5 and can therefore see vertex c3

without additional guards. We still have variables x5 and x4 on the polygon, however, none

of them or their negations see the vertex c3. They are simply there to transfer their truth
values in case these variables are needed in later clauses.

The monotone polygon we construct consists of 17n + (9n + 3)m + 2 vertices. Each
starting variable pattern has 17 vertices, each variable pattern 9 vertices, the clause pattern
has 3 vertices, plus 2 vertices for the leftmost and rightmost points of the polygon. Exactly
K = (24 m)n+1 guards are required to guard the polygon. 2 guards are required to see the

EuroCG’'18
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distinguished points of the starting patterns (2n) and 1 guard is required at every variable
pattern, of which there are (mn) of them. Lastly, since a starting pattern cannot begin at the
leftmost point, a guard is required at the leftmost vertex of the polygon. If the 3SAT instance
is satisfiable, then guards are placed at vertices in accordance to whether the variable is true
or false in each of the sequences of variable patterns. Each clause vertex is seen since one of
the literals in the associated clause is true and the corresponding vertex has a guard.
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—— Abstract

Simplifying polygonal curves at different levels of detail is an important problem with many

applications. Existing geometric optimization algorithms are only capable of minimizing the
complexity of a simplified curve for a single level of detail. We present an O(n3m)-time algo-
rithm that takes a polygonal curve of n vertices and produces a set of consistent simplifications
for m scales while minimizing the cumulative simplification complexity. This algorithm is com-
patible with distance measures such as Hausdorff, Fréchet and area-based distances, and enables
simplification for continuous scaling in O(n%) time.

1 Introduction

Given a polygonal curve as input, the curve simplification problem asks for a polygonal curve
that approximates the input well using as few vertices as possible. Because of the importance
of data reduction, curve simplification has a wide range of applications. One such application
is cartography, where the visual representation of line features like rivers, roads, and region
boundaries needs to be reduced. Most maps nowadays are interactive and incorporate
zooming, which requires curve simplification that facilitates different levels of detail. A
naive approach would be to simplify for each zoom level independently. This however has
the drawback that the resulting simplifications are not consistent between different scales.
Therefore, we require progressive simplification, that is, a series of simplifications for which
the level of detail is progressively increased for higher zoom-levels. This is shown in Figure 1a.

Progressive simplifications are used in cartography [7]. Existing algorithms for progressive
simplification (e.g. Cao et al. [2]) work by simplifying the input curve, then simplifying this
simplification, and so on. Cao et al. [2] referred to progressive curve simplification as “aging”.
More concretely, a common approach is to iteratively discard vertices, such that we always
discard the vertex whose removal introduces the smallest error (according to some criterion).
For example, the algorithm by Visvalingam and Whyatt [9] always removes the vertex which
together with its neighboring vertices forms a triangle with the smallest area.

Such approaches stand in stark contrast to (non-progressive) curve simplification algo-
rithms that aim to minimize the complexity of the simplification while guaranteeing a (global)
bound on the error introduced by the simplification. The most prominent algorithm with a
preset error bound was proposed by Douglas and Peucker [5]. However, while heuristically
aiming at a simplification with few vertices, this algorithm does not actually minimize the
number of vertices. A general algorithm for the problem of minimizing the number of vertices
was introduced by Imai and Iri [6]. Their approach uses shortcut graphs, which we describe
in more detail below. An efficient algorithm to compute shortcut graphs for the Hausdorff
distance was presented by Chan and Chin [3]. Inspired by the work of Visvalingam and Why-
att, Daneshpajouh et al. [4] defined an error measure for non-progressive simplification by
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13:2 Progressive Simplification of Polygonal Curves

measuring the sum or the difference in area between a simplification and the input curve.
In the line of these algorithms, the goal of our work is to develop algorithms that solve
progressive simplification as an optimization problem.

A (vertex-restricted) simplification S of a polygonal curve C is an ordered subsequence
of C (denoted by & C C) that includes the first and the last point of C. An e-simplification
S is a simplification that ensures that each edge of S has a distance of at most ¢ to its
corresponding subcurve, where the distance measure can for instance be the Hausdorff or
the Fréchet distance [1]. For an ordered pair of vertices (p;,p;) of C we denote the distance
between the segment (p;,p;) and the corresponding subchain by e(p;, p;). We denote by
(pi,pj) € S that (p;,p;) is an edge of S.

We next define the progressive simplification problem in the plane. Given a polygonal
curve C = (p1,...,p,) in R? and a sequence £ = (g1,...,&,) with g; € Ry where 0 < &1 <
... < &m, we want to compute a sequence of (vertex-restricted) simplifications Sy, S, ..., S
of C such that

1. $, ESn_1 E... C & CC (monotonicity),
2. S is an gp-simplification of C,
3. >4, |Sk| is minimal.

We refer to a sequence of simplifications fulfilling the first two conditions as progressive
simplification. A sequence fulfilling all three conditions is called a minimal progressive simpli-
fication, and the problem of computing such a sequence is called the progressive simplification
problem. We present an O(n3m)-time algorithm for the progressive simplification problem in
the plane.

The cornerstone of progressive simplification is that we require monotonicity. This
guarantees that, when “zooming out”, vertices are only removed and cannot (re)appear.
As error measure, we will mostly use the Hausdorff distance. This is not essential to
the core algorithm, and we will discuss how to use the Fréchet distance [1] or area-based
measures [4] without affecting the worst-case running time. Furthermore, our algorithm
generalizes to the weighted version of the problem in which >, w;|S;| with positive
weights w; is minimized, and to the continuous version, where S, needs to be computed
for all 0 < e < g)7. As in the discrete setting, we require S.» C S, for ¢’ > ¢; the resulting
algorithm minimizes [;" [S.|de in O(n®) time. Note that ) is the error at which we can
simplify the curve by the single line segment (p1, py,); thus, we have ey = (p1, pn)-

In our algorithms we will make use of the shortcut graph as introduced by Imai and Iri [6].
For a given curve C, a shortcut (p;,p;) is an ordered pair (i < j) of vertices. Given an error
e > 0, a shortcut (p;, p;) is valid if e(p;,p;) < e. The shortcut graph G(C,¢) [6] as shown
in Figure 1b represents all valid shortcuts (p;,p;) with 1 < i < j < n. A bottleneck in
computing (progressive) simplifications is the construction and space usage of these graphs.

(@ (b)

Figure 1 (a) a progressive simplification and (b) curve simplification using the shortcut graph.
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2 Optimal Progressive Simplification

We show how to solve the progressive simplification problem in O(n3m) time in this section.

The same running time holds for the weighted version, and based on this we show that the
continuous progressive simplification problem can be solved in O(n®) time, see Section 3.
By the monotonicity property of the progressive simplification problem (see condition
1 in the definition in Section 1), we require that all vertices within a simplification S of
the sequence must also occur within all subsequent simplifications S; with k < [. Adding

shortcuts to a specific simplification thus influences the structure of the other simplifications.

We therefore associate a cost value cﬁ ; € N for each shortcut (pi,pj) in the shortcut graph
G(C,ex) that relates to the cost of including (p;, p;) in Sx. We use the Hausdorft distance
as an error measure to determine whether a shortcut is valid, but since the shortcut graph
is flexible to use any error measures, we can employ any other distance measure for our
algorithms. In particular for the Fréchet distance [1] and area-based distances [4], we can
use brute-force to compute whether a shortcut is valid in O(n) time, and therefore use these
measures without changing the worst-case running time. We obtain a cost value cf, ; for a
shortcut (p;,p;) € G(C,¢ex) by minimizing the costs of all possible shortcuts in (p;,...,p;) at

lower scales recursively. The dynamic program is defined as follows:

1 itk=1

ko . 1 .
Gj =\ 1+ min_ Z c';’yl ifl<k<m
Il @eppen

We use Hf] to denote the set of all paths in G(C, &) from p; to p;.

The algorithm starts with constructing the shortcut graphs G(C,e1),...,G(C, &, ). For
most distance measures, the distance of shortcut (p;, p;) to the subcurve (p;,...,p;) can be
determined in O(j — i) time. For such measures, constructing these graphs naively takes
O(n®m) time. By employing the algorithm by Chan and Chin [3] we can compute it in
O(n?m) time for the Hausdorff distance.

We compute all cost values from scale k = 1 up to m by assigning a weight ¢* . to each

ij
shortcut (p;,p;) € G(C,¢ex). For each shortcut (p;,p;) € G(C,ex), we compute cﬁj by finding
a shortest path 7 in G(C,ep—1) from p; to p;, minimizing Z(m py)En c’;;} thereby.

We can use any shortest path algorithm, such as Dijkstra’s algorithm. On each scale k,
we need to run Dijkstra’s algorithm on O(n) source nodes of G(C,¢y). This yields a worst
case running time of O(n3m), because Dijkstra’s algorithm runs in O(n?) time on weighted
shortcut graphs with integer weights.

We increment cﬁj = cif;-l + 1 for any shortcut (p;,p;) € G(C,ex—1). By doing so, we
avoid recomputations of shortest paths and reuse cost values whenever necessary.

We construct the sequence of simplifications from S,,, down to S;. First, we compute S,,
by returning the shortest path from p; to p, in G(C, e,,) using the computed cost values at
scale m. Next, we compute a shortest path P from p; to p; in G(C,¢&,,—1) for all shortcuts
(pispj) € Sy Simplification S,,—1 is then constructed by linking these paths P with each
other. We build all other simplifications in this manner until &7 is constructed.

If (p;,p;) is a valid shortcut in G(C,e—1) for any 1 < k < m, then it follows that
cﬁj = cfjl + 1. We prove this in [8].

Correctness

We prove that our simplification algorithm returns a valid and minimal solution for the
progressive simplification problem. Let (Sy,...,S,,) be a sequence of simplifications computed
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by our algorithm. By constructing the simplifications from scale m down to 1, it follows that
for any shortcut (p;,p;) € Sk with 1 < k < m, there exists a subsequence (p;,...,p;) C Sk_1,
and thus Sy C Si_1. Furthermore, each simplification Sy has a maximum Hausdorff distance
er, to C since it contains only edges from G(C,ey).

It remains to show that we minimize ) .-, |S;|. We therefore define a set of shortcuts
Sli’j forany1§i<j§nand1§k:§mas$li’j:{(pw,py)ESk|x§i<j§y}.

Thus, S,i’j includes all line segments of Sy, that span the subcurve (p;,...,p;) with an
error of at most ¢;, to C. |S,i’j | then is the number of shortcuts in simplification Sy covering
(pispj)-

» Lemma 2.1. If the line segment (p;,p;) is part of simplification Sy, then the associated
costvaluec Ze1|S€|f0rany1<k<mand1<z<]<n

Proof. We show c Z -1 |Sw | by induction on k using the following induction hypothesis:
For any (py,py) € Sk, it holds that cf , = Zkl |S;Y| (IH).

Base k = 1: Take any shortcut (p;,p;) € S1. It follows that Sl = {(pi,pj)}, and therefore
S| = 1. We deduce that cij=1= 25:1 1= 25:1 |SE.

Step k > 1: Take any line segment (p;,p;) € Sk+1. Thus, we observe (p;,p;) € G(C,€x+1),
Syl = {(pipy)}, and S, = 1.

Consider any 1 < ¢ < k and a path 7 € [["(pi, p;) such that 2 (parpy)en
We now derive that 7 = Sé’j such that §,"Y is minimal for all (p,p,) € 7. Note that
= Sz’j C G(C,ep) C G(C,ey) since g > &¢. We observe that 7 is both in H[(pi,pj) and
Hk(pi,pj). It thus follows that:

min Y |SPY = min D S]] (1)

weHM (Pz,py)E™ TE€LL ;i (pospy)ET

|S;7Y| is minimal.

From 7 = S} it follows that S;*¥ NSY"* = () for any (p,p,) and (py, p.) in 7. Combining
S,V for all (p,py) € m yields a non-overlapping sequence of shortcuts from p; to p;j. This
gives us:

S= min 3 ISP (2)

TreHi,,j (pm 1py)67r

We now derive the following:

k k

(1m) ey (D . . )

kjl 1+ min E E \S€y|:1+g min E Sy| 1+§ S, |
e[l poppen =1 =17elL; e ppen

k+1
|$k+1| { (pi>pji)} Z ‘Sl’]

<

» Theorem 2.2. Given a polygonal curve with n points in the plane, and 0 < &1 < ... < g,
a minimal progressive simplification can be computed in O(n®>m) time under distance measures
for which the validity of a shortcut can be computed in O(n) time. This includes the Fréchet,
Hausdorff and area-based measures.

Proof. It remains to be proven that the combined size of the simplifications computed by
our algorithm is minimal. Let (S7,...,S,,) be a sequence of simplifications of a minimal
progressive simplification, and let (S, ..., S,,) be the sequence computed by our algorithm.
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Let us derive the following:

min Z Cory D min Z f: N < i mir} Z N 2 i Skl
k=1

S €
T 1,n (pr py)eﬂ' T Hl’" (pzvpy)eﬂ k=1 k=1 e 1,n (pmvpy)eﬂ'

Hence, the algorithm produces a simplification that minimizes the cumulative cost of
shortcuts in S,,,. Because S;11 C §;; the algorithm produces a set of simplifications in which
each simplification consists of edges from the corresponding shortcut graph such that the
cumulative number of vertices is minimized.

We further know that any minimal simplification Sj, is a path in G(C, &) since it strictly
connects shortcuts with an error of at most ey.

We conclude that Y ;" | |Sk| < D700, |S;| holds. <

3 Continuous and Weighted Progressive Simplification

We now consider two versions of the progressive simplification problem: the weighted progres-
sive simplification, where the objective is to minimize >, ; wi|Sk| (with wy > 0), thus the
weighted cumulative size of the simplifications; and the continuous progressive simplification,
which is an instance of the weighted progressive simplification where fom |S;| de is minimal.
For both problems, we can employ our preceding algorithm to compute simplifications progres-
sively. We first show how to adapt our algorithm for the weighted progressive simplification
problem; then we prove how to solve the continuous simplification problem.

For the weighted progressive simphﬁcation we use the following cost function for each

shortcut (pi,p;) € G(C,ex): if k=1, ¢} ; = wy else ¢} ; = wy, + min re]"" > (pepy)en it

Note that the proofs above are trivially extended to apply to this updated cost function.
The main reason to consider the weighted case is that it helps us solving the continuous
progressive simplification problem.

» Theorem 3.1. Given a polygonal curve with n points in the plane, a minimal continuous
progressive simplification can be computed in O(n®) time under distance measures for which
the validity of a shortcut can be computed in O(n) time. This includes the Fréchet, Hausdor(f
and area-based measures.

Proof. Consider the maximal errors e(p;,p;) of all possible line segments (p;,p;) with

i < j with respect to the Hausdorff distance (or another distance measure). Then let

€= (e1,... ,s(n)> be the sorted sequence of these errors based on their value. Let M be
2

the index of the corresponding e, in this sorted sequence & for the line segment (p1,pn);
thus ep; = €(p1,pn). Note that it is possible that M < (g), but there is no reason to use
any € > €y, since at this point we already have simplified the curve to a single line segment,
(plapn)~

In a minimal-size progressive simplification it holds that S. = S., for all € € [g;,€;41).
This can be shown by contradiction: if S would be smaller, we could decrease the overall
size by setting all S, with &’ € [g;, ] to S.. Therefore, in a minimal continuous progressive
simplification we have [ [S.|de = SV M (err1—ex)[S2, | Thus, we can solve the continuous
progressive simplification problem by reducing it to the weighted progressive simplification
problem with O(n?) values e. <
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4 Discussion

We present the first algorithm to compute minimum-complexity progressive simplifications
given a polygonal curve with n points in the plane. Our algorithm runs in O(n3m) time for
m discrete scales and O(n®) time for continuous scaling.

In the following, we survey further results from [8]. To facilitate progressive simplifications
on many scales, in [8] we present a technique for computing all e(p;,p;) efficiently in
O(n?logn) time instead of O(n3) time [3]. This is in particular useful for continuous
progressive simplification, where we would otherwise need to compute a quadratic number of
shortcut graphs, thus spending O(n*) time on computing shortcut graphs.

Furthermore, we developed a storage-efficient representation of the shortcut graph that
is capable of finding shortest paths in O(nlogn) time, which is also applicable to any
simplification algorithm that uses a shortcut graph.

The experimental evaluation on a trajectory of a migrating griffon vulture shows that
our progressive algorithm is effective, yet too slow for larger trajectory data, and provides
similar cumulative simplification sizes as an optimal non-progressive simplification algorithm.
We discuss all experiments, algorithms, and results in [8].

As future work, it would be of interest to improve the running time of the minimal
progressive simplification algorithm to facilitate real-world application.

Acknowledgments. We thank Michael Horton for our discussions on this topic. Kevin
Buchin and Maximilian Konzack are supported by the Netherlands Organisation for Scientific
Research (NWO) under project no. 612.001.207.
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—— Abstract

Let G = (V, E) be a planar graph and let V be a partition of V' whose clusters, i.e., the graphs
induced by the vertex sets in V, are connected. Let De be an arrangement of disks with a
bijection between the disks and the clusters. Akitaya et al. [1] give an algorithm to test whether
(G,V) can be embedded onto D¢ with the additional constraint that edges are routed through
an additional set of pipes between the disks. Based on such an embedding, we prove that every

clustered graph with connected clusters and every disk-arrangement with non-overlapping disks
has a planar straight-line drawing where every vertex is embedded in the disk corresponding to
its cluster. This result can be seen as an extension of the result by Alam et al. [2] who solely
consider biconnected clusters.

1 Introduction

In this paper, we study the problem of drawing a large plane clustered graph G on a pre-
scribed disk arrangement De. More formally, a (flat) clustering of a graph G = (V, E) is a
partition ¥V = {V1, ..., Vi } of the vertex set V. We refer to the pair C = (G, V) as a clustered
graph and the graphs G; induced by V; as clusters. A disk arrangement D = {d;,...,dy}
is a set of pairwise disjoint disks in the plane together with a bijective mapping u(V;) = d;
between the clusters C and the disks D. We refer to a disk arrangement D with a bijective
mapping u as a disk arrangement of C, denoted by De. A De-framed drawing of C is a pla-
nar drawing of a clustered graph C where each cluster G; is drawn within its corresponding
disk d;. We study the following problem: given a clustered planar graph G with an embed-
ding ¥ and a disk arrangement D¢ of C, does G admit a D¢-framed straight-line drawing
homeomorphic to 97

A pipe pi; of two clusters V;, V; is the convex hull of the disks d; and d;, i.e., the smallest
convex set of points containing d; and d;; see Fig. 1. A disk arrangement D¢ of C is planar
if (i) the pairwise intersections of all disks are empty, and (ii) if (V; x V;) N E # 0, then the
intersection of p;; with all disks dj, (corresponding to Vj) is empty (4, j, k pairwise distinct)
and, (iii) if (V; x V;)NE # 0 and (Vi x V))NE # 0 (i, 4, k, pairwise distinct), then the
intersection of the pipes p;; and py; is empty. A planar disk arrangement can be seen as
a thickening of the graph obtained by contracting all clusters in C. An embedding i of G,
i.e., a topological planar drawing of G, is compatible with a planar disk arrangement D¢ if
1) is homeomorphic to a D¢-framed embedding of C such that edges of a cluster are routed
within the corresponding disks, and edges between distinct clusters are routed through the

* Work was partially supported by grant WA 654/21-1 of the German Research Foundation (DFG).
T This research was funded in part by Humility & Conviction in Public Life, a project of the University
Connecticut sponsored by the John Templeton Foundation.
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Figure 1 The blue disk arrangement is planar. The red disk arrangement disrupts the planarity
of the entire arrangement. The dash dotted edge is not embedded in a pipe, hence the embedding
is not compatible with the disk arrangement.

corresponding pipes. Throughout the paper we assume the disk arrangement, provided as
part of the input, is planar.

Related Work

Feng et al. [7] introduced the notion of clustered graphs and c-planarity. A graph G together
with a recursive partitioning of the vertex set is considered to be a clustered graph. An
embedding of G is a c-planar embedding if (i) each cluster ¢ is drawn within a connected
region R, (ii) two regions R, Rq intersect if and only if the cluster ¢ contains the cluster d
or vice versa, and (iii) every edge intersects the boundary of a region at most once. They
prove that a c-planar embedding of a connected clustered graph can be computed in O(n?)
time. It is an open question whether it is possible to extend this result to disconnected
clustered graphs. Many special cases of this problem have been considered [4].

Concerning drawings of c-planar clustered graphs, Eades et al. [6] prove that every c-
planar graph has a c-planar straight-line drawing where each cluster is drawn in a convex
region. Angelini et al. [3] strengthen the result of Eades et al. by showing that every c-planar
graph has a c-planar straight-line drawing in which every cluster is drawn in an axis-parallel
rectangle. The result of Akitaya et al. [1] implies that in O(nlogn) time one can decide
whether an abstract graph with a flat clustering has an embedding where each vertex lies
in a prescribed topological disk and every edge is routed through a prescribed topological
pipe. In general their algorithm decides whether a simplicial map ¢ of G onto a 2-manifold
M is a weak embedding, i.e., for every € > 0, ¢ can be perturbed into an embedding 1. with
[l = the|| <e.

Alam et al. [2] prove that it is NP-hard to decide whether a clustered graph has a c-
planar straight-line drawing where every cluster is contained in a prescribed rectangle and
edges have to pass through a defined part of the boundary of the rectangle. Further, they
prove that all instances with biconnected clusters always admit a solution. Their result
implies that graphs of this class have D¢-framed straight-line drawings.

Contribution

In this paper, we prove that every connected clustered graph (G,V), i.e., each cluster G;
is connected, with an embedding 1 compatible with a prescribed planar disk arrangement
Dec, has a De-framed planar straight-line drawing homeomorphic to 1. Taking the result of
Akitaya et al. [1] into account, our result can be used to test whether an abstract clustered
graph with connected clusters has a D¢-framed straight-line drawing. Our result is an
extension of the result of Alam et al. [2] from biconnected to connected clusters.
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(b)

Figure 2 (a) A planar clustered graph C that is not simple. (b) The block B is leaf block of
G;. The block B’ of G; obstructs B, B’ itself is free. The cycles mentioned in the definitions are
highlighted in red.

2 Preliminaries

A clustered graph C = (G, V) is simple if for every i,j, there is no cluster Gj,(i,j # h)
embedded in the interior of the subgraph induced by V; U Vj; see Fig. 2a. Note that this is
a necessary condition in our model, as otherwise the corresponding disk arrangement would
not be planar. The set of edges E; of a cluster G; are intra-cluster edges and the set of edges
with endpoints in different clusters inter-cluster edges. The vertex u of an inter-cluster edge
uv is the inter-cluster neighbor of v.

We refer to a maximal biconnected component B of G; as a block of G;. Removing a
cut vertex from Gy, splits G; into two connected components. A block is a leaf block if it is
incident to at most one cut vertex of G;; see Fig. 2b. A block B’ of a cluster G; obstructs a
leaf block of G; in ) if there is a cycle C using only vertices of B and at most a single vertex
of B’ such that B’ is in the interior of the graph induced by C U BU B’. A block B that
is not obstructed by another block is free. We denote the graph after the contraction of a
block B by G/B and refer to the resulting vertex b as the contraction vertex of G/B. The
contraction of a block in a graph with an embedding ¢ induces an embedding 1V, p of G/B.

» Lemma 2.1. Let C = (G, V) be a connected simple clustered graph with an embedding v
that is compatible with a disk arrangement De. Then the embedding induced by the contrac-
tion of a free leaf block is compatible with De.

3 Drawing Planar Clustered Graphs on Disk Arrangements

In this section, we prove that every connected simple clustered graph C has a D¢-framed
straight-line drawing, see Theorem 3.6. Our proof strategy is as follows. We iteratively
contract free leaf blocks B of C until every cluster contains exactly one vertex, see Lemma 3.1.
In this case, the center points of the disks in the disk arrangement D¢ induce a De-framed
straight-line drawing of C. In order to undo a contraction of a free leaf block B, we consider
a De-framed straight-line drawing I'¢/p of the contracted graph C/B, see Fig 3b. We start
by defining a safe convex polygon o, that allows us to extend the drawing I'c,p to a drawing
T" of C, by placing vertices on the boundary of B on the boundary of ¢, and the interior
vertices of B in the interior of . The result of Chambers et al. [5] ensures that the drawing
of B, where the vertices on the boundary of B have prescribed placements on the boundary
of a convex polygon, is a planar straight-line drawing homeomorphic to the embedding of
B. The challenging part is to guarantee that the inter-cluster edges do not intersect with
edges of B; see Lemma 3.2 to Lemma 3.5. We first prove that unless the clustered graph is
not sufficiently small, there is a free leaf block B.
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b

(a) (b) (d)

Figure 3 (a) A block B (black) with inter-cluster neighbors outside of the blue disk. (b) A
straight-line drawing of the B-contracted graph. (c) A Uj-similar segment bw with its supporting
line (red). (d) Dc-framed straight-line drawing with B drawn in the dark blue convex polygon o.

» Lemma 3.1. Every connected simple clustered graph C = (G, V) has a cluster G; with a
free leaf block or every cluster has exactly one vertez.

Let B be a free leaf block of a cluster GG; and consider a D¢-framed straight-line drawing
I'c/p of a B-contracted clustered graph C/B. Observe that we cannot take an arbitrary
convex polygon o to extend the drawing I'c/p to a drawing I', since for this polygon it
might not be possible to avoid intersections between inter-cluster edges and edges of B. To
avoid these intersections, we construct the polygon ¢ in two phases. First, we will prove the
existence of a special segment s (see Fig 3c), that we will later use to construct two polygons
or, and og. Then the union of oy, and og will be the desired polygon o.

We formalize the concept of a safe point set as follows. Denote by U, the inter-cluster
neighbors of the contraction vertex b and let L C U, be a set of vertices that is consecutive
in the clockwise order around b. We construct an L-split drawing I'y, from I'c,p by removing
the inter-cluster edges {bu | u € L} from I'c/p and adding a split verter w at position
p € R? and connecting w to all vertices in L U {b} with straight-line edges. We say a set
P C R? is L-similar if for every point p € P the L-split drawing I, of T¢ /B is planar, and
the contraction of the edge bw induces an embedding homeomorphic to I'c, .

» Lemma 3.2. Let B be a free leaf block of a cluster G; and let d; € D¢ be the corresponding
disk. LetT'c/p be a Dc-framed straight-line drawing of C/B. Let b be the contraction vertex of
C/B with inter-cluster neighbors Uy. Then there is a Uy-similar straight-line segment s C d;.

Proof sketch. There is a small disk § C d; around b such that moving b within J preserves
the topological properties of b. Let e; be and e, be the edges that precede and succeed B,
respectively. Then, the two lines containing e¢; and e, divide § into four regions of which one
region R is U,-similar. Thus, every segment ba, with a € R, is Uj-similar. O
A supporting line of a Uy-similar segment s = ba is the line that contains s and is directed
from b towards a. This line [ separates the set U, into sets L and R, such that the vertices
in L are to left of [ in the drawing I'¢c,p, and the vertices in R to the right of /. Depending
on the set, we show that there are convex polygons oy and op that are monotone with
respect to s. For a segment s = ba, a convex polygon (po,p1,. .., Dk, Pkt1), With pg = a and
Pr+1 = b, is s-monotone if the projections of all p; onto the supporting line of s, lie on s.

» Lemma 3.3. Let I'c/p be a Dc-framed straight-line drawing of C/B and let Uy be the
inter-cluster neighbors of the contraction vertex b and let s = ba be a Uy-similar segment.
Let L C Uy be the set of vertices that are to the left of the supporting-line of s. Then there
is a convex s-monotone polygon oy contained in d; € D¢ such that the boundary BD (o)
of o, is L-similar, and for every point p on BD(or) \ s and every vertex u € L, the open
segment pu and oy, do not intersect.
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Figure 4 (a) Triangle A is the intersection of all triangles A,. (b) A is not L-similar. (c) B is
a Bézier-curve within A.

Proof sketch. Consider the non-empty set L and the triangle A, with vertices b, u,a for a
vertex u € L; see Fig. 4a. Let A be the intersection of all triangles A,. Since the segment
s = ba is Up-similar and the set L contains all vertices to the left of I, A is L-similar.
Unfortunately, the triangle A = (b, x, a) is not the desired polygon o, yet. To ensure that
the polygon o, is s-monotone and entirely contained in d;, we place the vertex x in the
intersection of A and d;, such that the projection of x lies on s. Such a point exists, since
s is contained in d;. Finally, we have to guarantee that for every point p in BD(oyr) \ s and
every vertex u in L, the open segment pu and o, do not intersect. Indeed the Bézier-curve
B with b, x, a as its control points satisfies this property. Hence, the desired polygon oy can
be constructed by discretizing the curve B. O

Observe that this lemma can be restated in terms of the set R right of the supporting
line [ of s. We then obtain an s-monotone polygon or. Merging the two polygons oy, and
o results in the final polygon o. Before we are able to actually draw the block B on o, it is
crucial that the notion of vertices to the left and right of a supporting line [ transfers to the
vertices on the boundary of B. We formalize this with the concept of an apex vertez of B.
Let vg, v1,. .., Uk, Uk+1 be the vertices on the boundary of B, with vg = vgy1 the cut vertex
of B. A vertex v; is called an apex vertez of B with respect to I'c/p and [ if all inter-cluster
neighbors of the vertices in vy, ...v;_1 are to left of [ in I'c, g and the inter-cluster neighbors
of the vertices v;y1,..., v are to the right of [ in T'¢,p.

» Lemma 3.4. Let B be a free leaf block of a clustered graph C with an embedding 1. Let
T'c/p be a planar straight-line drawing homeomorphic to the induced embedding of C/B and
let I be the supporting line of a Uy-similar segment. Then there is an apex vertex of B with
respect to I'c/p and I.

Proof sketch. Since I'¢/p is a straight-line drawing homeomorphic to the embedding induced
by the contraction of B, the neighbors of b in C/B appear in the same clockwise order as
in a clockwise traversal of all neighbors of vertices on the boundary of B in C. Thus, the
partitioning of the neighborhood of b into the left and right of | transfers to the vertices on
the boundary of B. O

With this framework at hand, we are now able to prove that C has D¢-framed straight-
line drawing, if the B-contracted clustered graph C/B has a D¢-framed straight-line drawing
Feyp- Thus, let L be the set of inter-cluster neighbors to the left of the supporting-line
of a Up-similar segment s, and let R be the corresponding set to the right of . We obtain
two polygons oy, and or by the application of Lemma 3.3. We obtain a convex polygon o
by merging oy, and o at the common side s. An apex vertex v; splits the vertices on the
boundary of B. We place the vertices vy, ...,v;—1 on the boundary of the polygon o and
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Vit1,-. .,V on the boundary of or. The apex v; is placed at the end a of the Up-similar
segment s = ba where it can be connected to vertices in L and in R. Since ¢ is a convex
polygon, we can extend this drawing to a drawing I" of C by drawing the remaining vertices
of B in the interior of o with the result of Chambers et al. [5]. We get the following result.

» Lemma 3.5. Let C = (G,V) be a connected simple clustered graph with an embedding )
that is compatible with a disk arrangement Dc. If B is a free leaf block of C and C/B has
Dec-framed straight-line drawing homeomorphic to the embedding induced by the contraction
of B, then C has a D¢-framed straight-line drawing.

Note that, if every cluster contains exactly one vertex, then the center points of the disks
in the planar disk arrangement D¢ induce a planar straight-line drawing of C. Thus, we can
inductively apply the previous lemma to prove our main theorem.

» Theorem 3.6. Fvery connected simple clustered graph C = (G, V) with a planar embedding
1 that is compatible with a disk arrangement D¢ has a De-framed straight-line drawing that
is homeomorphic to .

4| Conclusion

We proved that every clustered planar graph with an embedding compatible with a pla-
nar disk arrangement has a De-framed straight-line drawing. If the requirement of the
disk arrangement to be planar is dropped, not every clustered-planar graph has D¢-framed
straight-line drawing. Thus, we ask what is the complexity of deciding whether a clustered
planar embedded graph has D¢-framed straight-line drawing for a given non-planar disk
arrangement D¢ ?
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—— Abstract

An arrangement of pseudocircles is a collection of simple closed curves on the sphere or in the
plane such that every pair is either disjoint or intersects in exactly two crossing points. We call
an arrangement intersecting if every pair of pseudocircles intersects twice. An arrangement is
circularizable if there is a combinatorially equivalent arrangement of circles.

Kang and Miiller showed that every arrangement of at most 4 pseudocircles is circularizable.
Linhart and Ortner found an arrangement of 5 pseudocircles which is not circularizable.

We show that there are exactly four non-circularizable arrangements of 5 pseudocircles,
exactly one of them is intersecting. For n = 6, we show that there are exactly three non-
circularizable digon-free intersecting arrangements. We also have some additional examples of
non-circularizable arrangements of 6 pseudocircles.

The claims that we have all non-circularizable arrangements with the given properties are
based on a program that generated all connected arrangements of n < 6 pseudocircles and all
intersecting arrangements of n < 7 pseudocircles. Given the complete lists of arrangements, we
used heuristics to find circle representations. Examples where the heuristics failed had to be
examined by hand.

1 Introduction

Arrangements of pseudocircles generalize arrangements of circles in the same vein as ar-
rangements of pseudolines generalize arrangements of lines. The study of arrangements
of pseudolines was initiated 1918 with an article of Levi [10]. Since then arrangements of
pseudolines were intensively studied and the handbook article on the topic [2] lists more than
100 references. The study of arrangements of pseudocircles was initiated by Griinbaum [8].
A pseudocircle is a simple closed curve in the plane or on the sphere. An arrangement
of pseudocircles is a collection of pseudocircles with the property that the intersection of
any two of the pseudocircles is either empty or consists of two points where the curves cross.
The graph of an arrangement A of pseudocircles has the intersection points of pseudocircles
as vertices, the vertices split each of the pseudocircles into arcs, these are the edges of the
graph. Note that this graph may have multiple edges and loop edges without vertices. The
graph of an arrangement of pseudocircles comes with a plane embedding, the faces of this
embedding are the cells of the arrangement. A cell with & crossings on its boundary is a
k-cell. A 2-cell is also called a digon (some authors call it a lense), and a 3-cell is also called
a triangle. An arrangement A of pseudocircles is
simple, if no three pseudocircles of A intersect in a common point.
connected, if the graph of the arrangement is connected.

* Partially supported by DFG Grant FE 340/11-1. Manfred Scheucher was partially supported by the
ERC Advanced Research Grant no. 267165 (DISCONV). The authors gratefully acknowledge the
computing time granted by TBK Automatisierung und Messtechnik GmbH and by the Institute of
Software Technology, Graz University of Technology.
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Figure 1 The 3 arrangements of n = 3 pseudocircles: (a) Krupp, (b) NonKrupp, (¢) 3-Chain.

intersecting, if any two pseudocircles of A intersect.

cylindrical, if there are two cells in A which are separated by each of the pseudocircles.
Note that every intersecting arrangement is connected. In this paper we assume that
arrangements are simple and connected.

Two arrangements A and B are isomorphic if they induce homeomorphic cell decomposi-
tions of the plane respectively the sphere. Figure 1 shows the three connected arrangements
of three pseudocircles. We call the unique digon-free intersecting arrangement of three
(pseudo)circles the Krupp!. The second intersecting arrangement of three pseudocircles is the
NonKrupp, this arrangement has digons. The non-intersecting arrangement is the 3-Chain.

Every triple of great-circles on the sphere induces a Krupp arrangement, hence, we call
an intersecting arrangement of pseudocircles an arrangement of great-pseudocircles if every
subarrangement induced by three pseudocircles is a Krupp.

Some authors think of arrangements of great-pseudocircles when they speak about
arrangements of pseudocircles, this is e.g. common practice in the theory of oriented matroids.
In fact, arrangements of great-pseudocircles serve to represent rank 3 oriented matroids.

» Definition. An arrangement of pseudocircles is circularizable if there is an isomorphic
arrangement of circles.

Circularizability of arrangements of pseudocircles has not been studied extensively.
This paragraph describes the state of the art. Edelsbrunner and Ramos [1] proved non-
circularizability of an arrangement of 6 pseudocircles with digons. Linhart and Ortner [11]
found a non-intersecting arrangement of 5 pseudocircles with digons which is non-circularizable
(Figure 2b). They also proved that every intersecting arrangement of at most 4 pseudocircles
is circularizable. Kang and Miiller [9] extended the result by showing that all arrangements
with at most 4 pseudocircles are circularizable. They also proved that deciding circularizabil-
ity of connected arrangements is NP-hard. Since stretchability is FIR-complete, their proof
actually implies IR-completeness of circularizability.

In our last year’s EuroCG contribution [6] we have sketched non-circularizability of two
further intersecting arrangements on 5 and 6 pseudocircles, respectively, namely A2 and N6A
(see Figures 2a and 3a). Since then, we have extended our results and got the following.

» Theorem 1.1. The four equivalence classes of arrangements N3, N2, N3, and N& (shown
in Figure 2) are the only non-circularizable ones among the 984 equivalence classes of
connected arrangements of n =5 pseudocircles.

» Theorem 1.2. The three equivalence classes of arrangements N&, N, and N§ (shown
in Figure 3) are the only non-circularizable ones among the 2131 equivalence classes of
digon-free intersecting arrangements of n = 6 pseudocircles.

! This name refers to the logo of the Krupp AG, a German steel company. Krupp was the largest
company in Europe at the beginning of the 20th century. There is also a disease with the German name
Pseudo-Krupp, we have no corresponding arrangement.
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Figure 2 The four non-circularizable arrangements on n = 5 pseudocircles. (a) N2. (b) NZ.

(c) N2. (d) N2

(a) (b) (c)

Figure 3 The three non-circularizable digon-free intersecting arrangements for n = 6. (a) NE.

(b) NZ. (c) NZ.

Full proofs of Theorems 1.1 and 1.2 can be found in the full version [4], where we also
prove non-circularizability of some further interesting arrangements on n = 6 pseudocircles
and provide some further results for certain classes of arrangements. The non-circularizability
proofs use various techniques, most depend on incidence theorems, others use arguments
involving metric properties of arrangements of planes, or angles in planar figures.

Our results strongly depend on the generation of the complete lists of connected arrange-
ments of n < 6 pseudocircles and of intersecting arrangements of n < 7 pseudocircles. The
respective numbers are shown in Table 1. The encoded lists of arrangements up to n = 6
are available on our webpage [3]. We remark that the list of intersecting arrangements was
already mentioned in our at last year’s EuroCG contribution [6]. Computational issues are
deferred until Section 5. There we describe the algorithmic ideas behind the computation of
the lists.

Particularly interesting is the arrangement N6A (Figure 3a). This is the unique intersecting
digon-free arrangement of 6 pseudocircles which attains the minimum 8 for the number of
triangles. From our computer search we know that N6A occurs as a subarrangement of every

n | 4| 5] 6| n 4] 5] 6 7
connected 21 | 984 | 609 423 || intersecting 8 | 278 | 145 058 | 447 905 202
+digon-free 3 30 4 509 || +digon-free 2 14 2131 3012 972
con.+cylindrical | 20 | 900 | 530 530 || int.4cylindrical 278 | 144 395 | 435 367 033
+digon-free 30 4 477 || +digon-free 2131 3 012 906

‘ ‘ ‘ H great-p.c.s ‘ ‘ 1 ‘ 4 11

Table 1 Number of combinatorially different arrangements of n pseudocircles.
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digon-free arrangement for n = 7,8,9 with ps < 2n — 4 triangles, hence, also neither of those
arrangements is circularizable. Therefore, it seems plausible that for every arrangement of n
circles p3 > 2n — 4. This is the Weak Griinbaum Conjecture. [5, 6]

For the non-circularizability of NGA we have two proofs. Due to didactical reasons, we
exchanged “first” and “second” in the full version against the actual chronological order.

Our first proof is based on an incidence theorem in 3-space and was already sketched in
our last year’s EuroCG contribution [6].

Here we sketch our new second proof, which is based on a sweeping argument in 3-D
(see Subsection 4). With a similar idea we also show the following theorem, which has some
nice corollaries, e.g., it yields a very direct and easy proof that deciding circularizability is
JR-complete (see Section 3).

» Theorem 1.3 (The Great-Circle Theorem). An arrangement of great-pseudocircles is circu-
larizable (i.e., has a circle representation) if and only if it has a great-circle representation.

2 Preliminaries

Stereographic projections map circles to circles (if we consider a line to be a circle containing
the point at infinity), therefore, circularizability on the sphere and in the plane is the same
concept. Arrangements of circles can be mapped to isomorphic arrangements of circles via
Mébius transformations.

Let C be an arrangement of circles represented on the sphere. Each circle of C spans a
plane in 3-space, hence, we obtain an arrangement £(C) of planes in R3. In fact, a fixed sphere
S conveys a bijection between (not necessarily connected) circle arrangements on S and
arrangements of planes with the property that each plane of the arrangement intersects S.

Consider two circles C7, Cs of a circle arrangement C on .S and the corresponding planes
Ey, E; of £(C). The intersection of E; and Fs is either empty (i.e., E1 and Es are parallel)
or a line £. The line { intersects S if and only if C; and Cs intersect, in fact, NS = Cy N Cs.

With three pairwise intersecting circles C7, Cy, C3 we obtain three planes F;, Es5, E3
intersecting in a vertex v of £(C). It is notable that v is in the interior of the ball bounded
by S if and only if the three circles form a Krupp in C.

3 Arrangements of (pseudo) great-circles

Central projections map between arrangements of great-circles on a sphere S and arrangements
of lines on a plane. Changes of the plane preserve the isomorphism class of the projective
arrangement of lines.

An Euclidean arrangement of n pseudolines can be represented by z-monotone pseudolines,
a special representation of this kind is the wiring diagram, see e.g [2]. An z-monotone
representation can be glued with a horizontally mirrored copy of itself to form an arrangement
of n pseudocircles, see Figure 4. The resulting arrangement is intersecting and has no
NonKrupp subarrangement, i.e., it is a great-pseudocircle arrangement.

Indeed the above construction yields a bijection between projective arrangements of n
pseudolines in the plane and arrangements of n great-pseudocircles.

Projective arrangements of pseudolines are also known as projective abstract order
types or oriented matroids. Their number is known for n < 11, hence the numbers of
great-pseudocircle arrangements given in Table 1 are not new. For more information see [4].
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Figure 4 Obtaining an arrangement of pseudocircles from an Euclidean arrangement A of
pseudolines. Arrangement .4 and its mirrored copy are shown in red and blue, respectively.

Let C be an arrangement of great-pseudocircles and let A4 be the corresponding projective
arrangement of pseudolines. Central projections show that, if A is realizable with straight
lines, then C is realizable with great-circles, and conversely.

In fact, it is enough that C is circularizable to conclude that C is realizable with great-circles
and A is realizable with straight lines.

Proof of Theorem 1.3. Consider an arrangement of circles C on the unit sphere S that
realizes an arrangement of great-pseudocircles. Let £(C) be the arrangement of planes
spanned by the circles of C. Since C realizes an arrangement of great-pseudocircles, every
triple of circles forms a Krupp, hence, the point of intersection of any three planes of £(C) is
in the interior of S.

Imagine the radius of the sphere growing with the time ¢, to be precise, let S; = S and
Sy =t-S. Since all the intersection points of the arrangement £(C) are in the interior of Sy,
the circle arrangement obtained by intersecting £(C) with the growing sphere remains the
same (isomorphic). Also every circle of the arrangement is moving towards a great-circle
while the sphere is growing. When ¢ is large enough it is possible to push all circles a small
amount to make them great-circles without changing the arrangement. |

» Corollary 3.1. FEvery non-stretchable arrangement of pseudolines has a corresponding
non-circularizable arrangement of pseudocircles.

In particular, the hardness of stretchability directly carries over to hardness of circulariz-
ability. Moreover, since there are infinite families of minimal non-stretchable arrangements
of pseudolines [7], the same is true for pseudocircles.

It is known that Mnév’s Universality Theorem [12] has strong implications for pseudoline
arrangements and stretchability. This together with results from Suvorov [13] directly
translates to:

» Corollary 3.2. The problem of deciding circularizability is IR-complete. Moreover, there
exist circularizable arrangements of pseudocircles with a disconnected realization space.

4 Non-circularizability of N2

Our second proof of non-circularizability of N& is an immediate consequence of the following
theorem, which resembles the proof of the Great-Circle Theorem (Theorem 1.3).

» Theorem 4.1. Let A be a connected digon-free arrangement of pseudocircles with the
property that every triple of pseudocircles, which forms a triangles in A, is NonKrupp. Then
A is not circularizable.

Proof (second proof of non-circularizability of N©*). The arrangement N is intersecting,
digon-free, and each of the eight triangles of NGA is a NonKrupp, hence, Theorem 4.1 implies
that N2 is not circularizable. <
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5 Computational Part

To produce the database of all intersecting arrangements of up to n = 7 pseudocircles, we
used the dual graphs and a procedure, which generates the duals of all possible extensions
by one additional pseudocircle of a given arrangement, starting with the unique arrangement
of two intersecting pseudocircles [4,5]. Another way to obtain the database for a fixed value
of n, is to perform a recursive search in the flip graph using the triangle flip operation.

For connected arrangement the dual graph might contain multiple edges. To avoid
problems with non-unique embeddings, we modeled connected arrangements with their
primal-dual-graphs where vertices, segments, and faces of the arrangement are represented
by a vertex in the graph and two vertices share an edge if the corresponding entities are
incident and one of them corresponds to an edge. To generate the database of all connected
arrangements for n < 6, we used the fact that the flip graph is connected when triangle flips
and digon flips are used. The enumeration was done by a recursive search on the flip graph.

Having generated the database of arrangements of pseudocircles, we were then interested
in identifying the circularizable and the non-circularizable ones. To find circle representations
we used computer assistance. Examples where our programs failed to find realizations had
to be examined by hand. For more information, we refer to the full version [4].
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—— Abstract

We introduce a variant of the watchman route problem, which we call the quickest pair-visibility

problem. Given two persons standing at points s and ¢ in a simple polygon P with no holes, we
want to minimize the distance these persons travel in order to see each other in P. We solve two
variants of this problem, one minimizing the longer distance the two persons travel (min-max)
and one minimizing the total travel distance (min-sum), optimally in linear time.

1 Introduction

In the watchman route problem, a watchman takes a route to guard a given region—that is,
any point in the region is visible from at least one point on the route. It is desirable to make
the route as short as possible so that the entire area can be guarded as quickly as possible.
The problem was first introduced in 1986 by Chin and Ntafos [4] and has been extensively
studied in computational geometry [3, 10]. Though the problem is NP-hard for polygons
with holes [4, 5, 7], an optimal route can be computed in time O(n3logn) for simple n-gons
[6] when the tour must pass through a specified point, and O(n*logn) time otherwise.

In this paper, we study a variant we call the quickest pair-visibility problem, which can
be stated as follows.

» Problem (quickest pair-visibility problem). Given two points s and t in a simple polygon P,
compute the minimum distance that s and t must travel in order to see each other in P.

This problem may sound similar to the shortest path problem between s and ¢, in which
the objective is to compute the shortest path for s to reach t. However, they differ even for
a simple case: for any two points lying in a convex polygon, the distance in the quickest
pair-visibility problem is zero while in the shortest path problem it is their Euclidean distance.

The quickest pair-visibility problem occurs in optimization tasks. For example, mobile
robots that use a line-of-sight communication model are required to move to mutually-visible

* This work by Ahn and Oh was supported by the MSIT(Ministry of Science and ICT), Korea, under the
SW Starlab support program(IITP-2017-0-00905) supervised by the IITP (Institute for Information &
communications Technology Promotion.).
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Figure 1 (a) The quickest pair-visibility problem finds two paths 7 (s, s1) and 7(¢,t1) such that
s1t1 C P and max{|n(s, s1)l, |m(t, t1)|} or |7(s, s1)| + |7 (¢, ¢1)| is minimized. The quickest visibility
problem for query point ¢ finds a shortest 7 (s, t2) with tt2 C P. (b) min-max: Every pair (s',t*),
where t* is some point within the geodesic disk centered in t with radius 7 (s, s’), is an optimal
solution to the min-maxz problem. (¢) min-sum: Every pair (v;,v;41) for 1 <4 < 6 is an optimal
solution to this instance.

positions to establish communication [8]. An optimization task here is to find shortest paths
for the robots to meet the visibility requirement for establishing communication among them.

Wynters et al. [12] studied this problem for two agents acting in a polygonal domain in the
presence of polygonal obstacles and gave an O(nm)-time algorithm for the min-sum variant
(where m is the number of edges of the visibility graph of all corners) and an O(n?3 log n)-time
algorithm for the min-max variant. A query version of the quickest visibility problem has
also been studied [1, 9, 11]. In the query problem, a polygon and a source point lying in the
polygon are given, and the goal is to preprocess them and construct a data structure that
allows, for a given query point, to find the shortest path taken from the source point to see
the query point efficiently. Khosravi and Ghodsi [9] considered the case for a simple n-gon
and presented an algorithm to construct a data structure of O(n?) space so that given a
query, it finds the shortest visibility path in O(logn) time. Later, Arkin et al. [1] improved
the result and presented an algorithm for the problem in a polygonal domain. Very recently,
Wang [11] presented an improved algorithm for this problem for the case that the number
of the holes in the polygon is relatively small. Figure 1(a) illustrates differences in these
problems for a simple polygon and two points, s and ¢, in the polygon.

1.1 Our results

In this paper, we consider two variants of the quickest pair-visibility problem for a simple
polygon: either we want to minimize the maximum length of a traveled path (min-mazx
variant) or we want to minimize the sum of the lengths of both traveled paths (min-sum
variant). We give a sweep-line-like approach that “rotates” the lines-of-sight along vertices
on the shortest path between the start positions, allowing us to evaluate a linear number of
candidate solutions on these lines. Throughout the sweep, we encounter solutions to both
variants of the problem. We further show that our technique can be implemented in linear
time.

2 Preliminaries

Let P be a simple polygon and 9P be its boundary. The vertices of P are given in counter-
clockwise order along 0P. We denote the shortest path within P between two points p,q € P
by 7(p,q) and its length by |7(p,q)|. We say a point p € P is visible from another point
q € P (and ¢ is visible from p) if and only if line segment pqg is completely contained in P.
For two starting points s and ¢, our task is to compute a pair (s’;t') of points such that s’
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and ¢’ are visible to each other, where we wish to minimize the lengths of 7(s, '), and m(¢,t').

In the min-max setting, we wish to minimize max{|r(s,s')|, |7 (¢,t')|}. For the min-sum
setting, we wish to minimize |7 (s, s")| 4+ |7 (t,t’)|. Note that, for both variants, the optimum
is not necessarily unique; see Figure 1(b) and (c).

For our discussion, let (s*,%*) be an optimal solution for the instance at hand. Let V(p)
denote the visible region for a point p in P, that is, the portion of P that is visible from
p. Clearly, V(p) is a star-shaped polygon. Moreover, every boundary edge of V' (p) is either
(part of) an edge of P or a segment 7 that is contained in P and parallel to po, where v
is a vertex of P visible from p and ¢ is a point on the boundary of P. We call an edge of
the latter type a window edge of the visibility region. The structure of V(p) may change as
p moves along a path contained in P. It is known that a change to the structure of V(p)
occurs if and only if two vertices of P become collinear with p [2].

» Lemma 2.1. Unless s and t are visible to each other, the segment s*t* contains a vertex
v of the shortest path 7(s,t) from s to t.

It is easy to see by contradiction that s*t* must contain a vertex v of the boundary of P;
using shortest path properties, one can show that v is a vertex of 7(s,t). The full proof is
omitted due to space constraints.

3 Computing All Events for a Sweep-Line-Like Approach

For each vertex v on m(s,t) we compute a finite collection of lines through v, each being
a configuration at which the combinatorial structure of the shortest paths 7 (s, s*) and/or
m(t,t*) changes. To be more precise, at these lines either the vertices of 7 (s, s*) or w(¢,t*)
(except for s* and t*) change or the edge of OP changes that is intersected by the extension
of s*t*. To explain how to compute these lines, we introduce the concept of a line-of-sight.

» Definition 3.1 (line-of-sight). We call a segment ¢ a line-of-sight if (i) £ C P, (ii) both
endpoints of ¢ lie on 9P, and (iii) £ is tangent to (s, t) at a vertex v € 7 (s, t).

We say a segment ¢ is tangent to a path 7w at a vertex v if v € gN7 and the local neighborhood
of 7 at all intersections g N 7 is on the same side of g. The algorithm we present is in many
aspects similar to a sweep-line strategy, except that we do not sweep over the scene in a
standard fashion but rotate a line-of-sight ¢ in P around the vertices of the shortest path
m(s,t) == (s =wp),v1,...,Vk—1,(t = vg). The process will be initialized with a line-of-sight
that contains s and vy and is then rotated around vy (while remaining tangent to v1) until it
hits ve, see Figure 2(a). In general, the current line-of-sight is rotated around v; in a way so
that it remains tangent to v; (it is rotated in the interior of P) until the line-of-sight contains
v; and v;4+1, then the process is iterated with v;11 as the new rotation center. The process
terminates as soon as the line-of-sight contains vg_1 and ¢.

While performing these rotations around the shortest path vertices, we encounter all
combinatorially different lines-of-sight. As for a standard sweep-line approach, we will
compute and consider events at which the structure of a solution changes: this is either
because the interior vertices of m(s, s*) or 7(t,t*) change or because the line-of-sight starts
or ends at a different edge of OP. These events will be represented by points on OP (actually,
we introduce the events as vertices on P unless they are already vertices). Between two
consecutive lines-of-sight, we compute the local minima of the relevant distances for the
variant at hand in constant time and hence encounter all global minima eventually.

There are three event-types to distinguish:
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Figure 2 Path- and boundary-events. (a) The first path-event is the line-of-sight through sv7.
The line-of-sight rotates until it hits the next path-event: the segment through vivz. (b) All path-
and boundary-events: the event-queue is initialized with these events. (c¢) A bend-event (marked
with a cross) occurs between the two boundary-events. The shortest path from s to these segments
changes at the bend-event.

1. Path-Events are endpoints of lines-of-sight that contain two consecutive vertices of the
shortest path (s, t). See Figure 2(a).

2. Boundary-Events are endpoints of lines-of-sight that are tangent at a vertex of 7(s,t)
and contain at least one vertex of P\ 7(s,t) (potentially as an endpoint). See Figure 2(b).

3. Bend-Events are encountered when, the shortest path of s (or ¢) to the line-of-sight
gains or loses a vertex while rotating the line-of-sight around a vertex v. See Figure 2(c).
Note that bend-events can coincide with path- or boundary-events.

We will need to explicitly know both endpoints of the line-of-sight on 0P at each event
and the corresponding vertex of 7(s,t) on which we rotate.

» Lemma 3.2 (Computing path- and boundary-events). For a simple polygon P with n vertices
and points s,t € P, the queue Q of all path- and boundary-events of the rotational sweep
process, ordered according to the sequence in which the sweeping line-of-sight encounters
them, can be initialized in O(n) time.

Path events coincide with specific vertices of the shortest path map of s (or of ¢) in P,
whereas boundary events are endpoints of specific edges of the shortest path tree of s (or
of t) in P. These structures can be constructed and classified in linear time, a full proof is
omitted due to space constraints.

Once we initialized the event queue Q, we can now compute and process bend-events as
we proceed in our line-of-sight rotations.

» Lemma 3.3. All bend-cvents can be computed in O(n) time, sorted in the order as they
appear on the boundary of P.

Due to space limitations, the proof of Lemma 3.3 is omitted.

4 Algorithm Based on a Sweep-Line-Like Approach

In this section, we present a linear-time algorithm for computing the minimum distance that
two points s and ¢ in a simple polygon P travel in order to see each order. We compute all
events defined in Section 3 in linear time. The remaining task is to handle the lines-of-sight
lying between two consecutive events.

» Lemma 4.1. For any two consecutive events, the line-of-sight £ lying between them that
minimizes the sum of the distances from s and t to £ can be found in constant time.
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Proof. Let £ be the set of all lines-of-sights lying between the two consecutive events. Every
line-of-sight in £ contains a common vertex v of n(s,t). We assume that £ contains no
vertical line-of-sight. Otherwise, we consider the set containing all lines-of-sight of £ with
positive slopes, and then the set containing all lines-of-sight of £ with negative slopes.

By construction, the second to the last vertex u of (s, £) (and 7(t,¢)) for any £ € L
remains the same. We already obtained v and u while computing the events. We will give
an algebraic function for the length of (s, ¢) for £ € L. An algebraic function for the length
of m(t,£) can be obtained by changing the roles of s and t.

Since the topology of 7(s,¢) for every ¢ € L remains the same, we consider only the
length of 7(u,£). Observe that 7(u,f) is a line segment for any ¢ € £, and thus its length
is the same as the Euclidean distance between w and £. The length is either the Euclidean
distance between u and the line containing ¢, or the Euclidean distance between u and the
endpoint of £ closest to u. We show how to handle the first case only because the second
case can be handled analogously.

To use this observation, we use £(«) to denote the line of slope « passing through v for
any a > 0. There is an interval I such that ¢(a) contains a line-of-sight in £ if and only
if @ € I. The Euclidean distance between u and £(«) is the same as the distance between
u and the line-of-sight contained in ¢(«). Thus, in the following, we consider the distance
between u and ¢(«) for every a € I.

Since £(a) passes through a common vertex, the line ¢(a) can be represented as the form
of y = ax + f(«), where f(a) is a function linear in «. Then, the distance between u and
¢(a) can be represented as the form of |cja + co|/vVa? + 1, where ¢ and ¢y are constants
depending only on v and u.

Then our problem reduces to the problem of finding a minimum of the function of the form
of (et + co| + |+ ch])/vVa? + 1 for four constants c1,ca,c} and cb, and for all o € 1.
We can find a minimum in constant time using an elementary analysis. |

» Lemma 4.2. For any two consecutive events, the line-of-sight ¢ lying between the them
that minimizes the mazimum of the distances from s and t to £ can be found in constant
time.

» Theorem 4.3. Given a simple n-gon P with no holes and two points s,t € P, a point-pair
(s*,t*) such that i) s*t* C P and ii) either |w(s,s*)| + 7(¢,t*)| or max{|n(s, s*)|, |7 (t,t*)|}
is minimized can be computed in O(n) time.

Proof. Our algorithm first computes all path- and boundary-events as described in Lemma 3.2.

The number of events introduced during this phase is bounded by the number of vertices
of the shortest path maps, M, and M, respectively, which are O(n). In the next step, it

computes the bend-events on JP as described in Lemma 3.3, which can be done in O(n) time.

Finally, our algorithm traverses the sequence of events. Between any two consecutive events,
it computes the respective local optimum in constant time by Lemma 4.1. It maintains
the smallest one among the local optima computed so far, and return it once all events are
processed. Therefore the running time of the algorithm is O(n).

For the correctness, consider the combinatorial structure of a solution and how it changes.

The path-events ensure that all vertices of 7(s,t) are considered as being the vertex lying on
the segment connecting the solution (s*,¢*). While the line-of-sight rotates around one fixed
vertex of (s, t), either the endpoints of line-of-sight sweep over or become tangent to a vertex
of OP. These are exactly the boundary-events. Or the combinatorial structure of (s, s*) or
m(t,t*) changes as interior vertices of (s, s*) or m(t,¢*) appear or disappear. These happen
exactly at bend events. Therefore, our algorithm returns an optimal point-pair. <
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—— Abstract

Given a polygonal shape with holes, we investigate the topology of two types of skeletons (straight
skeleton, Voronoi diagram) and the evolution of the inward offsets they induce. It is shown that
both skeletons are homotopy equivalent to the shape and an O(nlogn) algorithm to compute
the persistent homology of the filtration of the inset polygons w.r.t. to their reversed offsetting
process is given. We conclude with a brief discussion on possible applications.

1 Introduction

The straight skeleton and the Voronoi diagram of a polygonal shape capture certain topological
and geometrical information. For instance, the maximum inscribed circle of the shape has
its center at a vertex of of Voronoi diagram. In terms of homotopy both skeletons encode
the topology of the shape, but their geometry is different. The different geometry manifests
in different offset curves: Mitered offsets for straight skeletons and Minkowski offsets for
Voronoi diagrams. The evolution of offset curves again tells something about the topology of
the shape. The mathematical tool to investigate this observation is persistent homology.

Lieutier [8] showed that the medial axis of an open bounded set in R? is homotopy
equivalent to its medial axis by an involved proof not based on constructing a deformation
retraction. Further related work concerns the homotopy of the medial axis, its stability,
and its relation to the Voronoi diagram of a point set. Halperin et al. [4] investigated the
outer (Minkowski) offset filtration of convex polyhedra in two and three dimensions, i.e.,
they generalize from (alpha filtrations of) point sets to sets of disjoint convex polyhedra and
presented an O(nlogn) algorithm for the persistent homology.

Figure 1 The straight skeleton S(P) in blue of a polygon with holes, P, in black. The wavefront
(a mitered offset curve) is shown as dotted lines.
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2 Topology of skeletons

Let P denote a polygon with holes in the plane, i.e., bd P forms a set of disjoint closed
polygonal curves. The straight skeleton S(P) of P is defined by a wavefront propagation
process where the edges of P move inwards at unit speed. Two kind of structural changes
occur to the wavefront: (i) edges may collapse and vanish and (ii) reflex vertices may hit
another part of the wavefront and split it into parts.! The line structure that is traced out
by the wavefront vertices was introduced in [1] as the straight skeleton S(P) of P, see Fig. 1.
We call the area swept out by one edge f of P the straight-skeleton cell Cs(f) of f.

The Voronoi diagram V' (P) of P is defined by a nearest-neighbor cell decomposition of P
by the faces of P, i.e., its vertices and edges. We follow [5] by defining the cone of influence
I(f) of a vertex f to be R? and of an edge f to be the orthogonal strip spanned by f. Then
the Voronoi cell Cy (f) is defined as the set of points in I(f) at least as close to f than to
any other face of P. We define the Voronoi diagram V(P) of P as the line structure formed
by the boundaries of the Voronoi cells, restricted to P, see Fig. 2.

Figure 2 The Voronoi diagram V(P) in blue of a polygon with holes, P, in black. Two cells
Cv (f) and Cy (f') of the faces f and f’ shaded in gray.

Two remarks on the above definition: First, for our purpose we would like to emphasize
the notion of a Voronoi diagram of a polygon in analogy to S(P) and in contrast to the typical
notion of the Voronoi diagram of a collection of sites (which could form a polygon). Secondly,
the two edges of V(P) emanating at each reflex vertex are considered to be topologically
disjoint, i.e., the two distinct endpoints only geometrically overlap. Furthermore, we split
conic Voronoi edges at the apex, including those between two vertices of P, see [7]. This is
(i) algorithmically handy, e.g., when computing offset curves, and (ii) turns out to be natural
from a topological perspective.

Both, S(P) and V(P), capture geometrical and topological features of the underlying
shape P. For instance, they form a tree for simple polygons. Moreover, for each hole that
we punch into P both get a new (generator) cycle (in a group of cycles). That is, in terms of
homotopy theory, they both capture the topology of the shape:

» Theorem 2.1. Let P denote a polygon with holes in the plane. The following homotopy
equivalences hold:
P~ S(P)~V(P).

L See [7] for a survey on straight skeletons including a taxonomy on the different wavefront events.
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It suffices to show that S(P) and V(P) are each deformation retracts of P.
» Lemma 2.2. S(P) is a deformation retract of P.

Proof. Consider the cell decomposition of P induced by S(P). The cell Cs(f) of an edge f
is a topological disk [7]. Let us denote by S(P, f) = S(P) N Cs(f) the boundary of Cs(f)
without f, which is a connected part of bd Cs(f). The topological disk Cs(f) can be trivially
deformation retracted to S(P, f). We can even require that the deformation retraction stays
constant on S(P, f). This allows us to plug together the per-cell deformation retractions to

a deformation retraction of P = J; C(f) to U; S(P, f) = S(P). <

Note that the above proof also applies to straight-skeletons of positively weighted straight
skeletons. However, in the presence of negative weights Thm. 2.1 fails as S(P) of a simple
polygon P may have cycles as shown in [2].

» Lemma 2.3. V(P) is a deformation retract of P.

We could use the more general result of Lieutier [8] for the medial axis, augment it with
certain line segments to obtain V(P) and argue that the homotopy type did not change.
However, the simple proof scheme of Lem. 2.2 basically applies here, too. Moreover, Voronoi
cells of circular arcs meet the above topological requirements as well [6], and hence Lem. 2.3
also applies to shapes P bounded by straight-line segments and circular arcs.

There is only a technicality at reflex vertices (for both approaches), where we remind
the reader that the two emanating Voronoi edges are considered topologically disjoint. The
topological space V(P) could be obtained by glueing together Voronoi edges, but we do not
glue at reflex vertices of P. Put in different words, let us consider P’ as the Minkowski-
difference? P & B, of P by an € > 0, where B, denotes the o-centered ball of radius e. Then
V(P") =V (P)NP, ie., V(P)is V(P') with little line segments attached at the tips of V(P’).
The shape P’ is structurally the same as P, only the reflex vertices of P are replaced by tiny
circular arcs of radius e. We consider V(P) and V(P’) to be topologically identical, only the
tips of V(P’) are geometrically perturbed. In particular, we consider V (P, f) = V(P)NCy (f)
being a topological line instead of a circle at reflex vertices.

» Corollary 2.4. P, S(P), and V(P) are homologous and, by the theorem of Euler-Poincaré,
have the same Euler characteristics.

3 Persistence of offset curves

3.1 Mitered and Minkowski offsets

A skeleton and its offset curves are dual in the following sense: We can easily compute offset
curves from the skeleton and, vice versa, the skeleton can be obtained from the evolution of
offset curves. For the latter direction this is the original definition of straight skeletons, where
the wavefront propagation is the evolution of the offset curves. The definition of Voronoi
diagrams based the evolution of the offset curves is related to the so-called grassfire model.

For the former direction, the computation of mitered offset curves by means of straight
skeletons resp. Minkowski offset curves by means of Voronoi diagrams are one of many

2 For sets A, B in a vector space let A@ B = {z+y:z € Ay € B} denote the Minkowski-sum and let
AoB={z: {z}®B C A} = (A° @ (—B))° denote the Minkowski-difference.
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applications of skeletons, e.g. in GIS (buffer zone computation) or CAD/CAM (tool-path
planing in NC-machining), cf. [5,7].

Let us denote by Qv (r) the polygon P inset by radius r according Minkowski offset-
ting, i.e., Qv (r) = P © B,. Similarly, denote by Qgs(r) the polygon P inset by radius
r according to mitered offsetting. The so-called roof model projects the evolution of off-
set curves in three-space with the third dimension being time, see Fig. 3. We denote by
Ry (P) =U,>obd Qv (r) x {r} and likewise for Rg(P). In the following we write Q. (r) resp.
R.(P) when we refer to both Qv (r) and Qg(r) resp. Ry (P) and Rg(P). Aichholzer and
Aurenhammer [1] showed the following property for Rg(P), which is also true for Ry (P):

» Lemma 3.1. R.(P) does not possess local minima, except all points of bd P x {0}.

Proof. Assume R, (P) would possess a local minimum at ¢ € int P at level ¢ > 0. Then
P\ Q.(t+€) possesses an arbitrarily small component around ¢ for small enough € > 0. This
basically means that offset curves pop up without being emanated from bd P. |

@ Figure 3 The straight-skeleton roof model Rs(P) of P. The vertices, crests and ridges of Rg(P)
projected onto R? x {0} give S(P) again. Offset curves are lifted to isolines on Rgs(P).

3.2 Computing persistent homology of offset curve filtrations

Persistent homology is a mathematical framework that investigates the evolution of homology
groups in a so-called filtration of topological spaces. In the following we apply this framework
to a growing sequence of nested sets, where the growth is given by the offset curves with a
decreasing offset radius. This gives insight into the topology of the underlying shape that
goes beyond the homotopy type of P because the topological changes in the offset curves
pull in geometric information from the offsetting process itself.

Let us consider r to decrease from a large enough 7 to 0, while Q.(r) grows from the
empty set to P. We ask for the persistent homology groups (over Zs) of this offset filtration
of P. Using the roof model R, (P) we can apply the water shed picture [3] here: Assume the
sea has level 1y and then continuously lowers to level 0. At local maxima of R, (P) islands
pop up (0-dimensional homology classes are born), at certain other levels islands merge with
others (0-dimensional homology classes die) or atolls are formed (1-dimensional homology
classes are born). However, from Lem. 3.1 follows this:

» Lemma 3.2. In an offset filtration 1-dimensional homology classes never die.
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3.2.1 Direct approach on a simplicial complex

A straightforward approach to compute persistent homology could be to apply the boundary
matrix algorithm [3]. To do so, we switch to the setting of a filtration on a simplicial
complex. First, we consider a finite filtration: Note that the topological changes of Q.(r)
only occur at levels of R,(P) where the isoline touches a roof vertex. Let us denote by
r1 > 19 > -+ > 1 = 0 the sequence of levels at which the vertices of R, (P) sit, which gives
us the nested sets Q. (r1) C -+ C Qu«(rr). (We may add a level g > ry in order to start with
the empty set Q. (ro).) Next we construct a simplicial complex C that covers P by (i) adding
the offset curves bd Q. (r1),...,bd Q. (rx) to the skeleton and (ii) triangulating the onion
layers Q. (ri41) \ int Q. (r;) for 1 <4 <k — 1. Note that in step (i), we split skeleton edges
at the intersection points with the offset curves and in step (ii), we only need a topological
triangulation, i.e., edges do not need to be straight. Then we define a simplicial function
C — [0,00) by assigning each simplex of C the level of its lowest point in R, (P). We take the
super-level set filtration according to this simplicial function, which corresponds to the offset
filtration initially presented, i.e., it contains triangulations of all Q.(r;) as subcomplexes.

The boundary matrix reduction runs in O(m?) time where m € O(kn) C O(n?) is the
size of C. The construction of C involves the computation of k offset curves, each taking O(n)
time after the skeleton has been computed, and the triangulation in O(mlogm) time.

3.2.2 A skeleton-based algorithm

Note that the Voronoi diagram of Qv (r) is V/(P) N Qv (r) and similarly S(Qg(r)) = S(P) N
Qs(r) for straight skeletons. So Qv (r) is homotopy equivalent to V/(P)NQy (r) and therefore
homologous. That is, instead of considering the growing sets Qv (r1) C -+ C Qv (rr) we
can consider the growing subsets Qv (r1) N V(P) C -+ C Qv (ry) N V(P) of the Voronoi
diagram and likewise for the straight skeleton. So it suffices to track the birth and death of
components and cycles in the growing graph structure of the skeleton.

By Lem. 3.2 we can exclude the death of cycles from our considerations. So we sort the
vertices of the skeleton by decreasing level in the roof model and keep adding vertex by
vertex in the growing graph structure. For each new vertex v we have the following cases:

1. No neighbor of v was inserted already. Then v is a peak and a new component is born.
2. The neighbors uq, ..., uq were already inserted. For every connected component that is
involved with ¢ vertices in {uy,...,uq} we get ¢ — 1 new cycles closed at v. All involved

components are merged with the oldest component and then v joins this component, too.

After the skeleton of P has been computed and the vertices were sorted in O(nlogn)
time, where n is the number of vertices of P, one can compute the birth and death of the
homology classes in O(na(n)) time by means of a union-find data structure [3]. (There
are O(n) find resp. union operations in case 2.) If one is interested in the homology classes
itself each can be dumped in O(nlogn) time by a simple graph traversal. For instance the
cycle that is born at level 0.109 in Fig. 4 can be obtained by a depth-first search along one
emanating edge of the vertex v at level 0.109, restricted to vertices inserted so far, until v is
reached again. (The traversal stays within the component in which the cycle is closed.)

4 Conclusion

Computational topology has prominent applications in topological data analysis. We believe
that also classical problems in computational geometry profit from methods of computational
topology.
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Figure 4 Birth and death of homology classes in the mitered-offset filtration by inserting vertices
at given levels. Red circles are of case 1. (Peak 1 is on level 1.632.) Orange (birth of cycle) and
violet (death of component) vertices are of case 2. Unlabeled vertices are trivial instances of case 2.
The grey arrows tell the merge direction. Peaks in decreasing persistence: 1, 2, 6, 3, 7, 4.

Take for instance the maximum inscribed circle of P whose center is known to be a
vertex of V(P) with highest distance to its defining faces, i.e., the highest peak in Ry (P).
In other words, the maximum inscribed circle corresponds to the 0-dimensional homology
class of highest persistence, where the persistence of a homology class is defined by the level
difference of birth and death. We can quantify all peaks by its persistence and obtain a
notion of “significance” of a locally maximum inscribed circle. This could again be useful
for shape decomposition algorithms, e.g. for motion planing in NC machining. In Fig. 4
the peaks 1 and 2 have a significant persistence above 1.1, while the other peaks possess a
comparable small persistence below 0.1. Those two peaks represent the “main parts” of P in
this sense.
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—— Abstract

We consider dynamic loading and unloading problems for heavy geometric objects. The challenge

is to maintain balanced configurations at all times: minimize the maximal motion of the overall
center of gravity. While this problem has been studied from an algorithmic point of view, previous
work only focuses on balancing the final center of gravity; we give a variety of results for computing
schemes that minimize the maximal motion of the center of gravity during the entire process.
In particular, we consider the one-dimensional case and distinguish between loading and
unloading. In the unloading variant, the positions of the intervals are given, and we search for an
optimal unloading order of the intervals. We prove that the unloading variant is NP-complete
and give a 2.7-approximation algorithm. In the loading variant, we have to compute both the
positions of the intervals and their loading order. We give optimal approaches for several variants
that model different loading scenarios that may arise, e.g., in the loading of a container ship.

1 Introduction

Packing a set of objects is a classic challenge that has been studied extensively, from a variety
of perspectives. The basic question is: how can the objects be arranged to fit into a container?
Packing problems are important for many practical applications, such as loading items into
a storage space, or containers onto a ship. They are also closely related to scheduling and
sequencing, which may include additional temporal considerations. Packing and scheduling
are closely intertwined in loading and unloading problems, where the challenge is not just to
compute a good final configuration, but also to dynamically build this configuration, such
that intermediate states are both achievable and stable, e.g., when loading and unloading
container ships, for which maintaining balance throughout the process is crucial.

In this paper, we consider algorithmic problems of balanced loading and unloading. For
unloading, this means planning an optimal sequence for removing a given set of objects, one
at a time; for loading, this requires planning both the position and order of the objects.

The practical constraints of loading and unloading motivate a spectrum of relevant
scenarios. As ships are symmetric around their main axis, we focus on one-dimensional
settings, in which the objects correspond to intervals. Containers may be of uniform size,
but stackable up to a certain limited height; because sliding objects on a moving ship are
major safety hazards, stability considerations may prohibit gaps between containers.

* A full version of the paper is available at [2]. An extended abstract will appear in the 13th Latin
American Theoretical INformatics Symposium (LATIN 2018), April 16-19, 2018.
T Work of this author is partially supported by the National Science Foundation (CCF-1526406).

34th European Workshop on Computational Geometry, Berlin, Germany, March 21-23, 2018.
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1.1 Related Work

Previous work on cargo loading covers a wide range of specific aspects, constraints and
objectives. The general CARGO LOADING PROBLEM (CLP) asks for an optimal packing
of (possibly heterogeneous) rectangular boxes into a given bin, equivalent to the CUTTING
STOCK PROBLEM [4]. Most of the proposed methods are heuristics based on (mixed) integer
programming and have been studied both for heterogeneous and homogeneous items.

Amiouny et al. [1] consider the problem of packing a set of one-dimensional boxes of
different weights and different lengths into a flat bin (so they are not allowed to stack these
boxes), in such a way that after placing the last box, the center of gravity is as close as
possible to a fixed target point. They prove strong NP-completeness by a reduction from
3-PARTITION and give a heuristic with a guaranteed accuracy within £,,,4./2 of a given target
point, where ¢,,,, is the largest box length.

Gehring et al. [3] consider the general CLP, in which (rectangular) items may be stacked
and placed in any possible position. Mongeau and Bes [5] consider a similar variant in which
the objective is to maximize the loaded weight. In addition, there may be other paramaters,
e.g., each item may have a different priority [8].

While all of this work is related to our problem, it differs in not requiring the center of
gravity to be under control for each step of the loading or unloading process. A problem in
which a constraint is imposed at each step of a process is COMPACT VECTOR SUMMATION
(CVS), which asks for a permutation of a set of k-dimensional vectors in order to control their
sum, keeping each partial sum within a bounded k-dimensional ball. See Sevastianov [6, 7]
for a summary of results in CVS and its application in job scheduling.

2 Preliminaries

An item is a unit interval I := [m — 1, m+ 1] with midpoint m. A set {I1,...,I,} of n items
with midpoints my, ..., my is valid if m; = m; or |m; —m;| > 1 holds for all 4,5 = 1,...,n.
The center of gravity C (I1, ..., I,) of a valid set {I1,..., I, } of items is defined as L 37" | m;.

Given a valid set {I1,...,I,} of items, we seek orderings in which each item I; is removed
or placed such that the maximal deviation for all points in time j = 1,...,n is minimized.
Formally, for j =1,...,n and a permutation 7 : j — 7;, let C; := C (Iﬂj, ceey IM).

The UNLOADING PROBLEM (UNLOAD) seeks to minimize the maximal deviation during
an unloading process of Iy, ..., I,,. In particular, given an input set {I1,...,I,} of items, we
seek a permutation 7 such that max; j—1,._,|C; — C;| is minimized.

In the LOADING PROBLEM (LOAD) we relax the constraint that the positions of the
considered items are part of the input. In particular, we seek an ordering and a set of
midpoints for the containers such that the containers are disjoint and the maximal deviation
for all points in time of the loading process is minimized; see Section 4 for a formal definition.

3 Unloading

We show that the problem UNLOAD is NP-complete and give a polynomial-time 2.7-
approximation algorithm for UNLOAD. We first show that there is a polynomial-time
reduction from the discrete version of UNLOAD, the DISCRETE UNLOADING PROBLEM
(DUNLOAD), to UNLOAD; this leads to a proof that UNLOAD is NP-complete, followed by a
2.7-approximation algorithm for UNLOAD.

In the DISCRETE UNLOADING PROBLEM (DUNLOAD), we consider a discrete set X :=
{z1,...,zn} of points. The center of gravity C'(X) of X is defined as £ 3" | ;. For
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.....

permutation such that max; j=1, ., |C; — C;| is minimized.

» Lemma 3.1. UNLOAD and DUNLOAD are polynomial-time equivalent.

3.1 NP-Completeness of the Discrete Case
We can establish NP-completeness of the discrete problem DUNLOAD.
» Theorem 3.2. DUNLOAD is NP-complete.

The proof of Theorem 3.3 is based on a reduction of 3-PARTITION and omitted for lack
of space, just like any other formal proof; see the full version of this paper [2]. Because of
the polynomial-time equivalence of DUNLOAD and UNLOAD, we conclude the following.

» Corollary 3.3. UNLOAD is NP-complete.

3.2 Lower Bounds and an Approximation Algorithm

When unloading a set of items, their positions are fixed, so (after reversing time) unloading
is equivalent to a loading problem with predetermined positions. For easier and uniform
notation throughout the paper, we use this latter description.

In order to develop and prove an approximation algorithm for DUNLOAD, we begin by
examining lower bounds on the span, R — L, of a minimal interval, [L, R], containing the
centers of gravity at all stages in an optimal solution.

Without loss of generality, we assume that the input points z; sum to 0 (i.e., Y, z; = 0),
so that the center of gravity, C),, of all n input points is at the origin. We let R = max; C;
and L = min; C;. Our first simple lemma leads to a first (fairly weak) bound on the span.

» Lemma 3.4. Let (z1,22,23,...) be any sequence of real numbers, with y . x; = 0. Let
Cj = (X]_, xi)/j be the center of gravity of the first j numbers, and let R = max; C; and
L = min; C;. Then, |lR—L| > @, foralli=1,2,....

» Corollary 3.5. For any valid solution to DUNLOAD, the minimal interval [L, R] containing

the center of gravity at every stage must have length |R — L| > ‘“iil where u; is the input
point with the i-th smallest magnitude.

We note that the naive lower bound given by Corollary 3.5 can be far from tight: Consider
the sequence 1,2,3,4,5,6,7,—7,—7,—7,—7. In the optimal order, the first —7 is placed
fourth, after 2,1,3. The optimal third and fourth centers, {2, —1} are the largest magnitude
positive and negative centers seen, and show a span 2.25 times greater than the naive bound
of 1. By placing the first —7 in the third position, R > %, and L < 7%' By placing it fifth,
R > g Our observation is that failing to place our first —7 if the cumulative sum is > 7
would needlessly increase the span.

This generalizes to the sequence (z; = 1,20 = 2,..., 25 = k,Zp41 = —k,Tpyo =
—k,...,zN), with an appropriate zy to make > xz; = 0. If we place positive weights in
increasing order until, the current center of mass C; > %, placing —k instead of a positive

point at position j would decrease the center of gravity well below ? The first negative point
should be placed when min; jZT_J > k, which is when j ~ v/2k. In this example, our optimal

center of gravity span is at least f ~ \/g , not the 1 from the naive bound of Corollary 3.5.
We now describe our heuristic, H, which leads to a provable approximation algorithm. It
is convenient to relabel and reindex the input points as follows. Let (Py, Ps,...) denote the
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positive input points, ordered (and indexed) by increasing value. Similarly, let (Ny, Na,...)
denote the negative input points, orders (and indexed) by increasing magnitude |N;| (i.e.,
ordered by decreasing value).

The heuristic ‘H orders the input points as follows. The first point is simply the one
closest to the origin (i.e., of smallest absolute value). Then, at each step of the algorithm,
we select the next point in the order by examining three numbers: the partial sum, S, of all
points placed in the sequence so far, the smallest magnitude point, «, not yet placed that
has the same sign as S, and the smallest magnitude point, 3, not yet placed that has the
opposite sign of S. If S+ a+ [ is of the same sign as S, then we place 5 next in the sequence;
otherwise, if S + « + B has the opposite sign as S, then we place « next in the sequence. The
intuition is that we seek to avoid the partial sum from drifting in one direction; we switch
to the opposite sign sequence of input points in order to control the drift, when it becomes
expedient to do so, measured by comparing the sign of S with the sign of S + a + 3, where
a and (3 are the smallest magnitude points available in each of the two directions. We call
the resulting ordering the H-permutation. The H-permutation puts the j-th largest positive
point, P;, in position 71';' in the order, and puts the j-th largest in magnitude negative point,
Nj, in position 7, in the order, where

k J k J
o . ) - = : »
m; —j—l—m}gx{k : Z|N1|SZPI} and ; —j—!—m}gx{k : Z;Pz<;|Nl|}.

i=1 1=1
We obtain an improved lower bound based on our heuristic, 7, which orders the input
points according to the H-permutation.
» Lemma 3.6. A lower bound on the optimal span of DUNLOAD is given by |R — L| > %
and |R — L| > Ml
T
» Claim 1. For any input set to the discrete unloading problem, where s; is a member of S,

the set of all terms with the same sign sorted by magnitude, a permutation m that minimizes

the maximum value of the ratio I;’;‘ must satisfy m < m;, for all k <.

» Theorem 3.7. The H-permutation minimizes the mazimum (over i) value of the ratio

@, and thus yields a lower bound on |R — L.

For the worst-case ratio, we get the following.

» Theorem 3.8. The H heuristic yields an ordering having span R — L at most 2.7 times
larger than the H-lower bound.

» Corollary 3.9. There is a polynomial-time 2.7-approximation algorithm for UNLOAD.

4 Loading

We consider loading problems, where the positions of the objects are part of the optimization.
Therefor some additional definitions are necessary:
An item is given by a real number £. By assigning a position m € R to an item, we obtain

an interval I with length ¢ and midpoint m. For n > 1, we consider a set {{1,...,£,} of n
items and assume £; > --- > {,. Furthermore, {{1,...,£0,} is uniform if £ := {1 = ... = {,.
A state is a set {(I1,h1),...,(In, hn)} of pairs, each one consisting of an interval I; and

an integer h; > 1, the layer in which I; lies. A state satisfies the following: (1) Two different
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intervals that lie in the same layer do not overlap and (2) for j = 2,...,n, an interval in
layer j is a subset of the union of the intervals in layer j — 1.

A state {(I1,h1), ..., (In, hn)} is plane if all intervals lie in the first layer.

To simplify the following notations, we let m; denote the midpoint of the interval I;, for
j=A{1,...,n}. The center of gravity C (s) of a state s = {({1,h1),..., (In, hy)} is defined
as 37 >y £mj, where M is defined as >°7_, ¢;.

A placement p of n items ¢1,... £, is a sequence (I ,..., I, ) such that (1) there is a
permutation 7 with ¢; = |I,| for all i € {1,...,n} and (2) {(Ir,,hr,), ..., (Ix;, he;)} is &
state, the j-th state s;, for each j =1,...,n. The 0-th state sq is defined as () and its center
of gravity C (sp) is defined as 0.

» Definition 4.1. The LOADING PROBLEM (LOAD) is defined as follows: Given a set of n
items, determine a placement p such that the n+1 centers of gravity of the n+1 states of p lie

close to 0. In particular, the deviation A(p) of a placement p is defined as max ;g |C (s;)|.

We seek a placement of S with minimal deviation among all possible placements for .S.

We say that stacking is not allowed if we require that all intervals are placed in layer 1.

Otherwise, we say that stacking is allowed. For a given integer u > 1 we say that p is the
maximum stackable height if we require that all used layers are no larger than p.

Note that in the loading case, minimizing the deviation is equivalent to minimizing the
diameter, i.e., minimizing the maximal distance between the smallest and largest extent of
the centers.

4.1 Optimally Loading Unit Items With Stacking

Now we consider the case where you have given a set of unit items which has to be loaded and
you are allowed to stack these items up the a certain height. A simple and straightforward
strategy for this scenario is to build a stack of maximum height first (call this stack Sp)
and place items as close as possible to Sy on alternating sides afterwards. By selecting the
position of Sy carefully, this strategy guarantees the following:

» Theorem 4.2. There is a polynomial-time algorithm for loading a set of unit items so that

the deviation of the center of gravity is in |0, ﬁ], where p is the mazimum stackable height.

Furthermore it can be shown by a contradiction argument that there is no strategy that

can guarantee a smaller deviation of the center of gravity than the strategy described above.

» Theorem 4.3. The strategy given in Theorem 4.2 is optimal for n > pu, i.e., there is no

strategy such that the center of gravity deviates in |0, ﬁ)

Combining Theorem 4.2 and Theorem 4.3 shows that our approach is optimal.

» Corollary 4.4. With the given strategy for a uniform system where each item has length ¢,
the center of gravity deviates in [0, ﬁ], which is optimal.

4.2 Optimally Loading Without Stacking but With Minimal Space

Assume that the height of the ship to be loaded does not allow stacking items. This makes
it necessary to ensure that the space consumption of the packing is minimal. We restrict
ourselves to plane placements such that each state is connected. For simplicity, we assume
w.l.o.g. that ¢; > --- > £, holds. First one can simply argue that A(p) > %2 holds for an
arbitrary connected plane placement p of S. Subsequently we give an algorithm that realizes
this lower bound.
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A fundamental key for this subcase is that the center of gravity of a connected plane
state is the midpoint of the induced overall interval.

» Observation 1. Let s be a plane state such that the union of the corresponding intervals
is an interval [a,b] C R. Then C (s) = %2,

The algorithm works as follows. First, sort the items by decreasing value and place the
item ¢ at position %. After that, place all other items successively on alternating sides such
that there are no gaps in the each intermediate placement. This approach yields a deviation

ZQ EQ

of the center of gravity in [—%, Z].

Lo

» Lemma 4.5. For each plane placement p of S, we have A(p) > #

» Lemma 4.6. We can compute a placement p of S such that A(p) < %2.
The combination of Lemma 4.5 and Lemma 4.6 implies that our approach for connected
placements is optimal.

» Corollary 4.7. Given an arbitrary system, there is a polynomial-time algorithm for optimally
loading a gemeral set of items without stacking and under the constraint of minimal space
consumption for all intermediate stages.

5 Conclusion

We have introduced a new family of problems that seek to balance objects, controlling the
variation of their center of gravity during the loading and unloading of the objects. We have
provided hardness results and optimal or constant-factor approximation algorithms.

There are various related challenges. These include sequencing problems with multiple
loading and unloading stops (which arise in vehicle routing or tour planning for container
ships); variants in which items can be shifted in a continuous fashion; batch scenarios in
which multiple items are loaded or unloaded at once (making it possible to maintain better
balance, but also increasing the space of possible choices); and higher-dimensional variants,
possibly with inhomogeneous space constraints. All these are left for future work.
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—— Abstract

For a positive integer d, a set of points in d-dimensional Euclidean space is called almost-
equidistant if for any three points from the set, some two are at unit distance. Let f(d) denote
the largest size of an almost-equidistant set in d-space.

It is known that f(2) = 7, f(3) = 10, and that the extremal almost-equidistant sets are
unique. We have independent, computer-assisted proofs of these statements. It is also known
that f(5) > 16. We further show that 12 < f(4) <13, f(5) < 20, 18 < f(6) < 26, 20 < f(7) < 34,
and f(9) > f(8) > 24. Up to dimension 7, our work is based on various computer searches, and
in dimensions 6 to 9, we have constructions based on the known construction for d = 5.

For every dimension d > 3, we have an example of an almost-equidistant set of 2d + 4 points
in the d-space and we prove the asymptotic upper bound f(d) < O(d*/?).

1 Introduction and our results

For a positive integer d, we denote the d-dimensional Euclidean space by R?. A set V of
(distinct) points in RY is called almost-equidistant if among any three of them, some pair is at
distance 1. Let f(d) be the maximum size of an almost-equidistant set in R%. For example,
the vertex set of the well-known Moser spindle (Figure 1(a)) is an almost-equidistant set of 7
points in the plane and thus f(2) > 7.

In this paper we study the growth rate of the function f. We first consider the case when
the dimension d is small and give some almost tight estimates on f(d) for d < 9. Then we
turn to higher dimensions and show 2d 4 4 < f(d) < O(d*/?).

It is trivial that f(1) = 4 and that, up to congruence, there is a unique almost-equidistant
set on 4 points in R. Bezdek, Nasz6di, and Visy [5] showed that an almost-equidistant set in
the plane has at most 7 points. Talata (personal communication) showed in 2007 that there
is a unique extremal set. We have a simple, computer-assisted proof of this result [3].
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(a) (b)

Figure 1 (a) The Moser spindle. (b) An almost-equidistant set in R® on 10 points.

» Theorem 1.1 (Talata, 2007). The largest number of points in an almost-equidistant
set in R? is 7, that is, f(2) = 7. Moreover, up to congruence, there is only one planar
almost-equidistant set with 7 points, namely the Moser spindle.

Figure 1(b) shows an example of an almost-equidistant set of 10 points in R3. It is
made by taking a so-called biaugmented tetrahedron, which is a non-convex polytope formed
by gluing three unit tetrahedra together at faces, and rotating a copy of it along the axis
through the two simple vertices so that two additional unit-distance edges are created. This
unit-distance graph is used in a paper of Nechushtan [12] to show that the chromatic number
of R3 is at least 6. Gyorey [8] showed, by an elaborate case analysis, that this is the unique
largest almost-equidistant set in R®. We have an independent, computer-assisted proof [3].

» Theorem 1.2 (Gyérey [8]). The largest number of points in an almost-equidistant set in R3
is 10, that is, f(3) = 10. Moreover, up to congruence, there is only one almost-equidistant
set in R3 with 10 points.

In dimension 4, we have only been able to obtain the following bounds.

» Theorem 1.3. The largest number of points in an almost-equidistant set in R* is either
12 or 13, that is, f(4) € {12,13}.

The lower bound comes from a generalization of the example in Figure 1(b); see also
Theorem 1.6. The proofs of the upper bounds in the above theorems are computer assisted.
Based on some numerical work to find approximate realisations of graphs, we believe, but
cannot prove rigorously, that an almost-equidistant set of 13 points in R* does not exist.

» Conjecture 1.4. The largest number of points in an almost-equidistant set in R* is 12.

In dimension 5, Larman and Rogers [11] showed that f(5) > 16 by a construction based
on the so-called Clebsch graph. In dimensions 6 to 9, we use their construction to obtain
lower bounds that are stronger than the lower bound 2d + 4 stated below in Theorem 1.6.
We again complement this with some computer-assisted upper bounds.

» Theorem 1.5. The largest number of points in an almost-equidistant set in R®, R®, R7,
R® and R? satisfy the following: 16 < f(5) < 20, 18 < f(6) < 26, 20 < f(7) < 34,
24 < f(8) <41, and 24 < f(9) < 49.

The unit-distance graph of an almost-equidistant point set P in R? is obtained from P by
letting P be its vertex set and by placing an edge between pairs of points at unit distance.
For every d € N, a unit-distance graph in R? does not contain K4, (see Corollary 2.2)
and the complement of the unit-distance graph of an almost-equidistant set is triangle-free.
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Dimension d 1 2 3 4 5 6 7 8 9 d>9

Lower boundson f(d) |4 7 10 12 16 18 20 24 24 2d + 4

Upper bounds on f(d) | 4 7 10 13 20 26 34 41 49 4(d*?+4/d)
Table 1 Lower and upper bounds on the largest size of an almost-equidistant set in R.

Thus we have f(d) < R(d+ 2,3) — 1, where R(d + 2, 3) is the Ramsey number of K42 and
K3, that is, the smallest positive integer N such that for every graph G on N vertices there
is a copy of K419 in G or a copy of K3 in the complement of G.

Ajtai, Komlés, and Szemerédi [1] showed R(d + 2,3) < O(d?/logd) and this bound is
known to be tight [9]. We thus have an upper bound f(d) < O(d?/logd), which, as we show
below, is not tight. For small values of d where the Ramsey number R(d + 2, 3) is known
or has a reasonable upper bound, we obtain an upper bound for f(d). In particular, we
get f(5) <22, f(6) <27, f(7) <35, f(8) <41, and f(9) < 49 [16]. For d € {5,6,7}, we
slightly improve these estimates to the bounds from Theorem 1.5 using our computer-assisted
approach [3].

We now turn to higher dimensions. The obvious generalization of the Moser spindle
gives an example of an almost-equidistant set of 2d 4+ 3 points in R%. The next theorem
improves this by 1. It is a generalization of the almost-equidistant set on 10 points in R3
from Figure 1(b).

» Theorem 1.6. For every d > 3, there is an almost-equidistant set in R? with 2d + 4 points.

Rosenfeld [17] showed that an almost-equidistant set on a sphere in R? of radius 1/v/2
has size at most 2d, which is best possible. Rosenfeld’s proof, which uses linear algebra,
was adapted by Bezdek and Langi [4] to spheres of other radii. They showed that an
almost-equidistant set on a sphere in R? of radius < 1/4/2 has at most 2d + 2 elements,
which is attained by the union of two d-simplices inscribed in the same sphere.

Pudlék [15] and Deaett [6] gave simpler proofs of Rosenfeld’s result. Our final result is an

asymptotic upper bound for the size of an almost-equidistant set, based on Deaett’s proof [6].

» Theorem 1.7. An almost-equidistant set of points in R has cardinality O(d®/?).

We note that Polyanskii [13] recently found an upper bound of O(d'3/?) for the size of an
almost-equidistant set in R? and Kupavskii, Mustafa, and Swanepoel [10] and Polyanskii [14]
improved this to O(d4/ 3). Both papers use ideas from our proof of Theorem 1.7.

In this paper, we use ||v|| to denote the Euclidean norm of a vector v from R?. For a
subset S of R?, we use span(S) to denote the linear hull of S.

In the rest of the paper we sketch the proof of Theorem 1.7. The proofs of the remaining
statements, as well as some auxiliary claims, can be found in the full version of this paper [3].
The full version also contains a computer program that enumerates all graphs that are
unit-distance graphs of almost-equidistant sets up to a certain size and dimension. The
source code of our programs and the files are available on a separate website [18].

2 Proof of Theorem 1.7

In this section, we sketch the proof of Theorem 1.7 by showing the upper bound f(d) <
O(d'?). As a first step towards this proof, we state the following lemma that characterizes
sets of points lying at the unit distance from vertices of a regular simplex with unit-length
edges. For the statement of the lemma, we recall that a sphere of dimension d is a surface of
a (d 4 1)-dimensional ball.

EuroCG’18
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» Lemma 2.1. Ford,k € N, let C be a set of k points in R? such that the distance between
any two of them is 1. Let ¢ := % Zpecp be the centroid of C' and let A := span(C —c). Then
the set of points equidistant from all points of C is the affine space ¢ + A+ orthogonal to A
and passing through c. Furthermore, the intersection of all unit spheres centred at the points
in C is the (d — k)-dimensional sphere of radius \/(k + 1)/(2k) centred at ¢ and contained
inc+ At

» Corollary 2.2. Ford € N, every subset of R contains at most d+1 points that are pairwise
at unit distance.

The following lemma is a well-known result that bounds the rank of a square matrix from
below in terms of the entries of the matrix [2,6,15].

» Lemma 2.3. Let A = [a; ;] be a non-zero symmetric m x m matriz with real entries. Then

rank A > (Zazz) /ZZ“J

=1 j=1

The last lemma before the proof of Theorem 1.7 can be proved by a calculation, using
its assumption that the vectors v; have pairwise inner products ¢, so they differ from an
orthogonal set by some skewing.

» Lemma 2.4. For n,t € N with t < n, let wy,...,w; be unit vectors in R™ such that
(wi,wj) =¢ for alli,j with1 <i < j <t, wheree €[0,1). Then the set {w1,...,w;} can
be extended to {wn,...,wy} such that (w;,w;) =¢ for all i,j with 1 <i < j <n, and such

e;+Ae -
Tetaey (=1

that for some orthonormal basis e, ..., e, we have w; = .,n), where

—14+4/1 1— " "
A= + +en/( ©) and e::Zej:;Zw]‘.
n = V1t (n—1)e =

Moreover, |le; + Xe||® = (1 —&)~! for each i € {1,...,n} and for every x € R™ we have

P

S () ) = (1 = e)llal* &) + < ((ze) — VIF (- D) .

J=1

We are now ready to prove Theorem 1.7. For d > 2, let V' C R? be an almost-equidistant
set. Let G = (V, E) be the unit-distance graph of V and let k := |2v/d]. Note that 2 < k < d.

Let S C V be a set of k points such that the distance between any two of them is 1. If
such a set does not exist, then, since the complement of G does not contain a triangle, we
have |V| < R(k,3), where R(k,3) is the Ramsey number of K} and K3. Using the bound
R(k,3) < ("1%7?) obtained by Erds and Szekeres [7], we derive |V| < (2‘[“) 2d + V/d.
Thus we assume in the rest of the proof that S exists.

Let B be the set of common neighbours of S, that is, B:={z € V | ||z —s|| =1 Vs € S}.
Since V' is almost-equidistant, the set of non-neighbours of any vertex of GG is a clique and so
it has size at most d + 1 by Corollary 2.2. Every vertex from V \ B is a non-neighbour of
some vertex from S and thus it follows that |V \ B| < k(d + 1).

We now estimate the size of B. By Lemma 2.1 applied to .S, the set B lies on a sphere
of radius /(k + 1)/2k in an affine subspace of dimension d — k + 1. We may take the
centre of this sphere as the origin, and rescale by 1/2k/(k + 1) to obtain a set B’ of m unit
vectors vy, ..., v, € RI**1 where m := |B|. For any three of the vectors from B’, the
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distance between some two of them is \/2k/(k + 1). For two such vectors v; and v; with
Joi = o1 = 28/ (k+1), the facts o — ;|2 = [0+ [[o5 =2 (vi, ;) amd [Jes | = [foy | = 1
imply (v;,v;) = ¢, where € := 1/(k +1). Note that the opposite implication also holds. That
is, if (v;,v;) = ¢, then v; and v; are at distance \/2k/(k + 1).

Let A = [a;;] be the m x m matrix defined by a;; := (v;,v;) —e. Clearly, A is a
symmetric matrix with real entries. If m > d — k + 2, then A is also non-zero, as G contains
no K, yo and every vertex from B is adjacent to every vertex from S in G. We recall that
rank XY < min{rank X,rank Y} and rank(X +Y) < rank X + rank Y for two matrices X
and Y. Since B’ = {v1,...,v,,} C Rk and

-
A= [vl Vg e vm] [Ul Vg v vm] —&d,
where J is the m x m matrix with each entry equal to 1, we have
rank A < d—k+ 2. (1)

By Lemma 2.3,

(2)

For i € {1,...,m}, let N; be the set of vectors from B’ that are at distance /2k/(k + 1)
from v;. That is, N; := {v; € B’ | (v;,v;) = ¢}. Then for each fixed v; we have
D (uiv)—ef=(1—e+ Y 0+ Yoo (wyy) —o)* (3)

j=1 v; EN; v; €B'\(N;U{v;})

Note that the vectors from B’ \ (IV; U {v;}) have pairwise inner products ¢, as neither
of them is at distance 1/2k/(k + 1) from v;, and thus |B’\ (N; U{v;})| < d—k+2. In
fact, we even have |B"\ (N; U{v;})| < d—k + 1, since B’ contains only unit vectors and
any subset of d — k + 2 points from B’ with pairwise distances /2k/(k + 1) would form the
vertex set of a regular (d — k + 1)-simplex with edge lengths /2k/(k 4+ 1) centred at the
origin. However, then the distance from the centroid of such a simplex to its vertices would
be equal to \/k(d —k +1)/((k + 1)(d — k + 2)) # 1, which is impossible.

Thus setting n := d—k+1 and ¢ := |B"\ (N;U{v;})|, we have t < n. Applying Lemma 2.4
to the t vectors from B’ \ (N; U {v;}) C R™ with e = (k+ 1)~! and = = v;, we see that the
last sum in (3) is at most

(1—e)?4e ((vi,e> 1+ (d— k:)s)z,

d—k+1 . _
where e = Zj=1+ e; for some orthonormal basis ey, ..., eq—k+1 of RA-k+L,

By the Cauchy—Schwarz inequality,

(twire) - \/m)2 < (Va=F+1+ \/1+(d—k)s)2

=d—k+14+2Vd—k+1/14+(d—k)e+1+(d—k)e <4(d—k+1).

Recall that k > 2. Using ¢ = (k + 1)1, we obtain

S (i vi) —€)® <201 — )2 +de(d — k + 1) = ded + 2(1 +€)? — 4 < ded.

m
j=1
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If we substitute this upper bound back into (2), then with (1) we obtain that d — k +2 >
m?(1 — ¢)?/(4med) and thus m < (4ed)(d — k +2)/(1 — €)2. Using the choice k = [2V/d]
and the expression ¢ = (k + 1)1, we obtain (d — k +2)/(1 —¢)? < d, if d > 8, and thus
m < 4d*/(k + 1). Altogether, we have m < max{d — k + 1,4d?/(k + 1)} = 4d?/(k + 1). It
follows that |V| < k(d+2)+4d?/(k+1). Again, using the choice k = [2v/d] € (2vd—1,2V/d],
we conclude that |V| < 2v/d(d 4 2) 4 4d?/(2v/d) = 4d*/? + 4v/d. This finishes the proof of

Theorem 1.7.
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—— Abstract

We consider practical methods for the problem of finding a minimum-weight triangulation (MWT)
of a planar point set, a classic problem of computational geometry with many applications. While
Mulzer and Rote proved in 2006 that computing an MWT is NP-hard, Beirouti and Snoeyink
showed in 1998 that computing provably optimal solutions for MWT instances of up to 80,000
uniformly distributed points is possible, making use of clever heuristics that are based on geometric
insights. We show that these techniques can be refined and extended to instances of much bigger
size and different type, based on an array of modifications and parallelizations in combination with
more efficient geometric encodings and data structures. As a result, we are able to solve MWT
instances with up to 30,000,000 uniformly distributed points in less than 4 minutes to provable
optimality. Moreover, we can compute optimal solutions for a vast array of other benchmark
instances that are not uniformly distributed, including normally distributed instances (up to
30,000,000 points), all point sets in the TSPLIB (up to 85,900 points), and VLSI instances with
up to 744,710 points. This demonstrates that from a practical point of view, MWT instances
can be handled quite well, despite their theoretical difficulty.

1 Introduction

Triangulating a set of points in the plane is a classic problem in computational geometry: given
a planar point set S, find a maximal set of non-crossing line segments connecting the points
in S. Triangulations have many real-world applications, for example in terrain modeling,
finite element mesh generation and visualization. In general, a point set has exponentially
many possible triangulations and a natural question is to ask for a triangulation that is
optimal with respect to some optimality criterion. A natural criterion is to minimize the
total weight of the resulting triangulation. As Mulzer and Rote [11] showed, it is NP-hard to
compute a minimum-weight triangulation (MWT).

Practical approaches for computing an MWT are based on heuristics for including or
excluding edges with certain properties from any minimum-weight triangulation. Das and
Joseph [4] showed that every edge in an MWT has the diamond property. An edge e cannot
be in MWT(S) if both of the two isosceles triangles with base e and base angle 7/8 contain
other points of S. Drysdale et al. [7] improved the angle to 7/4.6. This can greatly reduce
the edge set and works exceedingly well on uniformly distributed point sets, for which only
O(n) edges remain in expectation. Dickerson et al. [5,6] proposed the LM T-skeleton heuristic,
based on a local criterion fulfilled by every edge in MWT(S). The LMT-skeleton algorithm
often yields a connected graph, and the remaining polygonal faces can be triangulated
with dynamic programming to obtain an MWT. Combining the diamond property and the
LMT-skeleton makes it possible to compute the MWT for large, well-behaved point sets.
Beirouti and Snoeyink [2] showed an efficient implementation of these two heuristics and
they reported that their implementation could compute the exact MW'T of 40,000 uniformly

* A full version of the paper is available at [9].
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(a) Points I and r induce a region DS such that (b) Simplified dead sector DS is bounded by two
all edges e = st with ¢t € DS fail the diamond rays and circle C. C is induced by the longer of
test. DS is called a dead sector (dotted area).  the two edges sl resp. sr and angle a.

Figure 1 Dead sectors.

distributed points in less than 5 minutes and even up to 80,000 points with the improved
diamond property.

We revisit diamond test and LMT-skeleton based on Beirouti’s and Snoeyink’s [2] ideas
and describe several improvements. Our bucketing scheme for the diamond test does not rely
on a uniform point distribution and filters more edges. For the LMT-skeleton we provide a
number of algorithm engineering modifications. These contain a data partitioning scheme for
parallelized implementation and other changes for efficiency. We also use an improvement
suggested by Aichholzer et al. [1]. Furthermore, we implemented, streamlined and evaluated
our implementation on various point sets. For the uniform case, we computed the MWT of
30,000,000 points in less than 4 minutes on commodity hardware; the limiting factor arose
from the memory of a standard machine, not from the runtime. We achieved the same
performance for normally distributed point sets. The third class of point sets were benchmark
instances from the TSPLIB [12] (based on a wide range of real-world and clustered instances)
and the VLSI library. These reached a size up to 744,710 points. This shows that from
a practical point of view, a wide range of huge MWT instances can be solved to provable
optimality with the right combination of theoretical insight and algorithm engineering.

2  Our Improvements and Optimizations

2.1 Diamond Property

For a uniformly distributed point set S with n points, the expected number of edges to pass
the diamond test is only O(n). More precisely, Beirouti and Snoeyink [2] state that the
number is less than 37n/sin(«), where « is the base angle for the diamond property. We
were able to tighten this value.

» Theorem 2.1. For a uniformly distributed point set, the expected number of edges that
pass the diamond test is less than 3mn/ tan(a).

For o = /4.6 less than 11.5847n edges are expected to pass the test, which is very close
to the values observed and achieved by our implementation; see Table 1 in Section 3. In
contrast, the value achieved by the implementation of Beirouti and Snoeyink is ~ 14.3n [2].

2.2 Dead Sectors and Bucketing

Our bucketing scheme is based on the same idea of dead sectors (see Figure la) as described
by Beirouti and Snoeyink [2]. We simplify the shape of dead sectors: Instead of bounding
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a sector DS by two circles (as shown in Figure 1a), we only use a single big circle C' with
center s at the expense of losing a small part of DS. This allows representing dead sectors
by just three numbers: an interval of two polar angles, and a squared radius d; see Figure 1b.

The main ingredient for our bucketing scheme is a spatial search tree with support for
incremental nearest neighbor queries, such as a quadtree. Incremental nearest neighbor
search queries allow to traverse all nearest neighbors of a point in order of increasing distance.
Such queries can be implemented with a priority queue that stores all tree nodes encountered
during tree traversal together with the distances to their resp. bounding box (see Hjaltason
and Samet [10]). Pruning tree nodes whose bounding box lie in dead sectors is rather simple
as follows: consider a nearest neighbor query for point s: when we are about to push a new
node n into the priority queue, we compute the smallest polar angle interval I that encloses
the bounding box of n and discard n if I is contained in the dead sectors computed so far.

Because nearest neighbors and tree nodes are processed in order of increasing distance,
we can store sectors in two stages. On creation, they are inserted into a FIFO-queue; later
only the interval component is inserted in a search filter used by the tree. The queue can be
seen as a set of pending dead sectors with attached activation distance J. As soon as we
process a point ¢ with d(s,¢) > § we can insert the corresponding interval into our filter.

This leaves deciding which points are used to construct dead sectors. We store all points
encountered during an incremental search query in an ordered set N, sorted by their polar
angle with respect to s. Each time we find a new point ¢, we insert it into N; dead sectors
are computed with the predecessor and the successor of ¢ in N. Computing ¢ for new sectors
only requires multiplying the current squared distance to ¢t with a precomputed constant.
The diamond property of edge st is tested against a subset of N.

If we apply the above procedure to every single point, we generate each edge twice,
once on each of the two endpoints. Therefore, we output only those edges e = st such
that s < ¢, i.e., s is lexicographically smaller than ¢. As a consequence, we can exclude
a part of the left half-space right from the beginning by inserting an initial dead sector
DSy = (1/27 + o, 3/27m — o) at distance 0. Points in the two wedges (1/27,1/27 + o and
[3/27m — «, 3/2m] are specially treated because they are still useful to generate dead sectors
for the right half-space.

2.3 LMT-Skeleton

For “nicely” distributed point sets, a limiting factor of the heuristic is the space required
to store the half-edge data structure in memory. We reduce storage overhead by storing
all edges in a single array sorted by source vertex (also known as a compressed sparse row
graph). All outgoing edges of a single vertex are still radially sorted. In addition to the
statuses possible, certain, impossible, we store whether an edge lies on the convex hull.

In essence our implementation is still the same as the one given by Beirouti and Snoeyink
[2], however, with some optimizations applied. We refer to the central while loop in their
implementation as the LMT-Loop. First, the convex hull edges are implicitly given during
initialization of their half-edge structure and can be marked as such without any additional
cost. Determining the convex hull edges beforehand allows to remove the case distinction
inside the LMT-Loop, i.e., it removes all intersection tests that are applied to impossible edges.
Secondly, sorting the stack by edge length destroys spatial ordering and the loss of locality
of reference outweighs all gains on modern hardware. Without sorting, it is actually not
necessary to push all edges onto the stack upfront. Lastly, with proper partitioning of the
edges, the LMT-Loop can be executed in parallel — described in more detail in Section 2.4.

Additionally, we incorporated an improvement to the LMT-skeleton suggested by Aich-
holzer et al. [1]. Because the improved LMT-skeleton is computationally much more expensive,
we apply it only to edges surviving an initial round of the normal LMT-heuristic.

EuroCG’18
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Number of visited neighbors per point
n Edges Mean SD Min Max DS =27
10! 36.16  £2.63 9 =40 0 =40 9 =+0 9 0 0=£0
102 882.8  £27.69 55.6 +3.1 16.6 £2.04 23.72 £4.82  98.56 +1.27 30.4 £4.61
103 10,731.7 £159.9 72.52 £1.56 23.16 £1.3  22.68 £4.55 173 £14.61 737.84 £10.91
10*  1.1316- 10° £471.24 77.64 £0.69 26.64 £0.73  19.08 £2.3 363.72 £20 9,126.08 £18.74
10°  1.15-105 +£1,538.64 | 72.84 +£0.29 23.76 £0.47 15.96 £1.61  846.24 +24.4 97,200.9 +£40.29
108 1.1562 - 107 44,737.67 74 40.51 25.76 £0.39 13.28 £1.31 2,884.96 +:38.53 | 9.9117 - 10° £61.86
107 1.1579 - 10% +19,254 77 4£0.6  27.24£0.79 11.88 £0.99 9,567.52 £78.84 | 9.9721 - 10% £100.61
108 1.1585 - 10% 4:56,063.1 72 4094 24.08 +£0.69 10.6 +0.49 25,017.8 £107.4 | 9.9911-107 £239.64

Table 1 Diamond test on uniformly distributed points. The table shows statistics for 25 different
instances. The extreme values are assumed by points at the point set boundary.

2.4 Parallelization

Because the LMT-heuristic performs only local changes, most edges can be processed in
parallel without synchronization. Problems occur only if adjacent edges are processed
concurrently (for the improved LMT-skeleton this is unfortunately not true, because marking
an edge impossible affects a larger neighborhood of edges). To parallelize the normal LMT-
heuristic, we implemented a solution based on data partitioning without explicit locking.

We recursively cut the vertices V' into two disjoint sets V' = V3 U V5 and process only
those edges with both endpoints in V; (resp. V3) in parallel. Define X as the cut set
{{s,t} € E| s € Vq,t € Va}, i.e., all edges with one endpoint in V; and the other in V5.
While edges in F(V7) resp. E(V,) are processed in parallel by two threads, edges in X are
accessed read-only by both threads and are handled after both threads join. This way we
never process two edges with a common endpoint in parallel. To avoid a serial scan at
the top, we push the actual work of computing X down to the leaves in the recursion tree.
Scanning of the half-edge array starts at the leave nodes: processing of half-edges that belong
to some cut set is postponed, instead they are passed back to the parent node. The parent
in turn scans the edges it got from its two children, processes all edges it can and passes
up the remaining ones. In other words, the final cut set X bubbles up in the tree, while all
intermediate cuts are never explicitly computed. This way, partitioning on each level of the
recursion tree only takes constant time, while the actual work is fully parallelized at the leaf
level. After the LMT-heuristic completes, we are left with many polygonal faces that still
need to be triangulated. Our implementation traverses the graph formed by the edges with
one producer thread in order to collect all faces and multiple consumer threads to triangulate
them with dynamic programming.

3 Computational Results

Computations were performed on a machine with an Intel i7-6700K quad-core and 64GB
memory. The code was written in C++ and compiled with gecc 5.4.0.

3.1 Uniformly and Normally Distributed Point Sets

Table 1 shows results of our diamond test implementation on uniformly distributed point
sets with sizes ranging from 10 to 10® points. The table shows the mean values and the
standard deviation of 25 different instances. Each instance was generated by choosing n
points uniformly from a square centered at the origin. The diamond test performs one
incremental nearest neighbor query for each point in order to generate the edges that pass
the test. The last column shows the number of queries where all nodes in the spatial tree
were discarded because dead sectors covered the whole search space. The numbers show that
this is the regular case; the exceptional cases occur at points near the point set “boundary”.
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Possible edges after Certain edges after
n Diamond LMT LMT+ LMT LMT+ Simple Polygons
10! 36.76  +2.78 3.8 +3.84 3.72 +3.62 19.32  +2.22 19.32  +2.22 0.68 £0.61
-10? 871.92  +46.37 84.04  +£20.14 74.56  £18.1 251.48 £7.12 252.28 +£7.12 10.52 £2.55
-10% 10,687.4 +146.68 1,150.32  £98.05 1,031.96 +86.46 2,540  £32.33 2,548.04 £31.41 128 +£9.2
-10* | 1.1322-10° £661.16 12,637  +£281.25 11,271.76 +251.6 25,193.44 £73.29 25,287.56 £76.43 1,367.08 +24.65

1.1503 - 10% £1,696.31  1.2941-10° £1,198.41  1.1523 - 10° £973.14 2.5129-10° £322.29  2.5227 - 10° £306.72 13,819.44 £67.93
100 | 1.1563 - 107 £5,459.02  1.3044 - 10° £2,708.78  1.1617 - 10° +£2,486.36 | 2.5098 - 10° £847.61  2.5194 - 10% £860.53 | 1.3904 - 10° +232.43
107 | 1.1579-10% £17,587.01  1.3074 - 107 £11,021.75  1.1645 - 107 £8,825.57 | 2.5088 - 107 £2,774.11  2.5184 - 107 £2,727.23 | 1.3931 - 10° £607.95
107 | 3.4747-10° £28,678.6  3.9239 - 107 £18,919.14  3.4949 - 107 +£15,068.66 | 7.5258 - 107 £4,637.8  7.5547 - 107 £4,563.03 | 4.1797 - 10° +£969.6
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S
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Table 2 LMT-skeleton statistics on uniformly distributed point sets.
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Figure 2 LMT-skeleton runtime on uniformly distributed point sets.

Table 2 shows statistics for the LMT-heuristic on uniformly distributed point sets. The
instance sizes range from 10 points up to 30,000,000 points. For each size 25 different
instances were generated. For the largest instances, the array storing the half-edges consumes
nearly 39 GB of memory on its own. The serial initialization of the half-edge data structure,
which basically amounts to radially sorting edges, takes longer than the parallel LMT-Loop on
uniformly and normally distributed points. The improved LM T-skeleton by Aichholzer et al.
is denoted LMT+ in the tables. The resulting skeleton was almost always connected in the
computations and the number of remaining simple polygons that needed to be triangulated is
shown in the last column. Only one instance of size 3 - 10° contained one small disconnected
polygon. As we can see, the LMT-skeleton eliminates most of the possible edges with only
~ 11% remaining. The certain edges amount to ~ 83% of the complete triangulation. The
improved LMT-skeleton reduces the amount of possible edges by another 10%, but it provides
hardly any additional certain edges.

The results on normally distributed point sets are basically identical. Point coordinates
were generated by two normally distributed random variables X, Y ~ N (u, 02), with mean
i = 0 and standard deviation ¢ € {1,100,100000}. The tables are given in the full version.

3.2 TSPLIB + VLSI

In addition to uniformly and normally distributed instances, we ran our implementation on
instances found in the well-known TSPLIB [12], which contains a wide variety of instances
with different distributions. The instances are drawn from industrial applications and from
geographic problems. All 94 instances have a connected LMT-skeleton and can be fully
triangulated with dynamic programming to obtain the minimum-weight triangulation. The
total time it took to solve all instances of the TSPLIB was approximately 8.5 seconds.

Additional point sets can be downloaded at http://www.math.uwaterloo.ca/tsp/vlsi/.
This collection of 102 TSP instances was provided by Andre Rohe, based on VLSI data sets
studied at the Universitdt Bonn. The LMT-heuristic is sufficient to solve all instances, except
1ra498378, which contains two disconnected polygonal faces. Our implementation of the
improved LMT-skeleton performs exceedingly bad on some of these instances; see Table 3.
These instances contain empty regions with many points on the “boundary”. Such regions are
the worst-case for the heuristics because most edges inside them have the diamond property,
which in turn leads to vertices with very high degree.

EuroCG’18
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Table 3 VLSI instances with long runtime.

Time in ms
Instance Total DT | LMT-Init | LMT-Loop | LMT+ | Dyn. Prog.

ara238025 | 15,325 | 4,954 446 496 9,279 148
Ira498378 | 382,932 | 44,267 1,238 7,532 | 329,292 599
Irb744710 | 484,430 | 7,952 1,377 2,661 | 471,564 872
sral04815 1,937 559 191 198 922 65

4 Conclusion

We have shown that despite of the theoretical hardness of the MWT problem, a wide range
of large-scale instances can be solved to optimality.

Difficulties for other instances arise from two sources. (1) Instances with almost regular
k-gons with one or more points near the center can lead to highly disconnected LMT-
skeletons (see Belleville et al. [3]) and require exponential time algorithms to complete the
MWT. Preliminary experiments suggest that such configurations are best solved with integer
programming. The instance by Belleville et al. can be solved with CPLEX in less than a
minute, while the dynamic programming implementation of Grantson et al. [8] cannot solve
it within several hours. (2) Instances containing empty regions with many points on their
“boundary”, such as empty k-gons and circles may be solvable in polynomial time, but trigger
the worst-case behavior of the heuristics. Dealing with both is left for future work.

Acknowledgments. I want to thank Sdndor Fekete and Victor Alvarez for useful discussions
and suggestions that helped to improve the presentation of this paper.
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—— Abstract

We consider the problem of characterizing small geometric graphs whose structure uniquely de-

termines the order type of its vertex set. We describe a set of edges that prevent the order type
from changing by continuous movement and identify properties of the resulting graphs.

1 Introduction

Let S, T C R? be two sets of n labeled points in the plane, not all on a common line. We
say that S and T have the same order type if there is a bijection ¢ : S — T such that any
triple (p,q,r) € S has the same orientation (clockwise, counterclockwise, or collinear) as
the image (p(p), ©(q), »(r)) € T3 [7]. This induces an equivalence relation on planar sets
of n points, with a finite number of equivalence classes, the order types. For example, the
order type of a point set S determines which geometric graphs can be drawn on S without
crossings. This makes order types relevant for extremal problems on geometric graphs.
Suppose we have discovered an interesting order type, and we want to illustrate it in
a publication. One solution might be to give explicit coordinates of a representative point
set S. This is unlikely to satisfy most readers. Thus, we would rather present S as a set of
dots in a figure. For some point sets (particularly those with extremal properties), the reader
may find it difficult to discern the orientation of an almost collinear point triple. To mend
this, we could draw all lines spanned by two points in S. In fact, it suffices to show only the
segments between the point pairs (the complete geometric graph on S). The orientation of
a triple can then be obtained by inspecting the corresponding triangle; see Figure 1(a). In
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1.P., and B.V. are supported by the Austrian Science Fund (FWF) grant W1230. M.B., J.K., and P.V.
are supported by the grant no. 18-19158S of the Czech Science Foundation (GACR). M.B. has received
funding from European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme under grant agreement no. 678765.
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general, our drawing will be rather dense, and we may have trouble following an edge from
one point to the next. Some edges, however, are redundant. Without them, we can still “see’
the order type of the underlying point set.

We would like to understand which edges are essential for order type representation.
To this end we provide a formal definition of this concept, identify a superset of these
non-redundant edges, and provide a classification and some properties. While these edges
prevent changing the order type by moving the points continuously (intuitively justified by
the motivation above), we fall short of proving that their structure fully determines the order

type.

)

Definitions. Let S be a set of n labeled points in the plane. A geometric graph on S is a
graph with vertex set S whose edges are represented as line segments between their endpoints.
A geometric graph is thus a drawing of an abstract graph. Two geometric graphs G and
H are topologically equivalent if there is a homeomorphism of the plane transforming G
into H. Each class of this equivalence relation may be described combinatorially by the cyclic
orders of the edge segments around vertices and crossings, and by the incidences of vertices,
crossings, edge segments, and faces. In the following we will consider topology-preserving
deformations. An ambient isotopy of the real plane is a continuous map f : R? x [0,1] — R?
such that f(-,¢) is a homeomorphism for every ¢ € [0, 1] and f(-,0) = Id.

» Definition 1.1. Let GG be a geometric graph on a point set S. We say that G supports S
(or that G is supporting) if every ambient isotopy of R? that keeps the images of the edges of
G straight and preserves topological equivalence to the drawing G also preserves the order
type of the vertex set.

Every complete geometric graph is supporting. A supporting graph need not be connected,
and two distinct minimal supporting graphs can be drawings of the same abstract graph; see
Figure 2 (b,c), and Figure 4. Thus, the structure of the drawing is crucial.

» Definition 1.2. Let G be a geometric graph on a set S of n points. We say that G forces
S (or that G is forcing) if every n-point set S’ that is the vertex set of a geometric graph
topologically equivalent to G has the same order type as S.

Clearly, every forcing geometric graph is also supporting.

Related work and outline. The connection between order types and straight-line drawings
has been studied intensively, both for planar drawings and for drawings minimizing the
number of crossings. For example, it is NP-complete to decide whether a planar graph can be
embedded on a given point set [4]. Continuous movements of the vertices of plane geometric
graphs have also been considered [1]. The continuous movement of points maintaining the
order type was considered by Mnév [12], who showed that there are point sets with the same
order type such that there is no ambient isotopy between them preserving the order type
(settling a conjecture by Ringel [13]). The orientations of triples that have to be fixed to
determine the order type are strongly related to the concept of minimal reduced systems [3].

We describe a notion of exit edges for a given point set. Although the resulting exit
graphs are always supporting, they are not necessarily minimal with this property. One
reason is that the topological structure of a geometric graph is not completely determined
by the order type of its vertex set, whereas the exit edges are derived solely from the
order type. Furthermore, some exit edges are rendered unnecessary by nonstretchability of
certain pseudoline arrangements. This concept and the subsequent difficulties are discussed in



Aichholzer et al. 21:3

(a) (b)

Figure 1 A set of six points with (a) all segments and (b) only exit edges drawn. (c) If the gray
region is empty of points, then the edge ab is an exit edge.

Section 2. Despite being non-minimal in general, we argue that exit edges are good candidates
for supporting graphs by discussing their dual representation in pseudoline arrangements
(Section 3). We provide some further properties in Section 4. We conjecture that graphs
based on exit edges are not only supporting but also forcing.

2 Exit edges

To obtain a supporting graph, we select edges so that no vertex of the resulting geometric
graph can be moved to change the order type while preserving topological equivalence. In
this section we will assume point sets to be in general position, that is, with no three collinear
points, unless stated otherwise.

» Definition 2.1. Let S be a finite point set in general position, and let a,b, ¢ be three
distinct points from S. We say that ab is an exit edge with witness c if there is no point p € S
such that the line @p separates b from c or the line bp separates a from c. The geometric
graph on S with edge set formed by the exit edges is called the exit graph of S.

Equivalently, ab is an exit edge with witness c if and only if the double-wedge through a
between b and ¢ and the double-wedge through b between a and ¢ contain no point of S in
their interior; see Figure 1(c). An exit edge has at most two witnesses. Also, if |S| > 4 and
ab is an exit edge in S with witness ¢, neither ac nor bc can be an exit edge with witness b
or a, respectively. We illustrate the set of exit edges for a set of 6 points in Figure 1(b).

Exit edges can be characterized via 4-holes. For an integer k > 3, a k-hole in a point set
S is a simple polygon spanned by & points of S whose interior contains no point of S. A pair
ab from S is extremal in S if it lies on the boundary of the convex hull of S. A pair of points
from S that is not extremal in S is internal in S.

» Theorem 2.2. The edge ab is not an exit edge of S if and only if the following holds.

1. If ab is extremal in S, then it is incident to at least one convex 4-hole in S.
2. If ab is internal in S, then it is incident to at least one general 4-hole on each side such
that the reflex angle (if any) is incident to ab.

We remark that an internal exit edge either has a witness on both sides or is incident to at
least one general 4-hole on one side. Due to space constraints, the proof of Theorem 2.2 is
deferred to the full version of the paper.

» Proposition 2.3. Let S C R? be a finite point set in general position and for every t € [0,1],
let S(t) be a continuous deformation of S at time t; more formally, let S(t) be the point set
{f(s,t);s € S} given by some ambient isotopy f : R? x [0,1] — R2. Let (a,b,c) be the first
triple to become collinear, at time to > 0. If ¢ lies on the segment ab in S(tg), then ab is an
exit edge of S(0) with witness c.

EuroCG’'18
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(a)

Figure 2 (a) Moving c over ab to make (a, b, ¢) oriented clockwise, without changing the orientation
of other triples, would contradict Pappus’s theorem [13]. (The corresponding abstract order type
is not realizable.) (b, c) The segment ab is an exit edge with witness c¢. In (c), we cannot move c
continuously to ab without first changing the order type, unless we also move other points.

Proof. For t € [0,%(), the triple orientations in S(¢) remain unchanged. In S(¢o), the point
¢ lies on ab. Thus, for ¢ € [0,%g), there is no line through two points of S(¢) that strictly
separates the relative interior of ab from c. In particular, there is no such separating line
through a or b in S(0). Hence, ab is an exit edge with witness c. <

» Corollary 2.4. The exit graph of every point set is supporting.

The proof of Proposition 2.3 also shows that if a line separates ¢ from the relative interior
of ab, then there is such a line through a or b. This may suggest that the exit edges are
necessary for a supporting graph. However, this is not true in general. For example, in
Figure 2(a), we see a construction by Ringel [13]: ab is an exit edge with witness ¢, but ¢
cannot move over ab without violating Pappus’ theorem. There are also point sets where two
or more other line segments prevent a witness ¢ from crossing an exit edge ab, for example,
see Figure 2(c). In general, this cannot be inferred from the order type of the underlying
point set. While ¢ cannot move to ab without changing the order type in Figure 2(c), we
could first change the point set to the one in Figure 2(b) and then move ¢ over ab. So ab
indeed has to be part of a graph supporting the set. Note that by Definition 1.1, it also
prevents the point set to be transformed to the other one.

3 Exit edges and empty triangles

For a point set S in the Euclidean plane, add a line £, to obtain the real projective plane.
By taking the projective dual of S and /., we get a projective line arrangement S* where
one cell, the marked cell, contains the dual point £, at vertical infinity. The combinatorial
structure of S*, together with the marked cell, determines the order type of S. Dual to
the proof of Proposition 2.3, we continuously move the lines without crossing ¢, . The
combinatorial structure changes when a line crosses a vertex of S*. Before that, there is
a triangular cell T bounded by three lines, dual to the endpoints of an exit edge and its
witness. In S, the witness is the point that is between the other two points when the set
becomes collinear. If we project S* to the Euclidean plane by choosing a line at infinity
through ¢ that does not intersect T, the witness corresponds to the bounding line of T'
with median slope. Alternatively, the witness corresponds to the line containing the leftmost
and the rightmost vertex of 7.

Hence, the number of triangles in a simple projective line arrangement gives an upper
bound on the number of exit edges of a point set. One triangle could contain £, and there
could be pairs of triangles that share a crossing in such a way that leads to only one exit edge
for the primal point set. Any projective arrangement of n > 4 lines has at least n triangles,
as each line is incident to at least three triangles [10], which is tight. Therefore, any set of
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Figure 3 Constructions of point sets with n—3 exit edges, currently the smallest known number.

n > 4 points has at least [%‘1] exit-edges. A more careful counting of exit edges with one
and two witnesses gives a lower bound of 3?" — O(1) for the number of exit edges. The proof
can be found in the full version of the paper. This bound is not proven tight, since so far we
only know of point sets with n — 3 exit edges for n > 9; see Figure 3.

The number of triangles in a simple arrangement is at most @ [8]. Roudneff [14] and
Harborth [9] showed that this is also tight. Thus, this is an upper bound on the number of
exit edges. Possibly, this upper bound can be improved, as constructions showing tightness
of the bound have many pairs of triangles sharing a vertex and corresponding to the same
exit edge. However, there are also line arrangements with no such pair of triangles [11]. In
the full version of the paper, we adapt a construction from [2] to show that the tight upper
bound on the number of supporting edges for n points is in ©(n?).

4 (Counter-)Examples and properties

We present some results on general supporting graphs (and thus on exit graphs).
» Theorem 4.1. Any geometric graph supporting a point set S, |S| > 9, contains a crossing.

Proof. Let G be a geometric graph with vertex set S without crossings. There is a point set
S’ with a different order type that also admits G: Dujmovié¢ showed that every plane graph
admits a plane straight-line embedding with at least \/m points on a line [5]; as we have a
point set with a collinear triple that admits G, there are at least two point sets in general
position with a different order type that admit G. Moreover, one can continuously morph S
to S’ while keeping the corresponding geometric graph planar and topologically equivalent
to G (see, for example, [1]). Therefore, G does not support S. <

» Proposition 4.2. Let S be a point set in general position in R? and let G be its exit graph.
Every vertex in the unbounded face of G is extremal, that is, it lies on the boundary of the
convez hull of S.

Note that, as shown in Figure 2(a), an analogous statement does not hold for general
supporting graphs. The proof of Proposition 4.2 is deferred to the full version of the paper.

So far, we have few results for characterizing graphs that force a point set S, but we
conjecture that the graph of exit edges not only supports .S, but also forces it. However,
even if we are given all the exit edges and their witnesses (in the dual, this means having
all triangles of a line arrangement and their orientations), we cannot always infer the order
type of S. A counterexample is sketched in Figure 4 as a dual (stretchable) pseudoline
arrangement of 14 lines in the projective plane, based on an example by Felsner and Weil [6].
It consists of two arrangements of six lines in the Euclidean plane that are combinatorially
different, but share the set of triangles and their orientations. While the exit edges are the
same for the two order types, the corresponding exit graphs are not topologically equivalent.
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Figure 4 Two arrangements of 14 pseudolines with the same set of triangles (extending [6,
Figure 3]). The green arrangements are the same. There is no triangle crossed by the line at infinity.
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—— Abstract

We consider distributing mission data among the members of a satellite swarm. In this process,
spacecraft cannot be reached all at once by a single broadcast, because transmission requires the
use of highly focused directional antennas. As a consequence, a spacecraft can transmit data to
another satellite only if its antenna is aiming right at the recipient; this may require adjusting
the orientation of the transmitter, incurring a time cost proportional to the required angle of
rotation. The task is to minimize the total distribution time. This makes the problem similar in
nature to the Freeze-Tag Problem of waking up a set of sleeping robots, but with angular cost
at vertices, instead of distance cost along the edges of a graph. We prove that approximating
the minimum length of a schedule for this Angular Free-Tag Problem within a factor of less than
5/3 is NP-complete, and provide a 9-approximation for the 2-dimensional case that works even
in online settings with incomplete information. Furthermore, we develop an exact method based
on Mixed Integer Programming that works in arbitrary dimensions and can compute provably
optimal solutions for benchmark instances with about a dozen satellites.

1 Introduction

Providing instructions to all members of a distributed group is a fundamental task for many
types of team missions. In terrestrial settings, this can usually be achieved by broadcasting
to all recipients in parallel, requiring only a single transmission. However, for long-distance
space missions, omnidirectional transmission can no longer be employed, due to significant
loss in signal strength. Instead, transferring data is accomplished with the help of directional
antennas, requiring a highly focused communication beam that is targeted right at the
intended recipient. (See Figure 1 for an illustration.) As a consequence, these transmissions
must be performed individually, involving maneuvers for achieving appropriate antenna
orientation; the time for such a maneuver is basically proportional to the required angle of
rotation, with negligible time for the actual transmission itself. The overall process does allow
one parallel component: a team member that has already been “activated” by having received
the data may relay this to other partners, motivating the use of intricate communication trees
for achieving rapid dissemination of information to all members of a swarm of spacecraft.

This can be utilized if we want to quickly distribute data, e.g., an important update. In
the following we consider a basic version of the problem in which the agents are static points
in the euclidean space, there are no delays for transmission, and the transmission cone is
modeled as a ray. (Also note that more advanced scenarios for space missions may require
both a transmitting and a receiving antenna that are directed at the communication partner;
see the Conclusions in Section 5.)

* Partially supported by the European Space Agency, project ASIMOV, contract number
4000122514 /17/F /MOS.
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» Problem 1.1. Angular Freeze Tag (AFT). Given a set P = {po,...,pn} of agent
positions in d-dimensional space. Each agent p; € P has an initial heading a;. At time ¢ = 0,
only pg is active, while all other agents are inactive. An agent p; is activated by an active
agent p; whose heading «; aims right at p;; adjusting this heading incurs a cost equal to
the required angular change. The objective is to minimize the time T until all agents are
activated, i.e., minimize the makespan of the overall activation schedule.

Figure 1 (Left) The space probe Voyager and its directional antenna for transmitting data.
(Image CC by NASA.) (Right) Activating all agents by rotations: po first activates p2 which then
activates ps while po rotates back to activate p;.

Related Work. The original Freeze-Tag Problem (FTP) was introduced by Arkin et
al. [2], who studied the task of waking up a swarm of robots. In the FTP, activating an
inactive robot is performed by moving an active robot next to it. The objective (minimize
the makespan of the overall schedule) is the same as for our problem, but the cost for an
activation (the distance to the robot instead of the angle) is different. This problem is
NP-hard even for star graphs, but there are polynomial-time approximation schemes (PTAS)
for star graphs and geometrically embedded instances [3]. Unweighted graphs are considered
in [4]. A set of heuristics is evaluated in [11]. Results on the hardness in Euclidean space are
provided by [1] and [9].

Other geometric questions related to the use of directional antennas have also been
considered. Carmi et al. [8] studied the a-MST, which arose from finding orientations
of directional antennas with a-cones, such that the connectivity graph yields an MST of
minimum weight, based on bidirectional communication. They prove that for a < /3, a
solution may not exist, while o > /3 always suffices. See Aschner and Katz [5] for more
recent hardness proofs and constant-factor approximations for some a.

2 Hardness of Approximation
We show that the AFT is computationally hard, even to approximate.
» Theorem 2.1. A c-approzimation algorithm for the AFT with ¢ < 5/3 implies P = NP.

Proof. We give a reduction from Satisfiability; see Figure 2 for a sketch. Our construction

has a solution with a makespan of 3¢ if it is satisfiable and 5¢ otherwise, where € > 0 is a

sufficiently small angle. Our construction uses five different types of agents, as follows.
The start agent pg directly activates the decision agents, but does not have any other
agents within 5¢ of «.
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Figure 2 Sketch of the hardness construction. Red variable agents are 2¢ from their designated
heading, which they can target upon activation. The decision agent for each variable is a rotation &
from both of its corresponding variable assignment agents. A schedule of makespan 3¢ exists if and
only if there is a satisfying truth assignment; otherwise, the makespan is at least 5e.

For each variable we have a decision agent and two variable assignment agents (one each
for true and false) in opposing angles of £, but no further agents within a 5¢ rotational
range. It is directly activated from pg.
The wvariable assignment agent directly activates all corresponding literal agents, but has
no further agents in a 4¢ rotation range. The earliest possible activation time is €. Only
one of the two agents can be activated at time & (by the decision agent), the other one
has to wait an additional 2¢.
For each literal there is a literal agent that has its clause agent a rotation of 2 away, but
no further agents within 4e. The earliest possible activation time is €.
For each clause there is a clause agent that has no agent within its 2e rotation range. Its
earliest possible activation time is 3e.
A clause agent can only be activated by its literal agents in less than 5¢ and a literal agent
is either activated at ¢ or 3¢, depending on which of the variable assignment agents got
activated first. Thus, a clause is activated at 3¢ if and only if a corresponding variable agent
has been activated in time; otherwise, it takes 5e. <

3 Approximation Algorithm

We can provide a simple constant factor approximation, based on a result by Beck [6] on
the linear search problem. In that scenario, an agent has to locate a hidden object in a
one-dimensional environment; from a given starting location, the best strategy for this online
problem is to alternate between going left and right, while doubling the search depth in each
iteration. This yields a total search distance that is within a factor of 9 of the optimum.

» Theorem 3.1. There is a 9-approximation algorithm for the AFT in 2-dimensional space,
even for unknown agent locations and headings, assuming a lower bound of € > 0 for the
rotational angle of any activating agent.

Proof. As soon as an agent is activated, it follows the doubling strategy from linear search,
carried out for rotation. It follows straightforward by induction that any agent p; that gets

EuroCG’'18
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, po with all contained edges
|

Figure 3 An example of the auxiliary graph. Every point (po, p1,p2, p3) has a vertex for its initial
heading (v;) and a vertex for the heading to any other point different from py. Between the vertices
of the same point, there are directed edges with the cost of the corresponding rotation; as shown in
the lower left, there are no incoming edges for the start vertex. If points are collinear, there can be
two vertices for the same heading. A possible solution would be for pg to first head to p2 and then
to p1, while p2 heads to p3. The corresponding movements are visualized by red edges.

activated by T; in an optimal schedule is activated within 97;. |

Note that we cannot apply the refined technique by Bose et al. [7] for linear search, as it
requires both an upper and a lower bound on the search distance.

4| Exact Solution

In the following, we describe the set of solutions by a Mixed Integer Program (MIP). This
allows us to use an advanced solver such as CPLEX to obtain provably optimal solutions.

Each agent has only a finite set of relevant headings; between such two configurations there
is an easily computable optimal rotation. The relevant configurations are the initial heading
of an agent and the headings that activate other agents, for a total of O(|P|) configurations
and O(|P|?) transitions per agent. We can encode this into an auxiliary directed graph
G = (V, E) in which the configurations are the vertices and the vertices of each agent form a
weakly connected component. For an agent p; € P we denote the initial heading vertex by
v, and the vertices that activate another agent p; € P by v;,;. There is a directed edge
between all vertices v;,;,p; € P\ {pi,po} as well as from v; to all v;—,;,p; € P\ {pi,po}-
There are no edges between the vertices of different agents. The movement (and agent
activations) of an agent p; can be represented by a directed path starting at v;. Figure 3
visualizes such a graph and how to encode a solution.

We use Boolean variables x.,e € E that represent the transition of an agent between two
configurations, and continuous variables y,,v € V that represent the time at which an agent
reaches a specific configuration. If the configuration is not used, it may be zero. The value
needs only to be tight for configurations that are critical for the makespan.

The general idea of the Mixed Integer Program is simple: the usage of an edge implies
that the target’s time has to be the source’s time plus the transition time; we want to
minimize the maximum value. It is also fairly simple to adapt this MIP to other problem
variants. Let us start with the objective function that minimizes the latest activation time

i . 1
min Ir)rileag Yo, (1)
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Note that we need to implement the min-max via min¢ and ¢ > y,,Vp; € P, resulting in
O(|P|) additional constraints. For every agent we need to visit a vertex that activates it, i.e.,
we need to use an edge that visits such a vertex (exactly one to be precise).

S we=1 YneP\(wkh )

e€Lin(vj—i),p; EP

Next we enforce that there are only directed paths starting at initial heading vertices by
enforcing that there can only be at most one outgoing edge per vertex and only if there is
also an ingoing one (3) or it is a start vertex (4), and prohibiting subcycles (5).

Z Te < Z T, <1 Vi, €V (3)

Eout (vi—j) Ein(vi—j)
> w <l Vpi € P (4)
Eout (v:)
> wew <8 -1 VS cV (5)
v,weS

If agent p; is activated by agent p;, then y,, = y,,_,,. Since y,, ,, = 0 for all other agents py,
we can write

Yoo = D Yo, Ypi € P\ {po}. (6)

p;EP

If we use a directed edge, we know that the target has to have the time of the source plus the
minimal transition time, i.e., for an edge vw € E : y,, > y,, + cost(vw). We can neutralize
this constraint by adding a large negative value to the right side that lowers it below zero
if the edge is not selected. This value only needs to be 37, because no optimal solution is
larger than 27 and an edge cost is at most .

Y = Yo + cost(vw) + (3mxyy — 3T) Yow € B (7)

This constraint also prevents cyclic activations or cycles as in constraint (5) as long as they
are not based on zero-cost transitions (this works analogous to the Miller-Tucker-Zemlin
subtour elimination constraints for TSP [10]). To also prevent zero-cost cyclic activations we
can use the following constraint:

S wm<ISI-1 ¥ScP\{nh 8)

Di,P; €S €€ Ein(visj)

Because this only happens for degenerated cases with zero-cost edges, we add the con-
straints (5) and (8) iteratively only if necessary.

In the end we have O(|P|?) continuous variables, ©(|P|?) Boolean variables (of which only
|P| — 1 variables will be true), and O(|P|3) constraints (excluding (5) and (8)), resulting in a
relatively large problem that also becomes very quickly hard to solve, as can be seen in Fig. 4.
Interestingly, this is not because CPLEX does not find a solution, but because it does not find
an effective lower bound. Code on https://github.com/d-krupke/eurocgi8-angularft.

5 Conclusion

We provided first results for a basic version of Angular Freeze Tag. Even in 2D with static
transmitters, we need better lower bounds to improve approximation and the size of optimally
solvable instances. There is also a wide spectrum of practically important generalizations.

EuroCG’'18
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Figure 4 Results for random instances with CPLEX and a 15 min time limit on a PC (i7, 64GB).
For 12 points only 50% can be solved to optimality. For unsolved instances, the lower bound is often
close to zero, so providing better lower bounds will drastically improve performance.

These include approximation for the three-dimensional version and scenarios with moving
satellites. Allowing inactive receivers to adjust their heading ahead of time may greatly speed

up schedules. On the other hand, advanced missions may require both partners in a data

exchange to have their directional antennas pointing at each other, making the scheduling

process considerably more involved. All these issues are left for future work.
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—— Abstract

We consider problems of finding non-crossing bottleneck structures for a given planar point set:
For a given a set of vertices V, the problem MINIMUM BOTTLENECK PorycoN (MBP) is to find
a simple polygon P with vertex set V' whose longest edge is as short as possible; the problem
MINIMUM BOTTLENECK SIMPLE MATCHING (MBSM) is to find a crossing-free matching of V'
whose longest edge is as short as possible. Both problems are known to be NP-complete and
neither admits a PTAS. We develop exact methods that can solve benchmark instances (newly
generated and from the classic TSPLIB library) with up to 1,500 points for MBP and up to
20,000 points for MBSM to provable optimality.

1 Introduction

Finding a simple polygon with a given set V of vertices in the plane is one of the basic
problems of computational geometry. If we want to minimize the overall length, this is is
equivalent to the classic Traveling Salesman Problem (TSP), as a shortest tour is always
non-crossing. However, if the objective is to minimize the length of the longest edge, this is
no longer the case, see Fig. 1. This problem MINIMUM BOTTLENECK POLYGON (MBP) is
NP-complete and unless P=NP, it cannot be approximated within a factor better than /3,
as it is NP-complete to decide whether a hexagonal grid graph has a Hamiltonian cycle (HC)
of unit edges (see Arkin et al. [5]). We are not aware of any constant-factor approximation
algorithms for the MBP.

A similarly basic geometric optimization problem is to find a matching for a given
vertex set. When minimizing the total length of all edges, an optimal solution must also
be non-crossing; this allows it to use standard matching techniques, subject to the (purely
theoretical) issue of computing the sum of a set of square roots. Matching techniques can
also be used to compute a MINIMUM BOTTLENECK MATCHING (MBM) in polynomial time.
However, a solution to MBM does not have to be non-crossing, as shown in Fig. 1. In fact,
it was shown by Abu-Affash et al. [2] that this problem MINIMUM BOTTLENECK SIMPLE
MatcHING (MBSM) is NP-complete and does not allow a PTAS. They also provide a
21/10 ~ 6.325-approximation algorithm and state without proof that they can reduce this
factor to (1 + v/2)v/5 ~ 5.398.

In this paper, we develop methods for computing provably optimal solutions for benchmark
instances up to 2,000 points. Beyond illustrating the practical solvability of both problems,
this will provide ground truth for testing potential (improved) approximation methods.
Related work. There is a huge body of related work; due to limited space, we only mention
a small subset.

* This work was partially supported by the DFG Research Unit "Controlling Concurrent Change", funding
number FOR 1800, project FE407/17-2, "Conflict Resolution and Optimization".
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Figure 1 Left: A minimum bottleneck matching and a crossing-free minimum bottleneck matching.
Right: A minimum bottleneck tour and a minimum bottleneck polygon.

The minimum bottleneck TSP was first introduced by Gilmore and Gomory [9]. For
metric instances, there is a 2-approximation algorithm implied by Fleischner’s theorem [8, 12]
which states that the square of every two-connected graph is Hamiltonian; for general metric
instances, this factor is best possible. Hochbaum and Shmoys [10] also prove a factor of 2
within a framework providing approximation algorithms for several bottleneck problems. The
problem of finding a longest simple polygon for a given vertex set was considered by Alon et
al. [3]; they conjecture this problem to be NP-hard, but this is still open. See Dumitrescu
and Té6th [6] for improved approximation factors.

2 Minimum Bottleneck Polygonalization

2.1 Modeling

We start with a basic formulation NMBP(V') of MINIMUM BOTTLENECK POLYGON as a
Mixed Integer Program, where x,, is a Boolean variable encoding whether pq is an edge of
the polygon and B encodes the bottleneck of the solution. For two points p,q € V, let x(pq)
be the set of line segments crossing pq.

min B s.t.
VpGV:prq:Q (1)
a#p
Vp,g € V,rs € x(pq) : Tpg + xrs < 1 (2)
VOCSCV: Y mp>2 (3)
pES,geV\S
Vp,q €V i |lpglly - 2pq < B (4)
zpq € {0,1}

Degree constraints (1) ensure two incident edges for each point, while crossing constraints (2)
exclude crossing edges. The subtour constraints (3) enforce a connected solution. Finally,
the bottleneck constraints (4) enforce the maximum edge length B.

This naive formulation is only practical for small point sets. Firstly, it is well known that
using an auxiliary variable B to encode a min max-type objective often induces weak LP
relaxations and thus leads to a suboptimally large search tree. Moreover, the total number of
crossing constraints corresponds to the number of convex quadruples in V', which is known to
be Q(n?) (see [11, 14]), so using all these constraints at once becomes prohibitively expensive.

In the following, we present a formulation of the MBP as a sequence BMBP, (V) of IPs
addressing these issues; this resembles the approach used in [7] for determining the threshold
value for a triangulation whose shortest edge is as long as possible. For a threshold value 7,
BMBP., (V) is integer feasible iff V has a polygon with bottleneck at most 7; we exclude all
edges longer than 7. As before, we use degree constraints (5), subtour constraints (7) and
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crossing constraints (6). Thus, a minimum bottleneck polygon can be found with binary
search over possible values of 7. The optimal bottleneck is the length of an edge; therefore,
this is a discrete set of possible values.

min Z lpalls - zpg s.t.
p,a€V,llpall, <7
VpeV: Z Tpg =2 (5)
g€V, llpgll, <7

Vp,q € V,|Ipglly < 775 € x(pq) : Tpg + 2ps <1 (6)
VIS SCV: > Tpg > 2 (7)

p€S,q¢S,|lpall, <7

Tpq € {0,1}

In our implementation of this formulation, only violated crossing and subtour constraints are
added iteratively by generating appropriate cutting planes. This results in only small subsets

of these large families actually being used. This is aided by our use of the objective function.

Instead of directly minimizing the bottleneck, we minimize the sum of all edge lengths. Due to
the triangle inequality, most avoidable edge crossings never occur in intermediate (fractional
and integral) solutions. Moreover, we do not have to solve BMBP. (V') to optimality; we can
abort the search as soon as the first integer feasible solution is found.

2.2 Computational Results

We implemented NMBP (V) and BMBP, (V) in C++, using IBM ILOG CPLEX 12.6.2 as
our IP solver. All our experiments ran on a workstation running Linux 4.4 on an Intel Core
i7-6700K CPU at 4 GHz clock frequency with 64 GiB of RAM. In order to efficiently construct
BMBP.(V), we used an implementation of kd-trees provided by CGAL [1] to enumerate
all points within distance 7 of a query point. Moreover, violated crossing constraints are
detected using CGAL’s sweep line implementation. To compare the performance of NMBP
and BMBP, we ran both NMBP and BMBP on a set of small instances. Using NMBP, most
instances with more than 50 points cannot be solved within 500 seconds, while BMBP solves
these instances in less than half a second. Thus, we only evaluate BMBP in the remainder
of the section. Fig. 2 shows the results of running BMBP on randomly generated point sets
with a modest time limit of 10 minutes. We also ran BMBP on all geometric instances from
the classic TSPLIB [13] with fewer than 2,500 points. Within a time limit of one hour, we
were able to solve most of them to optimality; see Fig. 3.

3  Minimum Bottleneck Matching

3.1 Modeling

By modifying the right-hand side of the degree constraints (1) and (5) to 1 and removing
the subtour constraints (3) and (7), we obtain a formulation of the crossing-free minimum
bottleneck matching problem as naive MILP NMBM(V') and as sequence of IPs BMBM, (V).
In order to improve its performance, we generate blossom constraints

VS C V,|S] odd: > Tpg > 1, (8)
€S, ¢S, lIpqll, <7
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Figure 2 Left: Average running time and peak memory usage for BMBP, run with a time limit
of 600s on point sets generated uniformly at random. Right: Percentage of instances solved within

the time limit.
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Figure 3 Time required by BMBP to solve the TSPLIB instances; computation was aborted

after one hour.

as cutting planes. We identify violated blossom inequalities by searching for odd components
in the support graph of a fractional solution. In order to further restrict the search space for
the binary search, we implemented a minimum bottleneck matching algorithm to serve as a
lower bound and a crossing removal heuristic to produce an initial crossing-free solution as

an upper bound; see Section 3.2.

3.2 Crossing Repair Heuristic

A straightforward way to heuristically turn a crossing matching into a non-crossing one is to
use a sequence of local 2-OPT exchanges, replacing a crossing pair of edges pq,rs by pr, sq
or ps,qr. Any 2-OPT step decreases the sum of edge lengths, so this process must terminate
with a non-crossing matching. However, this heuristic does not seem to perform well with
respect to the bottleneck.

An alternative is a simple but effective heuristic for converting a crossing matching M¢
with bottleneck B into a non-crossing matching My, while trying to keep the bottleneck
edge as short as possible. We use a standard sweep line algorithm to detect crossings. If
there is no more crossing, we are done. Otherwise, we pick an arbitrary crossing pq, rs. Using
a kd-tree, we perform a simultaneous incremental nearest-neighbor search, starting from
p,q,r and s, constructing a set of close points IV that contains up to K points, for some
constant K; we use K = 50 in our experiments. Whenever a new point is discovered, it
is added to IV, together with its matching partner in Mc. Once N contains K points, we
compute the bounding box of N and extend it by B in every direction. We use a range query
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Figure 4 Left: Average running time and peak memory usage for BMBM, run with a time limit
of 600s on point sets generated uniformly at random. Right: Percentage of instances solved within
the time limit, and percentage of instances solved to optimality using the crossing-removal heuristic.
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Figure 5 Time required by BMBM to solve the TSBLIB instances; the time limit was two hours.

to find all points inside the extended bounding box; this set of points consists of our internal
points IV and external points T'. For all external points, we find the corresponding matching
edge in M¢; this gives us a set of edges Ep. We use BMBM, (N) with binary search on
7 to find a minimum bottleneck crossing-free matching on N; however, in order to avoid
introducing new crossings, we prohibit using any edge that crosses an edge of Er, unless this
edge is part of M¢. In M, we replace the matching edges corresponding to points in N
with the edges from the resulting matching. In this way, the crossing pq, rs disappears and
no new crossings can appear. We iterate this procedure until there are no more crossings; the
number of crossings is reduced by at least one in each iteration, thus the heuristic terminates
with a crossing-free matching Myc. In certain situations, this heuristic can fail, because a
crossing-free matching cannot be found due to the forbidden edges. In this case, we resort
to performing 2-OPT steps to remove some crossings before continuing to use the original

heuristic.

3.3 Computational Results

We implemented both NMBM and BMBM and evaluated them under the same circumstances
as outlined in Section 2.2. Similar to the situation for polygons, the naive NMBM cannot
compete with BMBM, so we give only give computational results BMBM. We were able to
solve almost all TSPLIB instances with up to 20,000 points within a time limit of two hours
(see Fig. 5). For point sets chosen uniformly at random from the unit square, we were able to
solve all generated instances with up to 6,000 points and most instances with up to 10,000
points within ten minutes (see Fig. 4).

In many instances, applying our crossing removal heuristic to a minimum bottleneck
matching yields a crossing-free solution with the same bottleneck (see Fig. 4), thus resulting in
a provably optimal solution. For all randomly generated instances, the minimum bottleneck
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was achievable in a crossing-free manner; on these instances, our crossing repair heuristic
was off by a factor of at most 2.215 (this factor was 1.11 on average with median 1.024).

4  Future Work

We presented exact approaches for both the MBP and the MBSM. Many interesting theoretical
and practical problems remain that are left for future work.

The most interesting theoretical problem is to develop a constant-factor approximation
algorithm for MBP. In our experiments, we found that for large point sets generated uniformly
at random, a minimum bottleneck matching can always be achieved with a non-crossing
solution. Is there an analytic basis for this observation? For general point sets, it may be
interesting to explore the properties of the matching polytope with added crossing constraints.

On the practical side, the quadratic number of edge variables is the biggest impediment
for solving larger instances. For the classic TSP, this has been dealt with by using column gen-
eration and related methods [4]. For MBP, there are potentially many additional constraints
that could be used for cutting plane generation. Doing this in an efficient manner requires
rewriting large parts of the integer programming solver. For MBSM, more sophisticated
algorithms may be able to identify more (helpful) blossom constraints.
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—— Abstract

A polyomino is a set of connected squares on a grid. In this work we address the class of poly-

ominoes with minimal perimeter for their area, and show a bijection between minimal-perimeter
polyominoes of certain areas.

1 Introduction

A polyomino is an edge-connected set of cells on the square lattice. The area of a polyomino
is the number of cells it contains. The problem of counting polyominoes dates back to
the 1950s when it was studied in parallel in the fields of combinatorics [8] and statistical
physics [6]. Let A(n) denote the number of polyominoes of area n. A general formula for A(n)
is still unknown. Klarner [10] showed the existence of the growth rate of A(n), denoting it
by A :=lim, . {/A(n). The exact value of A is also unknown yet, and its best estimate,
4.06, is by Jensen [9]. The current best lower and upper bounds on A are 4.0025 [3] and
4.6496 [11], respectively. Several works provide enumeration by area of special classes of
polyominoes, such as column-convex [7], convex [5], and directed [4] polyominoes.

The perimeter of a polyomino P consists of the empty cells adjacent to P. Asinowski et
al. [2] showed that a polyomino of area n has a perimeter of size at most 2n+ 2, and provided
formulae for the numbers of polyominoes with area n and perimeter 2n 4+ 2 — k, for some
small values of k. In this paper, we shed some light on polyominoes with the minimum-size
perimeter for their area. Related works are by Altshuler et al. [1] and by Sieben [12], providing
a formula for the maximum area of a polyomino with a certain perimeter size. Sieben [12]
also gave a formula for the minimum perimeter size of a polyomino of area n. Both works
also characterized all polyominoes that have the maximum area for a given perimeter size.
In this paper, we study the number of polyominoes which have the minimum perimeter size
for their area, and show a bijection between some sets of minimal-perimeter polyominoes.

2 The Problem

2.1 Definitions

Let @ be a polyomino, and let P(Q) be the perimeter of Q. Define B(Q), the border of @, to
be the set of cells of @) which have at least one empty neighboring cell. Given a polyomino @,
its inflated polyomino, 1(Q), is defined as I(Q) = Q U P(Q). Notice that the border of 1(Q)
is a subset of the perimeter of (). Analogously, the deflated polyomino, D(Q), is defined as
D(Q) = Q\ B(Q), which is obtained by “shaving” the outer layer, i.e., the border cells from
the polyomino. Notice that the perimeter of D(Q) is a subset of the border of ). Also note
that D(Q) is not necessarily a valid polyomino since the removal of the border of @) may
break it into disconnected pieces. Figure 1 demonstrates all the above definitions.

Following the notation of Sieben [12], we denote by €(n) the minimum size of the perimeter
of all polyominoes of area n. Sieben showed that e(n) = (2 4+ +v/8n —4|. A polyomino @ of
area n will be called a minimal-perimeter polyomino if |P(Q)| = €(n).

* Work on this paper by both authors has been supported in part by ISF Grant 575/15.

34th European Workshop on Computational Geometry, Berlin, Germany, March 21-23, 2018.

This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



24:2 Properties of Minimal-Perimeter Polyominoes

ﬁﬁeﬁz

(a) Polyomino @ (b) I(Q (c) D(Q

Figure 1 A polyomino Q, its inflated polyomino, and its deflated polyomino. The gray cells are
the polyomino cells, while the white cells are the perimeter. Border cells are marked with crosses.
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Figure 2 All possible patterns of excess cells. The gray cells are polyomino cells, while the white
cells are perimeter cells. Patterns (a—d) exhibit excess border cells and their surrounding perimeter
cells, while Patterns (w—z) exhibit excess perimeter cells and their surrounding polyomino cells.

2.2 The Relation between Border, Perimeter, and Excess

In this section we express the size of the perimeter of a polyomino, |P(Q)|, as a function
of the border size, |B(Q)|, and the number of excess cells as defined below. The excess of a
perimeter cell [2] is defined as the number of polyomino cells that are adjacent to it minus
one, and the total excess of a polyomino Q, ep, is defined as the sum of excess over all the
cells of the perimeter of (). Similarly, the excess of a border cell is defined as the number of
perimeter cells adjacent to it minus one, and the border excess, denoted by ep, is defined as
the sum of excess over all the border cells. Let 7 = |P(Q)| and 8 = |B(Q)|.

» Observation 2.1. The following holds for any polyomino: 7w 4+ ep = 8 + eg. Equivalently,
7T=ﬁ—|—€B—6p. (1>

Equation (1) holds since both 7w 4+ ep and 5 + ep are equal to the
total length of the polygons forming the boundary of the polyomino. This
quantity can be calculated either by summing up over the perimeter cells,
where each cell contributes 1 plus its excess for a total of m + ep, or by
summing up over the border cells for a total of 8 + eg. Figure 2 shows all
possible patterns of border and perimeter excess cells, while Figure 3 shows

a sample polyomino with some cells tagged with the corresponding patterns. Figure 3
Let #0] be the number of excess cells of a certain type in a polyomino A sample
as classified in the figure, where ‘1" is one of the symbols a—d or w—z, as in polyomino

Figure 2. Counting ep and ep as functions of the different patterns of excess
cells, we see that ep = #a+2#b+3#c+#d and ep = #w+2#x+3#y+#-=.
Substituting eg and ep in Equation (1), we obtain

T = [+ #a+ 2#b + 3#Hc + #d — #w — 2#x — 3H#y — #=.

Since Pattern (c) is a singleton cell, we can ignore it in the general formula. Thus, we have

T = [+ #a+ 2#b+ #d — #w — 2H#Hx — 3H#Hy — #=.

with marked
patterns.

2.3 Properties of Minimal-Perimeter Polyominoes

» Lemma 2.2. Any minimal-perimeter polyomino is simply connected (that is, it does not
contain holes).
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(@@ (b) @ (c) @ (d) @

Figure 4 Examples for the first and second parts of the proof of Theorem 2.4.

Proof. The sequence €(n) is monotone increasing in the wide sense! [12]. Assume that there
exists a minimal-perimeter polyomino @) with a hole. Consider the polyomino @’ that is
obtained by filling this hole. The area of Q' is clearly larger than the area of @, and its
perimeter size is smaller since we eliminated the perimeter cells inside the hole and did not
introduce new perimeter cells. This is a contradiction to €(n) being monotone increasing. <

» Lemma 2.3. For a simply connected polyomino, we have #a + 2#b — #w — 2#x = 4.

Proof. The boundary of a polyomino without holes is a simple polygon, thus, the sum of
its internal angles is (180(v — 2))°, where v is the complexity of the polygon. Notice that
Pattern (a) (resp., (b)) adds one (resp., two) 90°-vertex to the polygon. Similarly, Pattern (w)
(resp. (x)) adds one (resp., two) 270°vertex. All other patterns do not involve vertices.
Let L = #a + 2#b and R = #w + 2#x. Then, the sum of angles of the boundary polygon
implies that L-90°+ R-270° = (L + R —2) - 180°, that is, L — R = 4. The claim follows. <«

» Theorem 2.4. (Stepping Theorem) For a minimal-perimeter polyomino (except the single-
ton cell), we have that m = 8 + 4.

Proof. Lemma 2.3 tells us that 7 = S+4+#d—#z. We will show that any minimal-perimeter
polyomino contains neither Pattern (d) nor Pattern (z).

Let ) be a minimal-perimeter polyomino. For the sake of contradiction, assume first
that there is a cell f € P(Q) as part of Pattern (z). Assume w.l.o.g. that the two adjacent
polyomino cells are to the left and to the right of f. These two cells must be connected,
thus, the area below (or above) f must be bounded by polyomino cells. Let, then, Q' be
the polyomino with the area below f, and the cell f itself, filled with polyomino cells. The
cell directly above f becomes a perimeter cell, the cell f ceases to be a perimeter cell, and
at least one perimeter cell in the area filled below f is eliminated, thus, [P(Q")| < |P(Q)]
and |Q’| > |Q|, which is a contradiction to the sequence €(n) being increasing. Thus, @ does
not contain perimeter cells that fit Pattern (z). Figures 4(a,b) demonstrate this argument.

Now assume for contradiction that @ contains a cell f, forming Pattern (d). Let Q' be the
polyomino obtained from ) by removing f and then “pushing” together the two cells adjacent
to f. This is always possible since @) is of minimal perimeter, hence, by Lemma 2.2, it is
simply connected, and thus, removing f breaks () into two separate polyominoes. Any two
separated polyominoes can be shifted by one cell without colliding, thus, the transformation
described above is valid. The area of Q' is one less than the area of ), and the perimeter of Q’
is smaller by at least two than the perimeter of @), since the perimeter cells below and above f
cease to be part of the perimeter, and connecting the two parts does not create new perimeter
cells. From the formula of €(n) we know that e(n+1) —e(n) <1 forn > 2, but |Q|—|Q'| =1
and |P(Q)| — |P(Q")| = 2, hence, @ is not a minimal-perimeter polyomino, which contradicts
our assumption. Thus, there are no cells in @) that fit Pattern (d). Figures 4(c,d) demonstrate
this argument. This completes the proof. <

I In the sequel we simple say “monotone increasing.”
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2.4 Inflating a Minimal-Perimeter Polyomino

In this section we reach our main results.
» Lemma 2.5. If Q is a minimal-perimeter polyomino, then |[P(I1(Q))| < |P(Q)| + 4.

Proof. Since @ is a minimal-perimeter polyomino, we know by Lemma 2.2 that 1(Q) is
simply connected. For a hole to be formed in I(Q), the original polyomino @ must have
either Pattern (z) (two cells separated by a single perimeter cell), or two cells separated by
two perimeter cells, as in BCTM . The former case (Pattern (z)) is not possible, as is shown in
the proof of Theorem 2.4. We show, using the same technique, that the latter case is also
impossible.

Since I(Q) is simply connected, we have, by Lemma 2.3, that |P(I1(Q))| = |[B(I(Q))| +
4+ #d — #=z. Since |B(I(Q))| < [P(Q)], all that remains to show is that Pattern (d) does
not occur in I(Q)). Assume to the contrary that there is a cell f forming Pattern (d) in 1(Q).
Since I(Q) is simply connected, removing f will break it into exactly two pieces, denoted
by @1 and Q2. Both @1 and Q2 must contain cells of the original @ since any cell in I(Q)
either belongs to @ or is adjacent to a cell of Q. However, this implies that @ is not connected,
which is a contradiction. Hence, () cannot contain a pattern of type (d), as required. <

» Theorem 2.6. (Inheritance Theorem) If Q is a minimal-perimeter polyomino, then I(Q)
s a minimal-perimeter polyomino as well.

Proof. Let () be a minimal-perimeter polyomino. Assume to the contrary that I(Q) is not a
minimal-perimeter polyomino, i.e., there exists a polyomino @’ with the same area as I(Q),
such that |P(Q")| < |P(I(Q))|. From Lemma 2.5 we know that |P(I(Q))| < |P(Q)|+4, thus,
the perimeter of Q' is at most [P(Q)|+ 3, and since Q’ is a minimal-perimeter polyomino, we
know by Theorem 2.4 that the size

of its border is at most [P(Q)| — 1.
Consider now D(Q'). The area of Q' #
is |Q| + |P(Q)|, thus, the size of D(Q’) E@H

is at least |@|+1, and its perimeter size (@) Q=6 (b)|I(Q)|=15 (c) |I(I(Q))| =28
is at most €(n) — 1 (since the perime-
ter of D(Q’) is a subset of the border Figure 5 A demonstration of Theorem 2.6.

of Q). This is a contradiction to the sequence €(n) being monotone increasing. Hence,
Q' cannot exist, and I(Q) is a minimal-perimeter polyomino. Figure 5 demonstrates this
theorem. It shows a minimal-perimeter polyomino @) of area 6 and the two minimal-perimeter
polyominoes of areas 15 and 28 obtained by inflating @Q twice. <

» Corollary 2.7. The minimum perimeter size of a polyomino of area n + ke(n) + 2k(k — 1)
(forn # 1 and any k € N) is e(n) + 4k.

Proof. Inflating a minimal-perimeter polyomino of size n increases its area by e(n). The
border size of the inflated polyomino is €(n), thus, by Theorem 2.4, the new perimeter
size is e(n) 4+ 4. By induction, after the kth inflation, the perimeter size is e(n) + 4k and
the increase in the area is €(n) + 4(k — 1). Summing up the increase in area, we obtain
Zle(e(n) +4(i — 1)) = ke(n) + 2k(k — 1), implying the claim. <

» Lemma 2.8. Let Q be a minimal-perimeter polyomino of area n + e(n) (for n > 3). Then,
D(Q) is a valid (connected) polyomino.

Proof. Assume to the contrary that D(Q) is not connected and that it is composed of at
least two parts. Assume first that D(Q) is composed of exactly two parts, @1 and Qs.



G. Barequet and G. Ben-Shachar 24:5

Define the joint perimeter of the two parts, P(Q1,Q2), to be P(Q1) UP(Q2). Since Q is a
minimal-perimeter polyomino of area n + ¢(n), we know that its perimeter size is e(n) + 4
and its border size is ¢(n), by Corollary 2.7 and Theorem 2.4, respectively. Thus, the size
of D(Q) is exactly n regardless of whether or not D(Q) is connected. Since Q1 and Q-
are the result of deflating @, the polyomino @ must have an (either horizontal, vertical,
or diagonal) “bridge” of border cells which disappeared in the deflation. The width of the
bridge is at most 2, thus, |P(Q1) N P(Q2)| < 2. Hence, |P(Q1)|+ |P(Q2)| —2 < |P(Q1,Q2)].
Since P(Q1,Q2) is a subset of B(Q), we have that |P(Q1,Q2)| < €(n). Therefore,

e(|@]) + €(|Q2) — 2 < €(n). (2)

Recall that |Q1| + |Q2] = n. It is easy to observe
that €(|Q1|) + €(|Q2]) is minimized when |Q1] = 1 and 20 0000%0®
|Q2] = n—1 (or vice versa). Had the function e(n) (shown e%%°
in Figure 6) been 2+ +/8n — 4 (without rounding up), this \§/ 107 o
would be obvious. But since e(n) = [2+/8n — 4], it 8
is a step function (with an infinite number of intervals), 0
where the gap between all successive steps is exactly 1,
except the gap between the two leftmost steps which is 2.
This guarantees that despite the rounding, the minimum Figure 6 Values of €(n).
of €(|Q1]) + €(|Q2|) occurs as claimed. Substituting this into Equation (2), and using the fact
that (1) = 4, we see that e(n —1) 42 < €(n). However, we know [12] that ¢(n) —e(n—1) <1
for n > 3, which is a contradiction. Thus, D(Q) cannot split into two parts unless it splits
into two singleton cells, which is indeed the case for a minimal-perimeter polyomino of size 8.
The same method can be used to show that D(Q) cannot be composed of more then
two parts. Note that this proof does not hold for polyominoes of area which is not of the
form n + €(n), but it suffices for the proof of Theorem 2.10 below. <

» Lemma 2.9. Let Qq, Q2 be two different minimal-perimeter polyominoes. Then, regardless
of whether or not Q1, Q2 have the same area, I(Q1) and 1(Q2) are different as well.

Proof. Assume to the contrary that @ = I(Q1) = I(Q2). By definition, this means that
Q=Q1UP(Q1) = Q2UP(Q2). Furthermore, since Q1 # @2, and since a cell can belong to
either a polyomino or to its perimeter, but not to both, it must be that P(Q1) # P(Q2). The
border of @ is a subset of both P(Q1) and P(Q2), that is, B(Q) C P(Q1) N P(Q2). Since

P(Q1) # P(Q2), we have that either |B(Q)| < |P(Q1)] or |B(Q)| < |P(Q2)|; assume w.l.o.g.

the former case. Now consider the polyomino D(Q). Its area is |Q] — |B(Q)|. The area of Q
is |Q1] + |P(Q1)], thus, |D(Q)| > |Q1], and since the perimeter of D(Q) is a subset of the
border of @, we conclude that |P(D(Q))| < |P(Q1)|. However, @, is a minimal-perimeter
polyomino, which is a contradiction to e(n) being monotone increasing. |

» Theorem 2.10. (Chain Theorem) Let M,, be the set of minimal-perimeter polyominoes of
area n. Then, for n > 3, we have that |M,| = |Mn+€(n)f,

Proof. By Theorem 2.6, if Q € M,,, then I(Q) € M, ), and hence, by Lemma 2.9, we
have that |M,| < ’Mn+6(n)‘. Let us now show the opposite relation, namely, that |M,| >
|Mn+€(n) | The combination of the two relations will imply the claim.

Let I(M,) ={I(Q) | Q € M,}. For Q € M, (), our goal is to show that Q € I(M,).

Since Q € My 4c(n), we have by Corollary 2.7 that |P(Q)| = e(n) + 4. Moreover, by
Theorem 2.4, we have that |B(Q)| = €(n), thus, |D(Q)| = n and |P(D(Q))| > €(n). Since the
perimeter of D(Q) is a subset of the border of @, and |B(Q)| = e(n), we conclude that the
perimeter of D(Q) and the border of @ are the same set of cells. Thus, I(D(Q)) = Q. Since
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(@) (b) (c) (d) (e) (") () (h)

Figure 7 A demonstration of Theorem 2.10.

|P(D(Q))| = €(n), we have that D(Q) is a minimal-perimeter polyomino, thus, @ € I(M,,)
as required. Hence, M, ¢ () € I(M,), implying that | M, cm)| < [I(My)| = |M,].

Figure 7 shows, for example, all minimal-perimeter polyominoes of area 7. When they
are inflated, they become the entire set of minimal-perimeter polyominoes of area 17. |

» Corollary 2.11. Forn > 3 and any k € N, we have that |M,,| = ’Mn+ke(n)+2k(k_1)’,
Proof. The claim follows from applying Theorem 2.10 repeatedly on M,,. <

3  Future work

We have shown that inflating a set of minimal-perimeter polyominoes of a certain area
creates a new set, of the same cardinality, of minimal-perimeter polyominoes of some other
area. This creates chains of sets of minimal-perimeter polyominoes of the same area. In the
future we would like to characterize the roots of these chains and to determine how many
minimal-perimeter polyominoes the sets of each chain contains.
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—— Abstract

We revisit the classical polygonal line simplification problem and study it using the Hausdorff
distance and Fréchet distance. We use these measures in its pure form, namely: for a given € > 0,
choose a minimum size subsequence of the vertices of the input such that the Hausdorff or Fréchet

distance between the input and output polylines is at most €.

We analyze how the Douglas-Peucker and Imai-Iri simplification algorithms perform compared
to the optimum possible. We prove that it is NP-hard to compute the optimal simplification
under (undirected) Hausdorff distance. Under the Fréchet distance, the optimal simplification
of a polygonal line consisting of n vertices can be computed in O(kn®) time and O(kn?) space,
where k is the output complexity of the simplification.

1 Introduction

Line simplification (a.k.a. polygonal approximation) is one of the oldest and best studied
applied topics in computational geometry. A simplification should have a similar shape as the
input, and hence we need a similarity or distance measure to specify when a simplification is
acceptable. The Hausdorff distance and the Fréchet distance are probably the best known
distance measures used for shape similarity in computational geometry.

Among the well-known simplification algorithms, the ones by Douglas and Peucker [4]
and by Imai and Iri [7] are frequently implemented and cited. For a given constant € > 0,
both algorithms start with a polygonal line (henceforth polyline) as an input, specified by
a sequence of points (p1,...,pn), and compute a subsequence starting with p; and ending
with p,, representing a simplified polyline which is within a distance of ¢ from the input.

The Douglas-Peucker algorithm [4] is a simple procedure that starts with a simplification
D1Pn, determines the furthest vertex py, and if it is further than &, adds pj to the simplification.
This gives two subproblems with p1p; and pgp, that are solved recursively in the same way
and then merged. Hershberger and Snoeyink [6] provide an O(n logn) time implementation of
this algorithm. The Imai-Iri algorithm [7] takes a different approach. It determines for every
link pip; (i < j) if it lies within distance € from the vertices p;y1, ..., pj—1 and if so, deems it
valid. The graph G with all vertices py, ..., p, as nodes and all valid links as edges can then
be constructed, and a minimum link path from p; to p, represents an optimal simplification.
By the implementation of Chan and Chin [3], this algorithm runs in O(n?) time.

The Imai-Iri algorithm is considered an optimal line simplification algorithm, because it
minimizes the number of vertices in the output. It also guarantees the Hausdorff distance
between the input and the simplification of at most €. However, the simplification is not
optimal for the Hausdorff distance, because there are simple examples where a simplification
with fewer vertices have the Hausdorff distance at most € to the input. This comes from the
fact that the algorithm uses the Hausdorff distance between a link D;p; and the sub-polyline
(pi,-..,pj), and not an overall Hausdorff distance.
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Figure 1 The Douglas-Peucker and Imai-Iri algorithms do not simplify the inputs for the Hausdorff
distance (left) or the Fréchet distance (right). The optimal simplifications are shown dotted in blue.

Note that we can easily adapt the Imai-Iri algorithm to guarantee the Fréchet distance of
at most e: we deem a link p;p; valid if its Fréchet distance to the sub-polyline (p;,...,p;)
is at most ¢ [1]. This simple variation of the Imai-Iri algorithm does not yield the optimal
simplification within the Fréchet distance of €, because it requires us to match a vertex p; in
the input to the vertex p; in the output in the parametrizations, if p; is used in the output.
This restriction on the parametrizations limits the simplification in undesirable ways.

The examples in Figure 1 show that under the Hausdorff distance (left) and Fréchet
distance (right) the Douglas-Peucker and Imai-Iri simplifications are both equal to P itself
and may use more vertices than an optimal simplification using these measures.

The discussion begs the following questions: How much worse do the known algorithms
and their variations perform in theory, when compared to the optimal Hausdorff and Fréchet
simplifications? What if the optimal Hausdorff and Fréchet simplifications use a smaller value
than €? How efficiently can the optimal Hausdorff simplification and the optimal Fréchet
simplification be computed (when using the input vertices)?

Organization and results. In Section 2 we show that the optimal simplification has fewer
vertices than the Imai-Iri output, both under the Hausdorff and the Fréchet distance (we
ignore the Douglas-Peucker method from now on because it never yields fewer vertices than
the Tmai-Iri method). In particular, we analyze how much worse the output of the Imai-Iri
algorithm can be for the two measures. In Section 3 we show that the optimal simplification
under the undirected Hausdorff distance is NP-hard to compute. In Section 4 we show that
simplification can be done optimally in polynomial time for the Fréchet distance.

2 Approximation Quality of Imai-Iri Simplification

We denote the simplification by the Imai-Iri algorithm under the Hausdorff distance as
ITg (P, e), and will leave out the arguments P and/or ¢ if they are understood. We refer to
the simplification from the adapted Imai-Iri algorithm using the Fréchet distance as IIr (P, ¢).
We denote the optimal simplification using the Hausdorff distance by OPTy (P, ), and using
the Fréchet distance by OPTr(P,¢). The example in Figure 1 shows that to let Iy use as
few vertices as OPTy, we must use 2¢ instead of € when the example is stretched horizontally.
For the Fréchet distance, the enlargement factor needed in the example approaches /2 if we
put p; far to the left. In this section we analyze how the approximation enlargement factor
relates to the number of vertices in the Imai-Iri simplification and the optimal ones.

Hausdorff Distance To show that /Iy may use many more vertices than OPTy, even if
we enlarge €, we give a construction where this occurs in Figure 2 that applies for both the
directed and undirected Hausdorff distance.
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Figure 2 The Imai-Iri algorithm may not be able to simplify (p1,...,pn) at all. The optimal
Hausdorff simplification (dotted, blue) has three vertices. Right, an example input with 11 vertices.

P p2 p3 pa P

Figure 3 The optimal simplification can skip p2 and ps; in the parametrizations witnessing the
Fréchet distance, OPTF “stays two vertices behind” on the input until the end. Right, the free
space diagram of P and OPTF.

An optimal simplification is (p1, p;, pn) Where i is any even number between 1 and n.

Since the only valid links are the ones connecting two consecutive vertices of P, Ily is P
itself. If the triangle is large enough with respect to e, this remains true even if we give the
Imai-Iri algorithm a much larger error threshold than €.

» Theorem 2.1. For any c > 1, there exists a polyline P with n vertices and an € > 0 such
that ITg (P, ce) has n vertices and OPTy (P, €) has 3 vertices.

Fréchet Distance We give another input polyline P in Figure 3 to show that ITp does

not approximate OPTf even if Il is allowed to use € that is larger by a constant factor.

Our main construction has ten vertices placed in such a way that IIr has all ten vertices,
while OPTF has only eight of them, see Figures 3. We can append multiple copies of this
construction together with a suitable connection in between. We obtain:

» Theorem 2.2. There exist constants ¢; > 1, co > 1, a polyline P with n vertices, and an
€ > 0 such that |IIp(P, ci€)| > c2| OPTr (P, €)|.

By a result of Agarwal et al. [1], we know that the theorem is not true for ¢; > 4.

3 Algorithmic Complexity of Optimal Simplification using the
Hausdorff Distance

The results in the previous section lead us to the following question: Is it possible to compute
the optimal Hausdorff or Fréchet simplification in polynomial time?

We first consider the undirected (or bidirectional) Hausdorff distance; that is, we require
both the maximum distance from the initial polyline P to the simplified polyline @} and the
maximum distance from @ to P to be at most ¢.

EuroCG’'18
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Figure 4 The construction: A is the arrangement of a set of segments S. We build an input path
P that “paints” over S completely, and we are looking for an output path @ that corresponds to a
Hamiltonian cycle. In this case, there is no Hamiltonian cycle, and the path gets stuck.

» Theorem 3.1. Given a polyline P = (p1,pa, . ..,pn) and a value £, the problem of computing
a minimum length polyline Q defined by a subsequence of the vertices of P such that the
undirected Hausdorff distance between P and Q is at most € is NP-hard.

Our proof uses a reduction from Hamiltonian cycle in segment intersection graphs. Since
deciding if a Hamiltonian cycle exists is NP-complete in planar graphs [5], and planar graphs
are included in segment intersections graphs [2], it follows that Hamiltonian cycle in segment
intersections graphs is NP-complete. Let S be a set of n line segments in R?, and assume
all intersections are proper (if not, extend the segments slightly). Let G be its intersection
graph. Assume that G is connected; otherwise, there is no Hamiltonian cycle in G.

We first construct an initial polyline P as follows (see Figure 4). Let A be the arrangement
of S, let p be some endpoint of a segment in S, and let m be any path on A that starts
and finishes at p and visits all vertices and edges of A. Then P is simply 3n + 1 copies of
7w appended to each other. We now set ¢ to a sufficiently small value. Then, an output
polyline @ with Hausdorff distance at most £ to P must also visit all vertices and edges of A,
and stay close to A. If ¢ is sufficiently small, there will be no benefit for @ to ever leave A.

» Lemma 3.2. A solution Q of length 3n + 1 exists iff G admits a Hamiltonian cycle.

Proof. Clearly, any simplification @ will need to visit the 2n endpoints of the segments in 5,
and—since it starts and ends at the same point p—will need to have length at least 2n + 1.
Furthermore, @ will need to have at least two internal vertices on every segment s € S: once
to enter and once to leave the segment (we cannot enter or leave a segment at an endpoint
since all intersections are proper intersections). This means the theoretical minimum number
of vertices possible for @ is 3n + 1.

Now, if G admits a Hamiltonian cycle, it is easy to construct a simplification with 3n + 1
vertices. We start at p, an endpoint of the segment s1, and collect the other endpoint. Then
we follow the Hamiltonian cycle to segment ss; by definition s1s5 is an edge in G so their
corresponding segments intersect, and we use the intersection point to leave s; and enter sa.
We proceed in this fashion until we reach s,,, which intersects s1, and finally return to p.

On the other hand, any solution with 3n 4 1 vertices must necessarily be of this form and
therefore imply a Hamiltonian cycle: in order to have only 3 vertices per segment the vertex
at which we leave s; must coincide with the vertex at which we enter some other segment,
which we call s, and we must continue until we visited all segments and return to p. |

For completeness, we also state the results for simplification using the directed Hausdorff
distance, in both directions. If we require the distance from the input to the simplification
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to be at most €, then an optimal simplification using the (directed) Hausdorff distance is
NP-hard to compute. However, if we require the distance from the simplification to the input
to be at most €, an optimal simplification can be computed in polynomial time. We give the
proofs in the full paper.

4 Algorithmic Complexity of Optimal Simplification using the
Fréchet Distance

In this section, we show that for a given polyline P = (p1,p2,...,pn) and an error ¢, the
optimal simplification @ = OPTg(P, ) can be computed in polynomial time using a dynamic
programming approach. First, we define 7, a parameterization of P as a continuous mapping:
7 :[0,1] = R? where 7(0) = p; and (1) = p,. We also write P[s,¢] for 0 < s <t <1 to be
the subcurve of P starting at m(s) and ending at «(¢), also writing P[¢] = P|0,¢] for short.

For the dynamic programming approach to work, we might imagine to store, for each
vertex p; and value k, the point 7(«) which is the farthest along P such that a simplification of
(p1, ..., pi) using k links has Fréchet distance at most € to P[«]. However, this is not sufficient
to ensure that we find an optimal solution (see the full paper for details). Instead, we argue
that if we maintain the set of all points at P that can be “reached” by a simplification up to
each vertex, then we can make dynamic programming work. We now make this precise and
argue that the complexity of these sets of reachable points is never worse than linear.

We say that a point mw(t) can be reached by a (k,4)-simplification for 0 < k < i < n if
there exists a simplification of (p1,...,p;) using k links which has Fréchet distance at most
€ to P[t]. We let p(k,i,t) = true in this case, and false otherwise. With slight abuse of
notation we also say that ¢ itself is reachable, and that an interval I is reachable if all ¢t € T
are reachable (by a (k,)-simplification).

» Observation 4.1. A point 7(t) can be reached by a (k,1)-simplification if and only if there
exist a 0 < h <i and a 0 < s <t such that 7(s) can be reached by a (k — 1, h)-simplification
and the segment pnp; has Fréchet distance at most € to P[s,t].

Proof. Follows directly from the definition of the Fréchet distance. |

Observation 4.1 immediately suggests a dynamic programming algorithm: for every k
and 7 we store a subdivision of [0, 1] into intervals where p is true and intervals where p is
false, and we calculate them for increasing values of k. We simply iterate over all possible
values of h, calculate which intervals can be reached using a simplification via h, and then
take the union over all those intervals. For this, the only unclear part is how to calculate
these intervals. We argue that, for any given k£ and i, there are at most n — 1 reachable
intervals on [0, 1], each contained in an edge of P. Indeed, every (k,¢)-reachable point (¢)
must have distance at most € to p;, and since the edge e of P that w(t) lies on intersects
the disk of radius ¢ centered at p; in a line segment, every point on this segment is also
(k,i)-reachable. We denote the farthest point on e which is (k,)-reachable by £.

Furthermore, we argue that for each edge of P, we only need to take the farthest reachable
point into account during our dynamic programming algorithm.

» Lemma 4.2. Ifk, h, i, s, and t exist such that p(k — 1, h,s) = p(k,i,t) = true, and Prp;
has Fréchet distance < ¢ to P[s,t], then Dpp; also has Fréchet distance < e to P[3,1].

Proof. By the above argument, PJ[s, §] is a line segment that lies completely within distance
¢ from py,, and P[t,#] is a line segment that lies completely within distance € from p;.

EuroCG’'18
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We are given that the Fréchet distance between ppp; and P(s, t] is at most ¢; this means
a mapping f : [s,t] — Dpp; exists such that |w(x) — f(z)] < e. Let ¢ = f(s’). Then
Ipr, — 7(8)| < e and |q — w(8)] < &, so the line segment Prq lies fully within distance e from §.
Therefore, we can define a new e-Fréchet mapping between P [&ﬂ and ppp; which maps
3 to the segment Prq, the curve P[3,t] to the segment gp; (following the mapping given by

f), and the segment 7(t)m(f) to the point p;. <

Now, we can compute the optimal simplification by maintaining a k x n x n table storing
p(k,i,%), and calculate each value by looking up n? values for the previous value of k, and
testing in linear time for each combination whether the Fréchet distance between the new
link and P[3,#] is within € or not.

» Theorem 4.3. Given a polyline P = (p1,...,pn) and a value €, we can compute the optimal
polyline simplification of P that has Fréchet distance at most € to P in O(kn®) time and
O(kn?) space, where k is the output complexity of the optimal simplification.

5 Future Work

A number of challenging open problems remain. First, we would like to know whether
the problem of computing an optimal simplification using the Hausdorff distance remains
NP-hard when the simplification may not have self-intersections. Second, we are interested
in the computational status of the optimal simplification when the simplification need not
use the vertices of the input. Finally, we may consider optimal polyline simplifications using
the weak Fréchet distance.
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—— Abstract

The Fréchet distance is a popular distance measure for curves which naturally lends itself to

fundamental computational tasks, such as clustering, nearest-neighbor searching, and spherical
range searching in the corresponding metric space. However, its inherent complexity poses con-
siderable computational challenges in practice. To address this problem we study distortion of
the probabilistic embedding that results from projecting the curves to a randomly chosen line.
Such an embedding could be used in combination with, e.g. locality-sensitive hashing. We show
that in the worst case and under reasonable assumptions, the discrete Fréchet distance between
two polygonal curves in R? or R of complexity t degrades by a factor linear in ¢ with constant
probability. We show upper and lower bounds on the distortion.

1 Introduction

The Fréchet distance is a distance measure for curves which naturally lends itself to funda-
mental computational tasks, such as clustering, nearest-neighbor searching, and spherical
range searching in the corresponding metric space. However, their inherent complexity
poses considerable computational challenges in practice. Indeed, spherical range searching
under the Fréchet distance was recently the topic of the yearly ACM SIGSPATIAL GISCUP
competition!, highlighting the relevance and the difficulty of designing efficient data struc-
tures for this problem. At the same time, Afshani and Driemel show lower bounds on the
space-query-tradeoff in the pointer model [1] that demonstrate that this problem is even
harder than simplex-range searching.

The computational complexity of computing a single Fréchet distance between two given
curves is a well-studied topic [2,6-9,12,15]. It is believed that it takes time that is quadratic
in the length of the curves and this running time can be achieved by applying dynamic
programming. In this body of literature, the case of 1-dimensional curves under the continuous
Fréchet distance stands out. In particular, no lower bounds are known on computing the
continuous Fréchet distance between 1-dimensional curves. It has been observed that the
problem has a special structure in this case [10]. Clustering under the Fréchet distance can
be done efficiently for 1-dimensional curves [13], but seems to be harder for curves in the
plane or higher dimensions. Bringmann and Kiinnemann use projections to lines to speed
up their approximation algorithm for the Fréchet distance [8]. They show that the distance
computation can be done in linear time, if the convex hulls of the two curves are disjoint.
It is tempting to believe that the curves being restricted to 1-dimensional space makes the

* Driemel has been supported by NWO Veni project “Clustering time series and trajectories (10019853)”.
Krivosija has been partly supported by DFG within the Collaborative Research Center SFB 876
“Providing Information by Resource-Constrained Analysis”, project A2.
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problem significantly easier. However, in the general case, there are no algorithms known
which are faster for 1-dimensional curves than for curves in higher dimensions. In practice, it
is very common to separate x and y components of trajectories to simplify computational
tasks. It seems that in practice the inherent character of a trajectory is often largely preserved
when restricted to one of the coordinates of the ambient space. Mathematically, this amounts
to projecting the trajectory to a line.

This motivates our study of probabilistic embeddings of the Fréchet distance into the space
of 1-dimensional curves. Concretely, we study distortion of the probabilistic embedding that
results from projecting the curves to a randomly chosen line. Such a random projection could
be used in combination with probabilistic data structures, e.g. locality-sensitive hashing [14],
but also with the multi-level data structures for Fréchet range searching given by Afshani
and Driemel [1]. See below for a more in-depth discussion of these data structures.

We show that in the worst case and under certain assumptions, the discrete Fréchet
distance between two polygonal curves in IR? or R® of complexity ¢ degrades by a factor
linear in ¢ with constant probability. In particular, we show upper and lower bounds on
the change in distance for the class of c-packed curves. The notion of the c-packed curves
was introduced by Driemel, Har-Peled and Wenk in [12] and has proved useful as a realistic
input assumption [3,6,11]. A curve is called c-packed for a value ¢ > 0 if the length of the
intersection of the curve with any ball of any radius 7 is a most ¢r. While our study is mostly
restricted to the discrete Fréchet distance, we expect that our techniques can be extended to
the case of the continuous Fréchet distance.

A closely related distance measure, which is popular in the field of data-mining, is dynamic
time warping (DTW). The computational complexity of DTW has also been extensively
studied, both empirically and in theory [3,16]. Some of our lower bounds extend to DTW.

1.1 Related work

The work that is perhaps closest to ours is a recent result by Backurs and Sidiropoulos [4].
They gave an embedding of the Hausdorff distance into constant-dimensional /., space
with constant distortion. More precisely, for any s,d > 1, they obtain an embedding for
the Hausdorff distance over point sets of size s in d-dimensional space, into E‘;: Y with
O(st+d)  No such metric embeddings are known for the discrete or continuous
Fréchet distance. It has been shown that the doubling dimension of the Fréchet distance
is unbounded, even in the case when the metric spaces is restricted to curves of constant
complexity [13]. A result of Bartal et al. [5] for doubling spaces implies that a metric
embedding of the Fréchet distance into an £, space would have at least super-constant
distortion, but it is not known how to find such an embedding.

The complexity of classic data structuring problems for the Fréchet distance is still not very

distortion s

well-understood, despite several papers on the topic. We review what is known for nearest-
neighbor searching and range searching. Indyk [17] gave a deterministic and approximate
near-neighbor data structure for the discrete Fréchet distance. Given n curves which have at
most ¢ vertices, this data structure achieves approximation factor O(logt + loglogn) and
has query time O(poly(t)logn). This data structure requires large space, as it precomputes
all queries with curves with v/t vertices. For short curves (with ¢ € O(logn)) Driemel and
Silvestri [14] described an approximate near-neighbor structure based on locality-sensitive
hashing with approximation factor O(¢), query time O(tlogn), using space O(nlogn + tn).
LSH is a technique that uses families of hash functions with the property that near points are
more likely to be hashed to the same index than far points. Driemel and Silvestri were the
first to define locality-sensitive hash functions for the discrete Fréchet distance. No such hash
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functions are known for the continuous case. It is conceivable that the concept of signatures
which was introduced by Driemel, Krivosija and Sohler [13] in the context of clustering of
1-dimensional curves could be used to define an LSH for the continuous case and that this
technique could be used in combination with projections to random lines.

Afshani and Driemel recently showed how to leverage semi-algebraic range searching
for this problem [1]. Their data structure also supports polygonal curves of low com-
plexity and answers queries exactly. In particular, for the discrete Fréchet distance they
describe a data structure which uses space in O(n(log log n)ts_l) and achieves query time
in O(nlfl/d . logo(ts) n- tqo(d)), where ts denotes the complexity of an input curve and it is
assumed that the complexity of the query curves is upper-bounded by a polynomial of logn.
For the continuous Fréchet distance they describe a data structure for polygonal curves in the
plane which uses space in O (n(log log n)o(ti)) and achieves query time in O(\/ﬁlogo(tg) n)
For the case where the curves lie in dimension higher than 2 and the distance measure is the

continuous Fréchet distance, no data structures for range searching or range counting are
known.

1.2 Our results

Given two polygonal curves P and @ with ¢ vertices each from R? or R?. Consider sampling
a unit vector u in R? (resp. R? if the curves lie in R?) uniformly at random and let P’ and
Q' be the projections of the two curves to the line supporting u. We show that if the curves
P and Q are c-packed for constant ¢, then, with constant probability, the discrete Fréchet
distance between the curves P and () degrades by at most a linear factor in .

» Theorem 1.1. For any two polygonal curves P and @ and for any v € (0,1)

dr(P,Q) _ 12c+16
P ’”[dF(P',Qw s

We also present a lower bound on the ratio of the two distances. The construction of the

t] >1—n.

lower bound uses c-packed curves with ¢ < 3.

» Theorem 1.2. There exist polygonal curves P and Q, such that for any v € (0,1/7)

Pr dF(P7Q) Z 57(7

dr (P, Q") 6
Theorem 1.2 holds for the continuous Fréchet distance and for dynamic time warping
distance as well. We also show that there exist polygonal curves P and () that are not

c-packed for sublinear ¢ and their (continuous or discrete) Fréchet distance degrades by a
linear factor for any projection line (i.e. with probability 1).

421—1

2 Preliminaries

Throughout the paper we use the following notational conventions. Consider two polygonal
curves P = {p1,p2,...,p:} and Q = {q1, g2, - - -, q:} in R? given by their sequences of vertices.
We choose a unit vector u in R? by choosing a point on the (d — 1)-dimensional unit
hypersphere uniformly at random. We denote with L the line through the origin that
supports the vector u. Let P’ = {p},ph,...,p;} and Q" = {q}, ¢, ..., q,} be the projections
of P and @ to L, defined by p} = (p;,u) and ¢; = (g;,u), forall 1 <i<tand 1 <j <t
We denote d; ; = |lg; — pill and 6; ; = [|¢} — p;l|, forall 1 <i <tand 1 <j <t ie. d;; and

EuroCG’'18
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6§7j are the pairwise distances of the vertices for the input curves P and @ and for their
respective projections P’ and Q.
We define the discrete Fréchet distance of P and @ as follows: we call the traversal T of
P and @ the sequence of pairs of indices (7, 7) of vertices (p;,q;) € P x @ such that
i) the traversal T starts with (1,1) and ends with (¢,t), and
ii) the pair (¢,7) of T can be followed only by one of (i +1,5), (¢, +1) or (i + 1,5+ 1).
We notice that every traversal is monotone. If 7 is the set of all traversals T of P and @,
then the discrete Fréchet distance between P and () is defined as
dr(P,Q) = mi ; — qill- 1
F(PQ) = min max [|pi — g 1)

Furthermore, we define a directed, vertex-weighted graph G = (V, E) on the node set
V ={(4,j) : 1 <4,j <t}. Anode (i,j) corresponds to a pair of vertices p; of P and g; of
@ and we assign it the weight d; ;. The set of edges is defined as E = {((4, j), (', j)) : ¢’ €
{i,i+1},7 ={4,7+1},1<4,i,j,57 <t}. The set of paths in the graph G between (1, 1)
and (n,n) corresponds to the set of traversals 7. We call a path in G which does not start
in (1,1) or end in (¢,t) a partial traversal of P and Q.

It is useful to picture the nodes of the graph G as a matrix, where rows correspond to
the vertices of P and columns correspond to the vertices of Q). For any fixed value A > 0,
we define the free-space matrix? Fa = (¢; ), <ij<i With
b = 1if flg; —pil < A

1‘7 - .
Too il -l > A

Overlaying the graph with the free-space matrix for A > dp(P, @), we can observe that
there exists a path in the graph from (1,1) to (¢,t) that visits only the matrix entries with
value 1. Moreover, the existence of such a path in the free-space matrix for some value of A
implies that A > dp(P, Q).

We define c-packedness of curves as follows.

» Definition 2.1 (c-packed curve). Given ¢ > 0, a curve P € R? is c-packed if for any point
p € R? and any radius r > 0, the total length of the curve P inside the hypersphere ball(p,r)
is at most c - 7.

We prove the following basic fact about random projections to a line. For a general
problem in R? the probability bound degrades due to the measure concentration around 7 /2.

» Lemma 2.2. [f the line segment pq is projected to the straight line L, supported by the
unit vector chosen uniformly at random on the unit hypersphere in R% or R3, the probability
that its length will be reduced by a factor greater than ¢ is at most .

3 Upper bound

The discrete Fréchet distance between curves P and @) is realized by some pair (p;,¢;) of
vertices p; € P and ¢; € @, being at the distance ||p; — ¢;|| = 6. We would like to apply
Lemma 2.2 to this pair of vertices to show that the distance is preserved up to some constant
factor. However, it is possible that the pairwise distances in the projection are such that a

2 Note that the conventional definition of the free-space matrix for parameter A is slightly different, since
usually there is an l-entry iff ||g; — p;|| < A. We are using this definition since it better suits our needs.
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cheaper traversal is possible that avoids the pair (p;,q;) altogether. Therefore, we apply the
lemma to a subset of pairs of vertices of P and () whose distance is large (e.g. larger than
A = §/0 for some small value of § > 1) and such that the chosen set forms a hitting set for
the set of traversals 7. To this end we introduce the notion of the guarding set:

» Definition 3.1 (Guarding set). For any two polygonal curves P = {p1,...,p:} and Q =
{q1,-..,q:} and a given parameter 6 > 1, a f-guarding set B C V for P and @ is a subset of
the set of vertices of G that satisfies the following conditions:

a) (distance property) for all (4, j) € B, it holds that §; ; > dr(P, Q) /6, and

b) (guarding property) for any traversal T of P and Q, it is T'N B # (.

Note that the set B “guards” every traversal of P and @ in the sense that any path in G
from (1,1) to (¢,¢) has non-empty intersection with B. In other words, B is a hitting set for
the set of traversals 7. We can prove the following lemma using Lemma 2.2 for all elements
of B in a union bound.

» Lemma 3.2. Given parameter 0 > 1, if B is a 0-guarding set for the given curves
P={p1,...,p¢} and Q = {qu,...,q:} from R? or R3, and if P’ and Q' are their projections
to the straight line L, whose support unit vector u is chosen uniformly at random on the unit
hypersphere, then for any B > 1 it holds that

dr(P',Q’) < 1

4e(P.Q) = B-0-1B]
with positive constant probability at least 1 — 1/0.

To show existence of a #-guarding set B for any # > 1 we can construct such a set using
breadth-first-search over graph G. Unfortunately, such built set B can have a quadratic
number of elements in terms of the input size in the general case.

If the input curves P and @ are c-packed for some constant ¢, ¢ > 2, then we construct
the 1-guarding set B and modify it using the trimming operation based on Lemma 3.3. The
idea is to trim the part of the graph G reachable by a partial traversal from (1, 1) that does
not pass through any of the vertices of B. See Figure 1 for an illustration.

» Lemma 3.3. Given point p and a c-packed curve Q = {q1,...,q:} from R%. Then for any
value b > 0 there exists a value r € [b/2,b], such that the hypersphere centered at p with
radius T intersects or is tangent to at most 2¢ edges of Q).

Figure 1 The elements of a guarding set (marked with boxes) before (left) and after (right)
applying the trimming operation to the second row. The removed pairs are marked by circles

We call a pair (,7) € B avoidable if there are two traversals of P and @) which guarantee
that the pair (7, j) can be removed from the guarding set. Lemma 3.4 describes the algorithm
to obtain a 4-guarding set whose size will be at most (3¢ +4) - t.

We omit discussion of our lower bounds due to space constraints.
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» Lemma 3.4. Let B be a 1-guarding set.
(i) After the first phase of the algorithm, which removes all avoidable pairs, the modified
set B is a 1-guarding set.
(ii) After the second phase of the algorithm, which applies the trimming operation to each
row with b = dp(P,Q), the modified set B is a 2-guarding set.
(iii) After the third phase of the algorithm, which applies the trimming operation to each
column with b= dp(P,Q) /2, the modified set B is a 4-guarding set.

Acknowledgements. We want to thank Kevin Buchin for useful discussions on the topic of
this paper.
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—— Abstract

A tree is one of the most fundamental structures of graphs and has good properties on layouts,
while it is weak from a fault-tolerant point of view. Motivated by these points of view, we consider
an augmentation problem for a tree to increase fault-tolerance while preserving its good property
on book-embeddings. A k-arbor-connected graph is a graph which has k spanning trees such that
for any two vertices, the k paths between them in the & spanning trees are pairwise edge-disjoint
and internally vertex-disjoint. We show that any tree with n vertices can be augmented in O(nk)
time to a minimum k-arbor-connected graph with pagenumber k for any k at most the radius of
the tree. Our result is optimal for both the number of added edges and the number of pages for
a book-embedding of a resultant graph. Besides, we extend our augmentation for trees to cacti.

1 Introduction

Throughout the paper, a graph means a simple undirected graph. Let G = (V, E) be a
graph. An augmentation problem for a graph is to find a set E’ of pairs of non-adjacent
vertices in G such that the augmented graph G’ = (V, E' U E’) satisfies a given condition.

A book is a structure consisting of a line called the spine and half planes called pages
sharing the spine as a common boundary. A k-page book-embedding of G is defined by an
assignment of the vertices of G to distinct points on the spine, i.e., a vertex-ordering o of
V(G), and an assignment of the edges of G to pages such that no two edges assigned to the
same page cross, where two edges uv and zy cross under o if o(u) < o(z) < o(v) < o(y).
The pagenumber pn(G) of G is the minimum number of pages for a book-embedding of
G. Book-embeddings have applications to VLSI layouts and there are many results on
the subject until now (e.g., see [1,2,4]). In particular, one of the most famous results on
book-embeddings is that every planar graph can be embedded in 4 pages [15].

Let T1,T5,...,T; be spanning trees in G. If for any two vertices of G, the k paths
between them in Ti,75,...,T; are pairwise edge-disjoint and internally vertex disjoint,
then 11,75, ..., Ty are completely independent spanning trees in G. Completely independent
spanning trees can be applied to fault-tolerant communication problems, e.g., fault-tolerant
broadcasting problems, since by deleting any k — 1 vertices, at least one of the k completely
independent spanning trees keeps its connectedness. We define the arbor-connectivity of G
as the maximum number 7(G) of completely independent spanning trees in G, and G is
k-arbor-connected if T(G) > k. So far, arbor-connectedness of graphs has been studied for
graph classes related to interconnection networks (e.g., see [3,5,12]). It has also been shown
that every maximal 4-connected planar graph is 2-arbor-connected [7], and G is | % |-arbor-
connected if the minimum degree of G is at least n — k where 3 < k < % [8]. Although
any k-arbor-connected graph is k-vertex-connected, it has been proved [13] that there is
no direct relationship between the vertex-connectivity and the arbor-connectivity; for any
k > 2, there exists a k-vertex-connected graph G with 7(G) = 1. From an algorithmic
point of view, it has been shown that the problem of deciding whether a given graph is
2-arbor-connected is NP-complete [7].
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A tree is one of the most fundamental structures of graphs and has good properties
on layouts, e.g., the pagenumber of a tree is one. On the other hand, a tree is weak
from a fault-tolerant point of view since it can be disconnected by deleting only one vertex.
Motivated by these points of view, we consider an augmentation problem for a tree to increase
fault-tolerance while preserving its good property on book-embeddings. On connectivity
augmentation of graphs with geometric constraints, there are many results until now (see [9]).
In particular, Kant and Bodlaender [10] have shown that the planarity-preserving minimum
2-vertex-connectivity augmentation problem is NP-hard, and Rutter and Wolff [14] have
proved that the corresponding 2-edge-connectivity version is also NP-hard.

In this paper, we show that any tree T can be augmented in O(nk) time to a minimum
k-arbor-connected graph 7™ which can be embedded in k pages for any k at most the radius
of T. Every graph with n vertices and m edges needs at least [7=2] pages for its book-
embedding, which follows from the fact that a graph with pagenumber one is outerplanar [2].
This means that any k-arbor-connected graph cannot be embedded in k — 1 pages, i.e., the
pagenumber of T™ is determined to be k. Thus, our augmentation result is optimal for both
the number of added edges and the number of pages for a book-embedding of a resultant
augmented graph. Our augmented graph T* also has a property that 7™ is decomposed into
completely independent spanning trees 717,75, ..., Ty such that each T; can be embedded in
one page under the same vertex-ordering. Besides, we extend our augmentation for trees to
cacti and present an augmentation result for cycles.

2 Preliminaries

Given a set F of edges, the graph induced by F is denoted by (F), i.e., V((F)) = {u | uv € F}
and E((F)) = F. The distance dg(u,v) of vertices u and v in a connected graph G is the
length of a shortest path between w and v. The eccentricity eq(w) of a vertex w in G is
max,cv(q) da(w,v). The diameter diam(G) of G is max,,ev(g) eq(w) and the radius rad(G)
of G'is min,ecy(q)ea(w). A central vertex of G is a vertex v with eg(v) = rad(G). The
center of G is the set of central vertices of G. Let T be a tree rooted at a vertex r. The
l-ancestor pg(v) of a vertex v in T is a vertex w which is on the path from r to v such
that dr(v,w) = €. If w is the f-ancestor of v, then v is an ¢-descendant of w. The set of
¢-descendants of w is denoted by Dy(w). The lowest common ancestor lcar(u,v) of u and v
in T is a common ancestor w of w and v in T such that there is no descendant of w which
is a common ancestor of v and v. The height h(T') of T' is max,cy (1) dr(r,v). A leaf of T
is a vertex with degree one, while an internal vertex of T is a vertex with degree greater
than one. The set of internal vertices in T' is denoted by Vi(T'). A star is a tree in which
there exists at most one internal vertex. A cut-vertez of G is a vertex v such that the graph
obtained from G by deleting v is disconnected. A block of G is a maximal subgraph of G
without a cut-vertex. A cactus is a graph whose every block is either a cycle or the complete
graph with two vertices. A cycle edge of a cactus is an edge on a cycle. A unicyclic graph G
is a graph with exactly one cycle and the cycle is denoted by C(G).

Let o be a vertex-ordering of G, i.e., a bijection from V(G) to {1,2,...,|V(G)|}. When
o(u) < o(v), we simply write u <, v. For u,v € S C V(G), if u <, v such that there is no
vertex w € S with u <, w <, v, then v and v are consecutive in S under o and we write
u<, gv. When S = V(G), we may write u<,v. In order to construct completely independent
spanning trees, we use a characterization shown in [6]; spanning trees T1,T5,...,T; in G
are completely independent if and only if E(T;) N E(T;) = 0 and V;(T;) NVi(T;) = 0 for any
1<i<j<k.
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3 Results

» Theorem 3.1. Any tree T with n vertices can be augmented to a minimum k-arbor-
connected graph with pagenumber k for any 2 < k < rad(T) in O(nk) time.

Proof. If T has two central vertices, then let = and y be the central vertices of T'. Note that
xy € E(T). Otherwise, let x be the central vertex of T and let y a vertex adjacent to x such
that y is on a path between x and a vertex v with dr(z,v) = rad(T). Let TT be the tree
obtained from 7T by adding a new vertex z, joining it to z and y, and deleting the edge xy.
In what follows, ancestors and descendants of a vertex are defined based on 7" rooted at z
unless otherwise stated. For any vertex u in 7T, T, denotes the subtree rooted at u in TF.
By the definitions of = and y, it holds that h(T,) = rad(T) > h(T}) > rad(T) — 1.

Regarding the vertex z as the root of 7', compute a depth-first-search ordering o :
V(T*) — {1,2,...,n+ 1}, where 07 (z) = 1. Then, let o : V(T) + {1,2,...,n} be the
vertex-ordering of T defined to be o(v) = o (v) — 1. Now let V; = D;y1(2) for 0 < i <
rad(7T’). Also, let Wi = U, nod k¢ Vi for each 0 < ¢ < k. We first divide E(T") — {xy} into
k subsets F1, Fs, ..., E) defined as follows: for each 1 <17 <k,

E;={vw|veW,_1, we Di(v)}

The set of added edges in our augmentation is divided into three types defined as follows:
foreach 1 <i <k,

A, = {vw | veW;,_q1, we Dj(v), 2<5< k},

B = {uw | u,v € Vi_1, u<qy,_, v, 0 H(max,cy(r,) o)) <o w < v},

B! ={wv | v=0" (max,cy,_, o(u)),

w <, o (ming ey, , o)) or o7 (max, ey (r,) o(u')) <o w}.
Note that By = {zy}. Based on these sets, we define T4, Tz, ..., Ty as T; = (E;UA,UB;UB!)
for 1 <1¢ < k. We then show that 711,75, ..., T are completely independent spanning trees
inT* =Ty UTyU---UTj such that each T; can be embedded in one page under o, which
implies that the augmented graph T* O T is a minimum k-arbor-connected graph with
pagenumber k.

The graph (E;) is a disjoint union of stars whose central vertices are in W;_;. The
augmented graph (E; U 4;) is a disjoint union of |V;_1| trees, each of which is obtained from
the stars in (E;) by joining each vertex in W;_; and all its ¢-descendants for 2 < ¢ < k.
Thus, V((E; U A;)) = V(T) — Uo<j<i—1V;. The |V;_1| subtrees are connected by the edges
uv for u <, y,_, v in B;, and moreover all the vertices in Up<;<;—1V; are joined to a vertex in
Vi—1 by other edges in B; U B]. Therefore, (E;UA;UB;UBY}) is a tree with vertex set V(T').
Note that any edge in B; U B} joins a vertex w in Uo<j<i—1V; and a vertex in V;_; which is
not a descendant of w. In each Tj, every vertex in V(T') — W;_; is directly joined to a vertex
in W;_1 which means that every vertex in V(T) — W;_; is a leaf of T; and V;(T;) C W,;_;.
Since W; N W; =0 for any 0 <i < j <k, Vi(T;) N Vi(T;) =0 for any 1 <1i < j < k. Now
assume that e = uwv € E(T;) N E(T}) for some i < j. Then, e is incident to a vertex in W;_;
and a vertex in Wj_;. If uv € B; U B, then u € V;_; and v must be in Vy where 0 < ¢ < ¢
which is a contradiction. Thus, uv € A; such that uw € Vi¢q4—1, v € Vieyj—1 for some ¢ > 0.
This means that w is an ancestor of v. However, no ancestor of v is joined to v as a leaf of
T;. Therefore, E(T;) N E(T;) = 0 for any 1 < i < j < k. Consequently, T1,T5,...,T} are
completely independent spanning trees.

The graph (E; U A;) is a disjoint union of [V;_| trees Si,S2,...,S|y,_,| such that the
vertex set of each S; corresponds to the vertex set of a subtree rooted at a vertex in V;_1.
From a property of a depth-first-search, for any subtree, the vertices in the subtree are
consecutive in V(T') under o. Thus, it can be inductively shown (on the height) that S; can
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be embedded in one page under o. All the vertices in Up<;j<;—1V; are isolated in (E; U A;)
such that no vertex in Up<j<;—1V; is placed between vertices of any subtree S;. Hence, no
crossing of edges is produced by adding the edges in B; U B} to (E; U A;). Therefore, each
T; can be embedded in one page under the same vertex-ordering o.

The vertices x and y can be computed in linear time by applying a breadth-first-search
twice. The vertex ordering o follows from o™ which is obtained by applying a depth-first-
search to T from z. In the depth-first-search, p1 (v) and o~ ! (max, ey (r,) o(u')) can also be
found for each vertex v. By a depth-first-search, V;_1, W;_1, the ordering relation <, y, ,,
o~ Y(mingev,_, o(u')), and o~ (max, ev,_, o(u’)) can be computed in O(n) time. Here, E;
and A; can be rewritten by

Ei={pi(v)v | v & {z,y},v € Wimod r},

A =A{p;j(v)v | v e V(T), pj(v) € Wi—1, 2<j <k}

For each vertex v and each 1 < j <k, p;(v) can be computed in O(k) time. Therefore, the
sets F;, A;, B;, and B; for 1 <14 < k can be computed in O(nk) time. <

When k = 2, a star is the only tree to which Theorem 3.1 cannot be applied. However,
a star can be easily augmented to a minimum 2-arbor-connected graph with pagenumber
2 as follows. Let S, be a star with vertex set {vi,vs,...,v,} such that vy is the central
vertex of S,,. We augment S,, to a wheel graph W,, by adding the edges in {v;v;41 |2 <i <
n} U{vov,}. Let By = {v1v; | 2 <i<n}U{vov,} and Es = {v;vi41 | 2 <i <n}U{viv,}.
Then, (E;) and (E») are edge-disjoint spanning trees such that V;((E1)) = {v1,v2} and
Vi({(E3)) = {vs,...,vn}. Thus, (E1) and (E») are completely independent spanning trees,
and therefore W,, is a minimum 2-arbor-connected graph. Employing the vertex-ordering o
defined as v1 <, vy <o V2 <o ... <5 Un_1, €ach (F;) can be embedded in one page under
o. Thus, we have the following corollary.

» Corollary 3.2. Any tree can be augmented to a minimum 2-arbor-connected graph with
pagenumber 2 in linear time.

It follows from Corollary 3.2 that any tree can be augmented to a minimum planar
2-arbor-connected graph in linear time, since a graph with pagenumber 2 is planar.

We here remark that in the proof of Theorem 3.1 other constructions can be employed
if we do not insist on the upper bound on k. Select a path P with |V (P)| > 3 and consider
the |V (P)| subtrees each of which is rooted at a vertex in P (instead of two subtrees Ty and
T,). Then, we can construct a minimum k-arbor-connected graph where k is at most the
maximum j such that there exist two vertices in P both of which have a (j — 1)-descendant.
In fact, we employ such a construction to prove Theorem 3.5.

Given a graph G with a vertex-ordering o of a t-page book-embedding of G, let P be
the path with V(P) = V(G) and E(P) = {o'(i)o i+ 1) | 1 <i < n,i # [2]}U
{o7' (1)~ (| %] +1)}. According to the proof of Theorem 3.1, we augment P to P*. Then,
G U P* is a k-arbor-connected graph with pagenumber at most ¢t + k. From this observation,
we have the following existential result.

» Corollary 3.3. For any graph G with n vertices and for any 2 < k < 7, there exists a
k-arbor-connected graph G* 2 G with pn(G*) < pn(G) + k.

Next, we extend Theorem 3.1 to the class of cacti.

» Theorem 3.4. Any cactus G can be augmented to a minimum k-arbor-connected graph
with pagenumber k for any [£¢ | +1 < k < rad(G) in O(nk) time, where {g is the mazimum
length of a cycle in G.
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Proof. Let = be a central vertex of G and y a vertex adjacent to x such that y is on a
path between z and a vertex v with dg(z,v) = rad(G). Let G* be the graph obtained
from G — zy by adding a new vertex z with new edges xz and yz. Besides, let TT be a
breadth-first-search tree of G* from z. For each cycle C in G, there is exactly one cycle edge
in E(C)N(E(G") — E(T")) and we denote by f(C) the cycle edge. Now let V; = D;11(2)
for 0 <i < rad(G) and Wy = U; 0q ke Vi for each 0 < ¢ < k. Consider a depth-first-search
ordering ot of the tree T" from z such that for any f(C) = acbc with ac <,+ b,

if ac € V;, then bg € V; UV, _q,

if ac <g+ v <gs+ bo, then v is either a descendant of ac or an ancestor of bo.

Define o as o(v) = o7 (v) — 1 for any v € V(G). Similarly to the proof of Theorem 3.1, we
define E;, A;, B;, B and then let T; = (E; U A; U B; U BY) for 1 <14 < k. Consider a cycle
edge f(C) = acbe with ac <, be. If ac € V; where i < k, then the cycle edge is used in
T; since f(C) € Uy<;<xB; from the properties of 0. Note that if zy is on a cycle C”, then
f(C") € Ui<i<kB;. Suppose that ac € Viy; where t > 1 and 0 < ¢ < k. Let r¢ be the k-
ancestor of ac. Since k > L%Gj +1, the subtree rooted at r¢ contains the vertex lca(ac, be).
Let M(C) = {w| o~ (max,cy (1, ) 0(v)) <¢ w <o b} Note that {rcw |w € M(C)} C A;.
Replace E(T;) with (E(T;) — {rcw | w € M(C)}) U{acw | we M(C)}. Let 17,1y, ..., T},
be the spanning trees obtained by doing the modification for each cycle edge f(C). Since
any edge in {acw | w € M(C)} is not used in Ty UTo U- - - UTy, the resultant spanning trees
are completely independent spanning trees such that their union contains G. Besides, from
the second property of o, each T/ can be embedded in one page under o.

It has been shown in [11] that the center of a cactus can be found in linear time. Thus, x
(and also y) can be found in linear time. By applying a breadth-first-search to G* from z, we
can find f(C) for each cycle C and label the end-vertices so that dg+(z,ac) > dg+(2,bc).
Besides, we can find lca(ac, be) and recognize all the edges of C'in O(k) time. Let ay, (resp.,
be.) be the vertex adjacent to lca(ac, be) on the path from lca(ac, be) to ac (resp., be). We
then apply a depth-first-search in which for each cycle C, each edge p;1(v)v on the path from
ac to ac is traversed as the last edge in {p1(v)w | w € Di(p1(v))} for the search of T}, and
just after the search of Tafc , the traversal proceeds through the path from b}, to bc. This
depth-first-search generates o satisfying the above two properties in O(n) time. For each
cycle edge f(C), the corresponding modification can be done in O(k) time and the number
of cycle edges is at most |51 |. Therefore, we can obtain a minimum k-arbor-connected
graph containing G with pagenumber k in O(nk) time. <

Although Theorem 3.4 cannot be applied to cycles, we can show the following result.

» Theorem 3.5. Any cycle C with n vertices can be augmented to a minimum k-arbor-
connected graph with pagenumber k for any 2 <k < 3.

Proof. Let T be the path obtained from C by deleting one edge ab of C. Suppose that n
is even. Let x and y be the central vertices of T'. Construct a minimum k-arbor-connected
graph T™ according to the construction in the proof of Theorem 3.1. Let ¢ = ”772 mod k.
Let Vy, = {d’,b'} such that dr(a,a’) = dr(b,V') < 5. If ¢ # 0, then by replacing the edges in
Byy1 U By, with the edges in {p;(t)a | 1 < j <q}U{p;(a’)b|1<j < q}U{ab} in Ty,
we obtain a desired graph. Suppose that ¢ = 0 and z'z, zy,yy’ € E(T). Define T, as the
tree obtained from T by deleting the edges z’x, zy, yy’ and adding the new vertex z with the
edges z2', zx, 2y, zy'. Based on T, instead of T in the proof of Theorem 3.1, we construct
T1,Ts, ..., T} under the condition =’ <, z <, y <, y'. Note that in this construction, Vy =
{z',2,y,y'}, B1 = {2z, zy,yy’'} and a,b € Wj_;. By modifying T}, in a similar fashion for
T,+1 in the case that ¢ # 0, we have a desired graph. Suppose that n is odd and z is the center

EuroCG’18



27:6 Augmenting a tree to a k-arbor-connected graph with pagenumber &

of T such that zqx9, zex, a3, 2304 € E(T). Let r = "T_S mod k. Define T3+ (resp., T5+)
as the tree obtained from T by deleting the edges xoz, xa3 (resp., x129, Tox, XT3, T324) and
adding the new vertex z with the edges zxq, zx, zxs (resp., zx1, 229, 2T, 2x3, zx4). Similarly
to the case that n is even and g = 0, we have the desired result by considering T3 (resp.,
T5") and modifying 7,11 (resp., Ty) if 7 # 0 (resp., 7 = 0). <

We finally remark that the constructions shown in Theorem 3.5 can be generalized to a
unicyclic graph G for 2 < k < w by additional discussions.

4| Conclusion

We have shown that any tree with n vertices can be augmented in O(nk) time to a minimum
k-arbor-connected graph with pagenumber & for any k at most the radius of the tree. Besides,
we have extended the result to cacti and presented an augmentation result for cycles.

It would be interesting to consider augmentation problems for a tree to a minimum
k-arbor-connected graph while preserving other good geometric properties of a tree.
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—— Abstract

A drawing of a graph is called 1-planar if every edge is crossed at most once. A 1-planar drawing

is called independent-crossing planar (IC-planar) if no two pairs of crossing edges share a vertex.
A 1-planar drawing is called near-independent-crossing planar (NIC-planar) if any two pairs of
crossing edges share at most one vertex. The 1-planar, NIC-planar, and IC-planar graphs are the
graphs that admit a 1-planar, NIC-planar, and IC-planar drawing, respectively. The NIC-planar
graphs are a subset of the l-planar graphs and a superset of the IC-planar graphs, which are
important beyond-planar graph classes. We constructively show that every n-vertex NIC-plane
graph admits a NIC-planar drawing with only right-angle crossings (RAC) and at most one bend
per edge on a grid of size O(n) x O(n). Our construction takes linear time. We also give an
overview of the relationships between several classes of 1-planar and RAC graphs.

1 Introduction

In graph theory and graph drawing, beyond-planar graph classes have experienced increasing
interest in recent years. A prominent example is the class of 1-planar graphs, that is,
graphs that admit a drawing where each edge is crossed at most once. 1-planar graphs were
introduced by Ringel [13] in 1965; Kobourov et al. [11] surveyed them recently. Another
example that has received considerable attention are RAC) graphs, that is, graphs that
admit a poly-line drawing where all crossings are at right angles and each edge has at most &k
bends. RACy, graphs were introduced by Didimo et al. [7]. We investigate the relationships
between (certain subclasses of) 1-planar graphs and RACy, graphs that admit drawings on a
polynomial-size grid. Known results and our contributions are summarized in Fig. 1.

Basic Terminology. A mapping I' is called a drawing of the graph G = (V, E) if each
vertex v € V is mapped to a point in R? and each edge {u, v} is mapped to a simple open
Jordan curve in R? such that the endpoints of this curve are I'(u) and I'(v). For convenience,
we will refer to the points and simple open Jordan curves of a drawing as vertices and edges.
The topologically connected regions of R? \ T are called faces of I'. The unbounded face of T
is called outer face; the other faces are inner faces. An equivalence class of drawings of a
graph G having the same set of faces and the same outer face is called an embedding of G.
A Ek-bend (poly-line) drawing is a drawing in which every edge is drawn as a connected
sequence of at most k + 1 line segments. The up to k inner vertices of an edge connecting
these line segments are called bend points or bends. A 0-bend drawing is called straight-line.
A drawing on the grid of size w X h is a drawing where every vertex, bend point, and crossing
point has integer coordinates in the range [0,w] x [0, h]. Recall that a drawing is I-planar if
every edge is crossed at most once. A 1-planar drawing is called independent-crossing planar
(IC-planar) if no two pairs of crossing edges share a vertex. A 1-planar drawing is called
near-independent-crossing planar (NIC-planar) if any two pairs of crossing edges share at
most one vertex. A drawing is called right-angle-crossing (RAC) if it is a poly-line drawing
and for each crossing point ¢, there are at most two edges that cross in ¢, there is no bend
point in ¢, and the line segments of the edges that cross in ¢ intersect in a right angle. As
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Figure 1 Relationships between (beyond-)planar graphs and RAC graphs. Our main results are
the containment relationships indicated by the thick red arrows.

mentioned above, a drawing is called RACy, if it is RAC and k-bend. The planar, 1-planar,
NIC-planar, IC-planar, and RAC}, graphs are the graphs that admit a crossing-free, 1-planar,
NIC-planar, IC-planar, and RACy drawing, respectively. More specifically, RAC?Oly is the
set of graphs that admit a RACy drawing on a grid of size polynomial in the number of
vertices. A plane, 1-plane, NIC-plane, and IC-plane graph is a graph given with a specific
planar, 1-planar, NIC-planar, and IC-planar embedding, respectively.

Previous Work. In the diagram in Fig. 1, we give an overview of the relationships between
classes of 1-planar graphs and RACy graphs. Clearly, the planar graphs are a subset of the
IC-planar graphs, which are a subset of the NIC-planar graphs, which are a subset of the
1-planar graphs. It is well known that every plane graph can be drawn with straight-line
edges on a grid of quadratic size [6,14]. Every IC-planar graph admits an IC-planar RACy
drawing but not always in polynomial area [4]. Moreover, there are graphs in RACSOly
that are not 1-planar [8] and, therefore, also not IC-planar. The class of RACy graphs is
incomparable with the classes of NIC-planar graphs [1] and 1-planar graphs [8]. Bekos et
al. [2] showed that every 1-planar graph admits a 1-planar 1-bend RAC drawing, but their
recursive drawings may need exponential area. Brandenburg [3] claimed that every 1-planar
graph admits a 1-planar 1-bend RAC drawing where the vertices lie on a polynomial-size grid.
In a private communication, he later retracted his claim—therefore, this question remains
open. Every graph admits a RAC3 drawing in polynomial area [7]. This does not hold if a
given embedding of a planarization of the graph must be preserved [7].

Our Contributions. Our main result is as follows.

» Theorem 1. Every n-vertex NIC-planar graph G admits a NIC-planar 1-bend RAC drawing
on a grid of size (16n — 32) x (8n — 16). Given a NIC-planar embedding £ of G, a drawing
that has these characteristics and respects € can be computed in O(n) time.

For IC-plane graphs, this reduces the number of bends compared to a recent result of
Liotta and Montecchiani [12] who showed that every IC-planar graph admits an IC-planar
RAC; drawing on a grid of quadratic size. We have also shown (see Zink’s master’s thesis [15])
that every 1-plane graph admits a 1-planar RACy drawing in polynomial area and, by a small
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(a) crossing as it  (b) empty kite and sub-  (c) empty quadrangle  (d) divided quadrangle
initially appears divided original edge

Figure 2 Modifications of crossings and computation of the biconnected canonical ordering.

modification of the algorithm by Bekos et al. [2], that not only every 1-planar, but even every
1-plane graph admits a 1-planar RAC; drawing. We can also show, by a small modification
of the algorithm by Brandenburg et al. [4], that not only every IC-planar, but even every
IC-plane graph without so called B-configurations admits a IC-planar RACgy drawing. Due
to space considerations, we omit these results here.

2 1-Bend RAC Drawings of NIC-Plane Graphs in Quadratic Area

Our algorithm takes an n-vertex NIC-plane graph (G, £) as input and returns a NIC-planar
RAC; drawing of G on a grid of size O(n) x O(n) while maintaining £. We now describe
the algorithm. We omit a formal correctness proof due to lack of space.

Preprocessing. We first aim to make the NIC-plane input graph biconnected and planar so
that we can draw it using the algorithm by Harel and Sardas [9]. Around each crossing in &,
we insert up to four dummy edges to obtain empty kites. A kite is a K4 that is embedded
such that (i) every vertex lies on the boundary of the outer face, (ii) there is exactly one
crossing, and (iii) this crossing doesn’t lie on the boundary of the outer face. A kite K as a
subgraph of a graph H is said to be empty if there is no edge of H\K that is on an inner
face of K or crosses edges of K. Whenever we insert a dummy edge, we may create a pair of
parallel edges. Then, we subdivide the original edge participating in this pair by a dummy
vertex (see the transition from Fig. 2a to 2b). Note that we never create parallel dummy
edges since G is NIC-planar. After this, we remove both crossing edges from each empty kite

and obtain empty quadrangles (see Fig. 2c). We store each such empty quadrangle in a list Q.

At the end of the preprocessing, we make the resulting plane graph biconnected via, e.g., the

algorithm of Hopcroft and Tarjan [10]. Let (G, ') be the resulting plane biconnected graph.

Drawing Step. Now, we draw a graph that we obtain from (G’,£’). We use the algorithm
by Harel and Sardas [9], which is a generalization of the algorithm of Chrobak and Payne [5],
which in turn is based on the shift algorithm of de Fraysseix et al. [6]. The algorithm of Harel
and Sardas consists of two phases. Given a plane biconnected graph H, in the first phase a
biconnected canonical ordering IT of the vertices in the plane input graph is computed. In

the second phase, H is drawn according to II on a grid of size (2|V(H)| —4) x (|[V(H)| — 2).

Biconnected canonical orderings are a generalization of canonical orderings that assume only
biconnectivity (instead of triconnectivity). Unlike the classical shift algorithm, the algorithm
of Harel and Sardas computes the (biconnected) canonical ordering bottom-up, which we will
exploit here. Let Iy = (v1,...,v;) be a partial biconnected canonical ordering of H after
step k, and let Hy be the plane subgraph of H induced by II;. We say that a vertex u is
covered by vy if u is on the boundary of the outer face of Hi_1, but not on that of Hy.

We perform the following additional operations when we compute the biconnected
canonical ordering. Whenever we reach an empty quadrangle ¢ = (a,b, ¢,d) in the list @ for
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Figure 3 The three cases of the drawing step (a)—(c) and the reinsertion step (d)—(f) in our
algorithm. For orientation, lines with slope 1 or —1 are dashed violet.

the first time, i.e., when the first vertex of ¢—say a—is added to the biconnected canonical
ordering, we insert an edge inside ¢ from a to the vertex opposite a in ¢, that is, to c. We call
the resulting structure a divided quadrangle (see Fig. 2d). In two special cases, we perform
further modifications of the graph. They will help us to guarantee a correct reinsertion of
the crossing edges in the next step of the algorithm. Namely, when we encounter the last
vertex vnagt € {b, ¢, d} of ¢, we distinguish three cases.

Case 1: vt = ¢ (see Fig. 3a).

In this case, we perform no extra operation.

Case 2: vp,s € {b,d}, and the other of these two vertices is covered by ¢ (see Fig. 3b).

We insert a dummy vertex vgpifr, which we call shift vertex, into the current biconnected
canonical ordering directly before v, and make it adjacent to a and c. Later, we will
remove vgpify, but for now it forces the algorithm of Harel and Sardas to shift a and ¢ away
from each other before vj,q is added.

Case 3: vaet € {b,d}, and neither b nor d is covered by c¢ (see Fig. 3c).

Let {vViower } = {b, d} \ Viass. We subdivide the edge {a, Vigwer } Via a dummy vertex vqummy-
If {a, viower } is an original edge of the input graph, this edge will be bent at vqummy in the
final drawing. We insert vqummy into the current biconnected canonical ordering directly
before vjower. To obtain a divided quadrangle again, we insert the dummy edge {a, Viower },
which we will remove before we reinsert the crossing edges. This will give us some extra
space inside the triangle (&, Vdummy; Viower) for a bend point.

We draw the resulting plane biconnected fi-vertex graph ((:7 & ) according to its biconnected
canonical ordering IT via the algorithm by Harel and Sardas and obtain a crossing-free
drawing I'. We do not modify the actual drawing phase.

Postprocessing (Reinserting the Crossing Edges). We refine the underlying grid of r
by a factor of 2 in both dimensions. Let ¢ = (a, b, ¢, d) be a quadrangle in @, where a is the
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first and v),4t the last vertex in 11 among the vertices in q. From ¢, we first remove the chord
edge {a,c} and obtain an empty quadrangle. Then, we distinguish three cases for reinserting
the crossing edges that we removed in the preprocessing. These are the same cases as in the
description of the modified computation of the biconnected canonical ordering above.
Case 1: vt = ¢ (see Fig. 3a).

Since c is adjacent to a, b, and d in G, it has the largest y-coordinate among the vertices
in ¢. Assume that y(d) is smaller or equal to y(b) since the other case is symmetric. An
example of a quadrangle in this case before and after the reinsertion of the crossing edges
is given in Figs. 3a and 3d, respectively. We will have a crossing point at (z(a),y(d)). To
this end, we insert the edge {a, c} with a bend at ef, .} = (z(a),y(d) + 1) and we insert the
edge {b,d} with a bend at e, 4y = (z(a) + 1,y(d)).

Case 2: vust € {b,d}, and the other of these two vertices is covered by ¢ (see Fig. 3b).

Assume that y(d) > y(b); the other case is symmetric. An example of a quadrangle
in this case before and after the reinsertion of the crossing edges is given in Figs. 3b
and 3e, respectively. Here, we remove vghigy in addition to removing the edge {a,c}. We
define the crossing point pPeross = (Zerosss Yeross) a8 the intersection point of the lines with
slope 1 and —1 through ¢ and b, respectively. The coordinates of this crossing point are
Teross = (2(€) — y(e) +x(b) +y(b))/2 and Yeross = (—a(c) + y(c) + z(b) + y(b))/2. Despite
the fact that both coordinates are the result of a division by 2, both are integers—recall
that we refined the grid by a factor of 2 in each dimension. We place the two bend points
onto the same lines at the closest grid points that are next to pcross- In other words, we
draw the edge {a,c} with a bend point at eq,c} = (Teross — 1, Yeross — 1) and we insert the
edge {b,d} with a bend point at egy gy = (Teross — 1; Yeross +1). We do not intersect or touch
the edge {a, d} because we shifted a far enough away from c¢ by the extra shift due to vgpig.
Moreover, the points e, } and peross on the line with slope 1 through c are inside the empty
quadrangle ¢ since b is covered by ¢ (then b is below the line with slope 1 through ¢) and
y(b) is at most equal to y(efq,c})-

Case 3: vjast € {b,d}, and neither b nor d is covered by ¢ (see Fig. 3c).

Assume that y(d) > y(b); again, the other case is symmetric. An example of a quadrangle
in this case before and after the reinsertion of the crossing edges is given in Figs. 3¢ and 3f,
respectively. Note that the edge {a,b} is the dummy edge which we inserted during the
computation of I1 and next to this edge, there is the path (@ — Yqummy — ). This path is
the former edge {a,b}. We will reinsert the edges {a,c} and {b, d} such that they cross in
(z(c),y(b)). We will bend the edge {b,d} on the line with slope 1 through c¢ at y = y(b)
because from this point we always “see” d inside ¢. So, we define Tpenq := x(c) — Ay with
Ay :=y(c) —y(b). First, we remove the dummy edge {a,b}. Second, we insert the edge {a, c}
with a bend point at ef, 4 = (2(c),y(b) — 1). Third, we insert the edge {b,d} with a bend
point at egy gy = (Thend, y(b)). Note that eg, .4 might be below the straight line segment ab
since a could have been shifted away from c several times. However, e, .} cannot be on
or below the path (¢ — Yqummy — b) because y(vqummy) < ¥(€{a,c}) and the slope of the line
segment Vgummyb is either greater than 1 or negative. Therefore, the crossing edges {a,c}
and {b, d} lie completely inside the pentagon (&, Vdummy; b, ¢, d).

After we have reinserted the crossing edges into each quadrangle of @), we remove all
dummy edges and transform the remaining dummy vertices to bend points. The result-
ing drawing I" is a RAC; drawing that preserves the embedding of the NIC-plane input
graph (G, ). Our algorithm runs in linear time. Since the shift algorithm draws I' on a grid
of size (27 — 4) x (N — 2), which we refined by a factor of 2, and # < 4n — 6, T lies on a grid
of size at most (16n — 32) x (8n — 16).
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Conclusion and Open Questions

We have presented an algorithm for drawing any NIC-plane graph on a small grid with
right-angle crossings and at most one bend per edge. Our algorithm is based on the shift
algorithm for 2-connected graphs by Harel and Sardas [9]. Before and while we execute their
algorithm, we modify the graph (incl. removing the crossing edges) to obtain faces with nice

properties into which we reinsert the crossing edges afterwards.

The diagram in Fig. 1 leaves some open questions. Does every 1-planar graph admit a

1-planar 1-bend RAC drawing in polynomial area? Can every graph in RACj be drawn in
polynomial area if we allow one or two bends per edge? What is the relationship between
RAC; and RACEY?
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—— Abstract

We present a deterministic linear time algorithm to find a set of five points that stab a set of
n pairwise intersecting disks in the plane. We also give a simple construction with 13 pairwise
intersecting disks that cannot be stabbed by three points.

1 Introduction

Let D be a set of n pairwise intersecting disks in the plane. If every three disks in D have a
nonempty intersection, then, by Helly’s theorem, the whole intersection ND is nonempty [6-8].
Thus, D can be stabbed by one point. More generally, when there are three disks with empty
intersection, D can still always be stabbed by four points. In July 1956, Danzer presented a
proof at Oberwolfach (see [3]). Since Danzer was not satisfied with his proof, he never published
it, but he gave a new proof in 1986 [3]. Previously, in 1981, Staché published a proof for the
existence of four stabbing points [11], using similar arguments as in his previous construction
of five stabbing points [10]. Hadwiger and Debrunner showed that three points suffice for unit
disks [5]. Danzer’s upper bound proof is fairly involved, and there seems to be no obvious way to
turn it into an efficient algorithm. The two constructions of Stach6 are simpler, but not enough
for an easy subquadratic algorithm. We present a new argument that yields five stabbing points.
Our proof is constructive and allows us to find the stabbing points deterministically in linear
time.

As for lower bounds, Griinbaum gave an example of 21 pairwise intersecting disks that cannot
be stabbed by three points [4]. Later, Danzer reduced the number of disks to ten [3]. This example
is close to optimal, because every set of eight disks can be stabbed by three points [10]. It is
hard to verify the lower bound by Danzer for ten disks—even with dynamic geometry software.
We present a simple construction that uses 13 disks.

2 The geometry of pairwise intersecting disks

Let D be a set of n pairwise intersecting disks. A disk D; € D is given by its center ¢; and its
radius ;. We assume without loss of generality that no disk is contained in another. The lens of
two disks D;, D; € Dis the set L; ; = D,ND;. Let u be any of the two intersection points of 9D;

* Supported in part by grant 1367/2016 from the German-Israeli Science Foundation (GIF). W.M. sup-
ported in part by ERC StG 757609. P.S. and W.M. supported in part by DFG grant MU-3501/1.
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Figure 1 Left: At least one lens angle is large. Right: D; and E have the same radii and lens
angle 27 /3. By Lemma 2.2, D5 is a subset of E. {c1,¢,p,q} is the set P from Lemma 2.4.

and 0D;. The angle Zc;uc; is called the lens angle of D; and D;. It is at most 7. Three disks
D;, Dj, and Dy, are non-Helly if D; N D; N Dy, = (). We present some useful geometric lemmas.

» Lemma 2.1. Among any three non-Helly pairwise intersecting disks Dy, Do, and Ds, there
are two disks with lens angle larger than 2w /3.

Proof. By assumption, the lenses L1 2, L1,3 and Lo 3 are pairwise disjoint. Let u be the vertex
of Ly nearer to D3, and let v, w be the analogous vertices of Ly 3 and Lo 3 (see Figure 1, Left).
Consider the simple hexagon cjucswcsv, and write Zu, Zv, and Zw for the interior angles at u,
v, and w. The sum of all interior angles is 47. Thus, Zu + Zv + Zw < 47, so at least one angle
is less than 47 /3. It follows that the exterior angle at u, v, or w must be larger than 27/3. <«

» Lemma 2.2. Let Dy and Dy be two intersecting disks with radii vy > ro and lens angle
a>2m/3. Let E be the unique disk with radius r1 and center ¢, such that (i) the centers c1, ca,
and ¢ are collinear and c lies on the same side of c1 as ca; and (ii) the lens angle of D1 and E
is exactly 27 /3 (see Figure 1, Right). Then, if co lies between c¢; and ¢, we have Dy C E.

Proof. Let x € Dy. Then, since ¢y lies between ¢; and ¢, the triangle inequality gives
el < [ves] + [eacl = [wea] + [ere] — [ercal. 1)

Since x € Da, we get |zca| < ro. Also, since Dy and E each have radius r; and form the lens angle
27 /3, it follows that |cic| = +/3r;. Finally, by the law of cosines, |cjca| = \/r% + 72 — 2r1ry cos .
As a > 27/3 and 71 > 1o, we get cosa < —0.5 < (V3 — 1.5)% —V3+1,s0

2
lercal? = 2472 —2r1rg cosa > 412 —2r 7o ((\/5 — 1.5) :—1 —V3+ 1) = (r1 (\/g— 1) + 7"2)
2

Plugging this into Eq. (1), we obtain |z¢| < ro +v/3r1 — (11 (\/g -1)+ r2) =r,le,z€E. <=

» Lemma 2.3. Let Dy and Dy be two intersecting disks of equal radius r with lens angle 27 /3.
There is a set P of four points so that any disk F of radius at least r that intersects both Dy and
Dy contains a point of P.

Proof. Consider the two tangent lines of D1 and D, and let p and ¢ be the midpoints on these
lines between the respective two tangency points. We set P = {c1, ca,p, q} (see Figure 2, Left).

Given F, we decrease its radius, keeping its center fixed, until either the radius becomes r
or until F' is tangent to Di or Dy. Suppose the latter case holds and F' is tangent to D;. We
move the center of F' continuously along the line spanned by the center of F' and ¢; towards ¢,
decreasing the radius of F' to maintain the tangency. We stop when either the radius of F' reaches
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Figure 2 Left: P = {c1,c2,p, ¢} is the stabbing set. The green arc v = (D N D3) N Q is
covered by D N D,. Right: Situation (ii) in the proof of Lemma 2.4: Dy € E. z is an arbitrary
point in Do N F N k™. The angle at ¢ in the triangle Azccs is > /2.

r or F' becomes tangent to Dy. We obtain a disk G C F with center ¢ = (¢, ¢,) so that either:
(i) radius(G) = r and G intersects both Dy and Dy, or (ii) radius(G) > r and G is tangent to
both D; and Ds. Since G C F, it suffices to show that G N P # (). We introduce a coordinate
system, setting the origin o midway between c; and ¢z, so that the y-axis passes through p and
¢. Then, in the manner depicted in Figure 2 (left), we have ¢; = (—v/3r/2,0), ¢z = (v/3r/2,0),
q=(0,7), and p = (0, —7).

For case (i), let D? be the disk of radius 2r centered at ¢1, and D3 the disk of radius 2r centered
at cp. Since GG has radius r and intersects both Dy and D», its center ¢ has distance at most 2r
from both ¢; and ¢y, i.e., c € D¥N D3. Let D, and D, be the two disks of radius r centered at p
and g. We will show that DN D3 C D;UD2UD,UD,. Then it is immediate that GNP # (. By
symmetry, it is enough to focus on the upper-right quadrant Q = {(z,y) | = > 0,y > 0}. We show

that all points in D?NQ are covered by DoUD,. Without loss of generality, we assume that r = 1.

5V3_2VBT 3848v30) » (-(.36,1.93)

and ro = (5‘/%82‘/@, 38_238@) ~ (0.98,0.78), and the two intersection points of D? and Dy are

s1 = (§7 1) =~ (0.87,1) and sy = (@, —1) ~ (0.87,—1). Let v be the boundary curve of D?
in Q. Since 71,52 € @ and since ro € Dy and s1 € Dy, it follows that v does not intersect the
boundary of Dy U D, and hence v C Dy U D,. Furthermore, the subsegment of the y-axis from o
to the startpoint of 7 is contained in Dy, and the subsegment of the z-axis from o to the endpoint
of v is contained in Ds. Hence, the boundary of D? N Q lies completely in Dy U Dy, and since
Dy U D, is simply connected, it follows that D N Q C Dy U D,, as desired.

For case (ii), since G is tangent to D; and Da, the center ¢ of G is on the perpendicular bisector
of ¢1 and ¢y, so the points p, o, ¢ and c¢ are collinear. Suppose without loss of generality that
¢y > 0. Then, it is easily checked that ¢ lies above ¢, and radius(G) +r = |c1¢| > |oc| = 7+ |qc],
so q € G. <

Then, the two intersection points of D} and Dy are r; = (

» Lemma 2.4. Consider two intersecting disks Dy and Do with radii r1 > 19, having lens angle
at least 27w /3. Then, there is a set P of four points such that any disk F of radius at least r1 that
intersects both D1 and Dy contains a point of P.

Proof. Let ¢ be the line through ¢; and ¢;. Let E be the disk of radius r; and center ¢ € ¢ that
satisfies the conditions (i) and (ii) of Lemma 2.2. Let P be the point set {c1, ¢, p, q} specified in
the proof of Lemma 2.3, with respect to D; and E (see Figure 1, Right). We claim that

DiNF#D NDy;NF#D = ENF#0. *

Once (*) is established, we are done by Lemma 2.3. If Dy C E, then (*) is immediate, so assume
that Dy € E. By Lemma 2.2, ¢ lies between ¢; and co. Let k be the line through ¢ perpendicular
to £, and let kT be the open halfplane bounded by k with ¢; € kT and k&~ the open halfplane

EuroCG’'18
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bounded by k with ¢; & k. Since |cic| = v/3r1 > 71, we have Dy C k% (see Figure 2, Right).
Recall that F' has radius at least r and intersects Dy and Dy. We distinguish two cases: (i)
there is no intersection of F and D in kT, and (ii) there is an intersection of F' and D5 in k*.
For case (i), let  be any point in D; N F. Since we know that D; C kT, we have = € k™.
Moreover, let y be any point in Dy N F. By assumption (i), y is not in k™, but it must be in the
infinite strip defined by the two tangents of D; and E. Thus, the line segment Ty intersects the
diameter segment kN E. Since F is convex, the intersection of Ty and kN E isin F, so ENF # (.
For case (ii), let z be any point in Dy N F'N k™. Consider the triangle Azccy. Since x € kT,
the angle at ¢ is at least 7/2 (Figure 2, Right). Thus, |zc| < |zce|. Moreover, since x € Da, we
know that |zca| < ro < ry. Hence, we have |zc| < 7y so x € E and (*) follows, asx € ENF. <«

3 Stabbing disks in linear time

Let D be a set of n pairwise intersecting disks. For r > 0, we define ﬂ<r D to be the intersection
of all disks in D with radius at most r. The set ()_,. D is defined analogously. Moreover, let
X be a non-empty intersection of finitely many disks. Then, V(X) is the set of vertices on the
boundary of X.

» Lemma 3.1. For a set D of n pairwise intersecting disks, we can decide in linear time if the
intersection (D is empty. In the same time, we can compute a point in (D, if it exists, or a
non-Helly triple D;, D;, Dy, with r;,1; < 1y, such that ﬂ<”‘ D # 0, otherwise.

Proof. Consider a subset D' of D and assume first that (|D’ = 0. In this case, there exists a
disk D}, € D’ with radius 7 such that ﬂ<rk’ D' # B and ﬂgm D' = (. We set ind(D’) = k and
rad(D’) = ry. Next, assume that (D’ # 0. In this case, we set ind(D’) = co and rad(D’) = .
Now, for D’ C D, we define w(D’) = (rad(D’), —min {d(v, Ding(p)) | v € V(N eraaor D’)}). If
ind(D’) = oo we set d(v, Do) = vy, the y-coordinate of v. Chan has observed that the problem
(D,w) is LP-type [1,9]. The combinatorial dimension of (D, w) is 3, and therefore, the violation
test can be done in constant time. Furthermore, for a basis B of (D,w) , let vio(B) be the
set of disks in D that violate B, i.e., for all D € vio(B), we have w(BU {D}) < w(B). Then,
(D, R = {vio(B) | B is a basis in D}) is the underlying range space for the LP-type problem, and
one can check that it has constant VC-dimension. Thus, we can use the deterministic algorithm
by Chazelle and Matousek [2] to compute w(D) and a corresponding basis B in O(n) time. One
can show that B is either a non-Helly triple for D with the desired properties, or that B yields a
stabbing point for D. |

» Theorem 3.2. Given a set D of n pairwise intersecting disks in the plane, we can find in linear
time a set S of five points such that every disk of D contains at least one point of S.

Proof. Using Lemma 3.1, we decide if ND is empty. If not, we return a point in the common
intersection. Otherwise, the lemma gives us a non-Helly tripe with smallest maximum radius 7.
For the disks D, € D with ry < r;, we can obtain in linear time a stabbing point s by using
Helly’s theorem and Lemma 3.1. Next, by Lemma 2.1, there are two disks D’ and D" among
D;, D;j and D), whose lens angle is at least 27/3. Let P be the set of four points, as described
in the proof of Lemma 2.4, that stabs any disk of radius at least ry that intersects both D’ and
D”. Then S = {s} U P is a set of five points that stabs all disks of D. <

4 13 pairwise intersecting disks that cannot be stabbed by 3 points

The construction begins with an inner disk A, say of radius 1, and three larger disks Dy, Dy, D3
of equal size, so that A is tangent to all three disks, and each pair of the disks are tangent to
each other. Denote the contact point of A and D; by &;, for i = 1,2, 3.
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We add six very large disks as follows. For i = 1,2, 3, we draw the two common outer tangents
to A and D;, and denote by T, and T; the halfplanes that are bounded by these tangents and
are openly disjoint from A. For concreteness, the labels T, and T, are such that the points of
tangency between A and T, , D;, and T, appear along 0A in this counterclockwise order. One
can show that the nine points of tangency between A and the other disks and halfplanes are all
distinct (see Figure 3). We regard the six halfplanes 7;, T, for i = 1,2, 3, as disks; in the end,
we can apply a suitable inversion to turn the disks and halfplanes into actual disks, if so desired.

L

Figure 3 Each common tangent ¢ represents a very large disk tangent to the disks to which ¢ is
tangent. The nine points of tangency are all distinct.

Finally, we construct three additional disks A1, As, Az. To construct A;, we slightly expand
A into a disk A} of radius 1 + &1, while keeping it touching D; at §,. We then roll A} clockwise
along D;, by a tiny angle g9 < £1 to obtain A;.

This completes the construction, giving 13 disks. For sufficiently small €; and €5, we can
ensure the following properties for each A;: (i) A; intersects all other 12 disks, (ii) the nine
intersection regions 4; N D;, A;NT;, A; ﬂTj*, for j = 1,2, 3, are pairwise disjoint. (iii) & ¢ A;.

» Lemma 4.1. The 13 disks in the construction cannot be stabbed by three points.

Proof. Consider any set of three points and suppose they form a stabbing set. Let A* be the
union AU A; U Ay U Az. If p is a stabbing point in A*, then typically p will stab all these four
disks (unless p lies at certain peculiar locations), but, by construction, it stabs at most one of
the nine remaining disks. It is thus impossible for all three stabbing points to lie in A*, but at
least one of them must lie there.

Assume first that A* contains two stabbing points. As just argued, there are at most two of
the remaining disks that are stabbed by these points. The following cases can then arise.

(a) The stabbed disks are both halfplanes. Then D;, Do, D3 form a non-Helly triple, i.e. they
do not have a common intersection, and none of them is stabbed. Since a non-Helly triple
must be stabbed by at least two points, an unstabbed disk remains.

(b) The stabbed disks are both among Dy, Do, D3. Then the six unstabbed halfplanes form many
non-Helly triples !, e.g., Ty, T, , and T35, and again a disk remains unstabbed.

(¢) One stabbed disk is Dy, Ds, or D3, and the other is a halfplane. Then, there is (at least)
one disk D; such that it, and the two associated halfplanes T}, Ti+ are all unstabbed. (D; is

1 Note that it is easy to extend the definition of non-Helly triples to halfplanes.
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a disk that is not stabbed by either of the two initial points, and neither of its two tangent

halfplanes is stabbed.) Then D;, T, , and Tf form an unstabbed non-Helly triple.
Assume then that A* contains only one stabbing point p, so at most one of the nine remaining
disks is stabbed by p. Since p is the only point that stabs all three disks Ay, As, As, it cannot
be any of &1, &2, &3, so the other disk that it stabs (if there is such a disk) must be a halfplane.
That is, p does not stab any of D1, Dy, D3. Since Dy, Do, D3 form a non-Helly triple, they
require two points to stab them all. Moreover, since we only have two points at our disposal, one
of them must be the point of tangency of two of these disks, say of Do and Ds. This point stabs
only two of the six halfplanes (concretely, they are T} and T1+ ). But then Dy, T2+ ,and Ty form

an unstabbed non-Helly triple. |

5 Conclusion

We presented a simple algorithm for the computation of five stabbing points for a set of pair-
wise intersecting disks by solving a corresponding LP-type problem. Nevertheless, the question
remains open how to use the proofs of Danzer or Staché (or any other technique) for an efficient
construction of four stabbing points. Since eight disks can always be stabbed by three points [10],
it remains open whether nine disks can be stabbed by three points or not. Furthermore, it would
be interesting to find a simpler construction of ten pairwise intersecting disks that cannot be
stabbed by three points.

Acknowledgments. We would like to thank Timothy Chan for pointing us to the direct LP-
type algorithm described in Lemma 3.1.
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—— Abstract
In 2009, Joselli et al. introduced the Neighborhood Grid data structure for fast computation of

neighborhood estimates in point sets. Even though the data structure has been used in several
applications and shown to be practically relevant, it is theoretically not yet well understood. The
purpose of this paper is to give results on the complexity of building algorithms — both single-
core and parallel — for the neighborhood grid. Furthermore, current investigations on related
combinatorial questions are presented.

1 Introduction

The neighborhood grid data structure can be used to compute estimates of neighborhoods in
point sets. That is, for a given point p; in a point set P, it provides a point p; that is close to
p; but not necessarily its nearest neighbor in P. It has been introduced by Joselli et al. [3,4].
In order to give a short introduction to the data structure, consider the example in Figure 1.
It shows how points from a point set (Figure 1a) are placed in a grid (Figure 1b). The order
in which the points are given is random, thus their initial placement in the grid is also. After
the placement, only the coordinates of the points are considered in the grid (Figure 1c).

P ° . . . 8.23,4.79 | 8.41,1.96 | 1.53,1.30
[ ] ° o o 2.06,7.76 9.18,9.05
° PY () () o 4.07,5.13 4.27,1.45
(a) Point set with nine points (b) The points are initially (c) The point coordinates are
in R2. placed randomly. considered.

Figure 1 First part of the neighborhood grid pipeline.

The grid as obtained in Figure 1c will now be sorted. Each row should grow in the first
coordinates from left to right, each column should grow in the second coordinates from
bottom to top. A corresponding sorted grid is given in Figure 2a. Note how it — in this
example — recovers the combinatorial neighborhood relation from the points.

In order to use the grid to determine a neighborhood estimate for a given point p;, find
that point in the sorted grid. Then, consider a small neighborhood around that point in
the grid, e.g. the one-ring around it. The size of this neighborhood should not depend on
the number of inserted points such that this lookup runs in asymptotically constant time
O(1). From that neighborhood in the grid, find the closest point to the considered point and
output it as estimated nearest neighbor to p;.
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2.06,7.76 9.18,9.05 2.06,7.76 9.18,9.05
4.07,5.1318.23,4.79 4.07,5.13|8.23,4.79
1.53,1.30(4.27,1.45|8.41,1.96 1.53,1.30(4.27,1.45]8.41,1.96
(a) Coordinates are sorted to grow (b) Determining the neighbors of the
in their x-values in rows and in their by looking at its
y-values in columns. in the grid.

Figure 2 Second part of the neighborhood grid pipeline.

In this report, we present new results on the neighborhood grid data structure. A more
extensive version of our results can be found in a corresponding paper on ArXiv [6]. Malheiros
and Walter [2] investigated several iterative building strategies for the data structure. Despite
the evidences of practical relevance, as given in the publication cited above, neither Joselli
nor Malheiros investigated the asymptotic building times of the grid or answered the question
for a time-optimal building algorithm. Therefore, this paper contains:

a polynomial-time algorithm to build a neighborhood grid (Theorem 2.2),

a proof of asymptotic time-optimality of the presented algorithm (Section 3.1),

a comparison with the parallel building algorithm of Malheiros and Walter (Section 3.2).
The mentioned ArXiv paper contains — apart from more examples and proofs — several
combinatorial results on the number of possible sorted placements, a complete list of unique
sorted placements for n € {1,2,3}, and a proof of non-existence of unique sorted placements
for n > 4. So far, the following question remains unanswered:

For a given n € N, n > 4, what is a point set with the least or largest number of stable

states?

For the case of the largest number we give a conjecture.

2 The Neighborhood Grid

In this first section, we present the neighborhood data structure, fix corresponding notation,
and prove a first theorem on a polynomial-time building algorithm.

2.1 Definition of the Data Structure

Given a set of points P = {p1,...,pn | pi € R?}. In the following we will assume that
N = n? for some n € N and d = 2. Therefore, each point is given by p; = (pi1,pi2) € R?,
where p;; will be referred to as 2- and p;» as y-value. Furthermore, we assume that p; # p;
for all i # j. Finally, we can restrict w.l.o.g. to {p;; | ¢ € [N]} = [N] for k € {1,2}, which
will be important in Section 3.1. Consider [6] for the general case without these restrictions.

The points will be placed in an n x n matrix, where each cell of the matrix contains a
point p;. That is, we consider a matrix M € (R?)"*™ which then has the form

(aln; bln) .. (anru bnn)

(@11,b11) | - | (an1,bn1)




M. Skrodzki, U. Reitebuch, and K. Polthier 30:3

Ultimately, we want to order the points in the matrix such that the following state is
reached.

» Definition 2.1. The matrix M as given in (1) is said to be in a stable state if and only
if the following two conditions are satisfied for any i, j € [n], i # j.

1. Forall k € [n] it is: ¢ < j = ag; < akj V (ags = akj Abgi < byj).
2. Forall ¢ € [n]itis: i < j = by < bjgV (bie = bje A aix < ajg).

In other words, a matrix M is in a stable state, if the points in each row of M are
ordered lexicographically according to the first and then the second coordinate. Similarly, all
columns of M have to be ordered lexicographically according to the second and then the
first coordinate. An illustration of Definition 2.1 is given in Figure 3. We call a stable state
unique, if there exists no other stable state for the same point set P.

(95,13) (95, 65) (06, 69) | (26,61) | (86,89)
(26,61) | (13, 69) (02,55)| (80, 34) | (86, 41)
(55,42) | (60, 49) (05,19) | (47,11) | (95, 13)

Figure 3 On the left a partially filled matrix with a violation of Definition 2.1 marked red. On
the right a 3 x 3 matrix M in stable state.

2.2  Polynomial-Time building algorithm

Now the following question arises naturally: For any set of points P as specified above, is
there a bijective placement 7 : [n?] — [n] x [n], i = (k,£) such that the matrix M, (P) with

(pﬂ'*l(n,l)lvpﬂ'*l(n,l)Q) s (pﬂ'*l(n,n)hpw*l(n,n)Q)
= z ; | 2)

(prl(1.,1)17prl(1,1)2) (Prl(l,n)hprl(l,n)z)

is in a stable state? In other words, given n? points, can these be written into an n x n
matrix such that it is in a stable state as defined in Definition 2.1.

» Theorem 2.2. For every set of points P = {p1,...,pn | pi € R?} there is a bijective
placement m such that M (P) is in a stable state. A placement 7 can be found in O(N log(N)).

Proof. Consider the points py,...,pny as a sequence. Sort this sequence according to the
first condition given in Definition 2.1. Obtain a sequence

((Ju,(hz), (Q21, QQ2)7 cees (QN17QN2)7

where for ¢, j € [n], i < j we have g;1 < gj1 or (¢i1 = gj1 A gi2 < ¢j2). Now split this sequence
into n blocks as follows:

(11, q12); - - - (ina qn2), (Q(n+1)17 Q(n+1)2), s (Q(Qn)h q(2n)2)7

=:Q1 =:Q2

cee (Q(n2—n+1)17 Q(n2—7z+1)2)7 ceey (QNla QN2)7 .

=:Qn
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Now consider each sequence ); and sort it according to the second condition given in
Definition 2.1. Obtain a sequence

Ry := (r11,712), (121,722), - . -, (Th1,Tn2), k € [n],

where for i < j we have 755 < 7j or (152 = rj2 Ari1 < rj1). That is, the points in the
sequence Ry are sorted according to the second condition of Definition 2.1. Furthermore, for
i < j, any point from R; satisfies the first condition of Definition 2.1 when compared to any
point from R;, since the Ry derive from the Q). Therefore, placing the sequence R, into the
kth column of the matrix M results in a stable state.

Concerning the runtime, in the first step, N points were sorted, which takes O(N log(N)).
In the second step, n sets of n points each were sorted, which takes

n - O(nlog(n)) = O(n*log(VN)) = O(N log(N)),
as N = n?. Hence, the stable state was computed in O(N log(N)). <

Theorem 2.2 imposes an upper bound on the runtime of any time-optimal comparison-
based algorithm that creates a stable state of a matrix M. The next question is then: What
is a lower bound?

3 Optimality of the Algorithm
3.1 A Lower Bound

To prove a lower bound, consider a comparison-based algorithm 4. The input to A is a
point set P, the output is a stable placement 7. Each query of A establishes p;;, < pji for
i,j € [N], k € {1,2} and can be seen as a node of a decision-tree. The leafs of this tree
correspond to placements of which some are stable for the given point set. A time-optimal
algorithm builds this tree such that it is of depth log((n?)!).

If we fix a placement 7, we can say w.l.o.g. that « fixes the z-coordinates in the matrix
such that they satisfy Definition 2.1. When counting the number of point sets for which 7 is
stable, we can now pair the already placed z-values with y-values as follows: When setting
up the y-values for the first column, one can pick n of the possible N = n? values, which
then admit to a unique order in the column. Therefore, for the y-values in the first column,

2
there are (") possibilities. For the second column, there are ("2;") possibilities, until there

n

is ("2_(2_1)") = 1 possibility for the last column. Overall, there are

B (n2 —n)ln! (n2—2n)lnl " ninl nl o (al)n

(D (n2 - kn) n?! (n? —n)! (2n)! n!  (n?)!
k=0 n

possibilities to put y-values into the matrix and obtain a stable state from them utilizing the

2
fixed . That is, a placement 7 is always stable for exactly % point sets.
Thus, then building its decision-tree, the algorithm A cannot stop at a subtree with
more than leafs, as one of them will surely not be stable under the currently considered

(nh)"

placement. That is, the tree has to be traversed to depth at least

log((n?)!) — log (E:;));) = log (W) = log((n))™) = n -log(n!) = O(n? - log(n)).

Therefore, each decision-based algorithm building a stable state needs to perform at least
Q(n? -log(n)) operations. Together with Theorem 2.2 this proves the following:

» Theorem 3.1. The algorithm outlined in Theorem 2.2 is asymptotically time-optimal.
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3.2 Comparison to Malheiros and Walter

In the previous section, we have seen that a decision-based algorithm running on a single
core has optimal asymptotic runtime O(n? - log(n)). However, both Joselli et al. [3,4] and
Malheiros and Walter [2] utilize a parallelized version of odd-even sort. Assuming n?/2
processors given, they alternately perform one step of the odd-even sort algorithm on rows
and columns. By exchanging two points that violate Definition 2.1, they claim to converge
to a stable state. Even though they do not prove this claim, it can easily be established
when plugging the matrix M from Equation (1) into the energy

n
E(M) = Zi'aij+j'bija (3)
i,j=1
which grows for each exchange, but is bounded from above. Thus, the procedure converges
to a stable state.

As a point can only move by one row or column in each step, consider the element (1, 1)
that has to be placed in the lower left corner given our restrictions. In case it starts in
the upper right corner, the algorithm needs to perform 2n — 2 = O(n) steps to move the
element to its designated position. Therefore, this parallel algorithm has a lower bound of
w(n). There are even examples for elements that cycle through the grid, consider [6] for an
example.

Note that the algorithm presented in Theorem 2.2 needs to sort the given points. When
utilizing n?/2 processors, sorting can be performed in log(n?) time, see [1]. Therefore, the
presented algorithm can be parallelized to run in O(log(n?)). However, this is of rather
theoretical relevance, as the constants in [1] are comparably large.

Compare this to building a KdTree in parallel. In each step ¢, we have to sort ¢ sets of
n? /2% points in the dimension with largest spread, which takes log(n?) — i time for each of
the log(n?) levels of the tree, resulting in a total building time of O(log®(n)). Therefore, the
neighborhood grid can be build slightly faster, but only gives estimated answers, while the
KdTree provides exact neighbor relations.

4| Combinatorial Questions

4.1 Point Set with a unique Stable State

In the previous section it was shown that the running time of the algorithm outlined in
Theorem 2.2 is asymptotically time-optimal. However, the question remains whether the
stable state found by the algorithm for a given point set P is unique. By iterating over all
possible point sets P with n = 4, we found that none of the two-dimensional point sets on 16
points has a unique stable state. Utilizing an inductive argument, we show that given any
point set P with n > 5, there exists no unique stable state. See [6] for details and a complete
enumeration of unique stable states in the case of n € {1,2,3}. The fact that for n > 4 there
is no point set with a single unique stable state raises the following question:

Open Question. Given n € N, n > 4, what is a point set P with the minimum number of
stable states among all point sets with n? points?

4.2 Point Set with largest number of Stable States

We proceed by turning the question from the last section around. What is the maximal
number of stable states a point set can obtain for some given n € N? In order to investigate
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this question, we first turn to a specific point set, for which we can count the number of
stable states. Consider the identity: {(1,1),(2,2),...,(n? n?)}. Counting the number of
stable states for the identity is equivalent to placing only one number in each field of the
n X n matrix, which then has to satisfy both conditions of Definition 2.1. But this is exactly
the number of standard Young tableaux of shape (n,...,n). See [5] for an introduction into
the underlying combinatorics and [6] for the application of these to the given setup. The
number of stable states of the identity is then given by

N!
[l o @n—i—j+1)

The results for n € {1,2,3} and computational experiments lead us to state the following

gl @

conjecture.

» Conjecture 4.1. Given n € N, the number of stable states of any point set P on n? points
is less or equal to f(m),

5 Conclusion and Future Work

We have presented a polynomial-time algorithm to build a stable state for a given point set P.
Furthermore, we have proven the parallel algorithm from [2-4] to converge to a stable state
and provided a lower bound on its runtime. Finally, we have deduced two open combinatorial
questions resulting from the investigations of the data structure. A question not addressed in
this paper concerns the quality of neighborhood estimates obtained from the grid. Answering
these is left as future work.
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Center TRR 109, 'Discretization in Geometry and Dynamics’.

—— References

1 Miklés Ajtai, Janos Komlds, and Endre Szemerédi. Sorting in ¢ logn parallel steps. Com-
binatorica, 3(1):1-19, 1983.

2 Marcelo de Gomensoro Malheiros and Marcelo Walter. Simple and efficient approximate

nearest neighbor search using spatial sorting. In Graphics, Patterns and Images (SIB-
GRAPI), 2015 28th SIBGRAPI Conference on, pages 180-187. IEEE, 2015.

3 Mark Joselli, José Ricardo da S Junior, Esteban W Clua, Anselmo Montenegro, Marcos
Lage, and Paulo Pagliosa. Neighborhood grid: A novel data structure for fluids animation
with gpu computing. Journal of Parallel and Distributed Computing, 75:20-28, 2015.

4 Mark Joselli, Erick Baptista Passos, Marcelo Zamith, Esteban Clua, Anselmo Montenegro,
and Bruno Feijé. A neighborhood grid data structure for massive 3d crowd simulation on
gpu. In 2009 VIII Brazilian Symposium on Games and Digital Entertainment (SBGAMES),
pages 121-131. IEEE, 2009.

5 Bruce E. Saga. The Symmetric Group. Springer, 2001.

6 M. Skrodzki, U. Reitebuch, and K. Polthier. Combinatorial and Asymptotical Results on
the Neighborhood Grid. ArXiv e-prints, October 2017. arXiv:1710.03435.



A Note on Planar Monohedral Tilings™

Oswin Aichholzer!, Michael Kerber!, Istvan Talata2?, and Birgit
Vogtenhuber?!

1 Graz University of Technology, Graz, Austria
oaich@ist.tugraz.at, kerber@tugraz.at, bvogt@ist.tugraz.at

2  Ybl Faculty of Architecture and Civil Engineering, Szent Istvan University,
Budapest, Hungary; University of Dunatjvaros, Dunatjvaros, Hungary
Talata.Istvan@ybl.szie.hu

—— Abstract

A planar monohedral tiling is a decomposition of R? into congruent tiles. We say that such a
tiling has the flag property if for each triple of tiles that intersect pairwise, the three tiles intersect
in a common point. We show that for convex tiles, there exist only three classes of tilings that are
not flag, and they all consist of triangular tiles; in particular, each convex tiling using polygons
with n > 4 vertices is flag. We also show that an analogous statement for the case of non-convex
tiles is not true by presenting a family of counterexamples.

1 Introduction

Problem statement and results. A plane tiling in the plane is a countable family of planar
sets {T1, Ty, ...}, called tiles, such that each T; is compact and connected, the union of all 7T;
is the entire plane and the T; are pairwise interior-disjoint. We call such a tiling monohedral
if each T; is congruent to 77. In other words, a monohedral tiling can be obtained from the
shape T by repeatedly placing (translated, rotated, or reflected) copies of T7. Two of the
simplest examples for such monohedral tilings are shown in Figure 1. These are also instances
of convex tilings, where we require that each tile is convex. A comprehensive study of tilings
with numerous examples can be found in the monograph by Griinbaum and Shephard [3].

Figure 1 Monohedral tiling with squares (left) and equilateral triangles (right). On the right, an
obstructing triple for the flag property is shaded.

We are interested in a special property of (monohedral) tilings: We say that a tiling is
flag if whenever three tiles intersect pairwise, they also intersect in a point common to all
three tiles. It can easily be verified that the left tiling in Figure 1 is flag, whereas the right
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by the Austrian Science Fund (FWF) grant number P 29984-N35.

34th European Workshop on Computational Geometry, Berlin, Germany, March 21-23, 2018.

This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



31:2 A Note on Planar Monohedral Tilings

tiling is not: the three edge neighbors of any triangle intersect pairwise (in single points), but
have no common intersection. We call such a triple an obstructing triple. We are interested
in the following question: which monohedral tilings have the flag property?

Our main result is that “most” convex monohedral tilings in the plane are flag. There
are only three types of counterexamples, namely the ones depicted in Figure 1 (right) and
in Figure 2. In particular, all counterexamples require triangles as tiles. As a consequence,
every convex monohedral tiling with convex polygons having 4 or more vertices is flag.

To explain the three types of non-flag tilings, we observe that the union of the three tiles
of an obstructing triple divides the complement into a bounded and an unbounded connected
component. We call the closure of the bounded component the cage of the triple. Of course,
the cage has to be filled out by copies of the same tile. We define the cage number of a cage
as the number of tiles inside the cage, and the cage number of a tiling as the maximal cage
number of all cages in the tiling. The three counterexamples correspond to tilings with cage
number 1, 2, and 3. We show that no convex tiling with cage number 4 or higher exists.

The situation changes significantly for non-convex monohedral tilings. In that case,
non-flag tilings exist for polygons with an arbitrary number of vertices and the cage number
can go well beyond 3. As a further contribution, we present a general construction that, for
an arbitrary fixed integer c, generates a tiling with cage number c.

Figure 2 Non-flag Monohedral tilings with cage number 2 (left) and 3 (right). These tilings are
obtained from the equilateral tiling from Figure 1 (right) by splitting each triangle in two congruent
copies using an altitude, or by splitting each triangle in three congruent copies using the barycenter,
respectively. An obstructing triple with the maximal cage number is shaded.

Motivation. The term “flag” originates from the following concepts: A simplicial complex
C is called a flag complez (also clique complex) if it has the following property: if for vertices
{vo, ..., v}, all edges (v;,v;) are in C, then the k-simplex spanned by {vo, ..., v} is also in
C. Equivalently, C is a flag complex if it is the inclusion-maximal simplicial complex that
can be constructed out of the edges of C.

In our setup, a tiling gives rise to a dual simplicial complex, called the nerve of the tiling,
obtained by defining one vertex per tile, and adding a k-simplex if the corresponding k+1 tiles
have a non-empty common intersection. Note that this complex might be high-dimensional —
for instance, the nerve of the triangular tiling in Figure 1 contains 5-simplices. The tiling
being flag is a necessary condition for the nerve of the tiling being a flag complex. Indeed, if
a triple of tiles violates the flag property, the dual complex consists of three edges forming
the boundary of a 2-simplex, but the 2-simplex is missing as the three tiles do not commonly
intersect. For convex tilings, the tiling is flag if and only if its nerve is a flag complex, which
is a simple consequence of Helly’s Theorem.
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Our question is motivated from an application in computational topology. In [2], the
d-dimensional Euclidean space is tiled with permutahedra, and the nerve of a subset of them
is the major object of study. In that paper, it is proven (Lemma 10 of [2]) that this nerve is
a flag complex (for all d), which simplifies the computation of the complex. The first part of
the proof is to show that the tiling has the flag property; for that, two disjoint facets of a
permutahedron are considered and it is proven that the neighboring permutahedra along
these two facets do not intersect, which implies the flag property. This proof makes use
of the special structure of permutahedra and explicitly defines a separating hyperplane for
the two neighboring permutahedra, involving lengthy calculations. This note is a first step
towards generalizing this useful property of permutahedra to a larger class of tilings, starting
with a complete analysis of the planar case.

2 Convex non-flag tilings

We fix a convex monohedral non-flag tiling with an obstructing triple (T3, T, T3) throughout.

Clearly, T} (and so, T» and T3) must be a polygon, since any convex non-linear boundary
component would require a neighboring tile with a concave boundary component. Since the
triple (11, T», T3) intersects pairwise, but not commonly, the union T3 UT5 UT3 is a connected
set with a hole. While this can also be shown with elementary geometric considerations, a
short proof uses the Nerve theorem [1] [4, Ch 4.G], stating that the union of convex shapes
is homotopically equivalent (see e.g. [4] for a definition) to their nerve, which in our case is a
cycle with three edges. Hence, the union of the three tiles is homotopically equivalent to S*,
a circle.

We call the closure of the (unique) bounded connected component of the complement
the cage X of the triple. We start with studying the structure of X, relating it with a
structure from computational geometry: a (polygonal) pseudotriangle is a simple polygon in
the plane that is bounded by three concave chains [5]. The degenerate case in which one or
several concave chains are just line segments is allowed; hence triangles are a special case of
pseudotriangles.

» Lemma 2.1. The cage X is a pseudotriangle.

Proof. The boundary of X consists of boundary curves of the three convex polygons 717, T5,
and T3. By convexity, these curves are convex with respect to T;, and hence concave with
respect to the complement. |

A pseudotriangle has three corners where two concave chains meet. In our case, these
corners correspond to intersections of two tiles among {T1,7%,75}. The diameter of a
compact point set is the maximal distance between any pair of points in the set. Two points
realizing this distance are called a diametral pair. For pseudotriangles, it is easy to see that
only corners can form diametral pairs.

» Lemma 2.2. Let X be a cage, and let Tx be a tile in the cage. Then, Tx contains two
corners of X that form a diametral pair. Moreover, the corresponding concave arc connecting
these corners along the boundary of X is a line segment.

Proof. We define the latitude of a compact set S in the plane as the length of the longest line
segment that is contained in S. Clearly, congruent sets have the same latitude, and S’ C S
implies that the latitude of S’ is at most the latitude of S. Let £ = £(T}) be the latitude
of T7. Then, X must have latitude at least ¢ because it contains at least one congruent copy
of Ty.

EuroCG’18
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On the other hand, the latitude of a set is upper bounded by the diameter and for convex
sets, both values coincide. Note that for any pair of corners of X, the line segment connecting
them is completely contained in some T;, because the corners are intersection points of tiles.
Because all T; are congruent, the diameter of T; is at least the distance of any pair of corners.
It follows that the diameter of T} is at least the diameter of X. Putting all together, we have

diam(X) > ¢(X) > ¢(Ty) = diam(Ty) > diam(X)

which implies that all quantities coincide. Since T'x has the same latitude as 77, it must
contain a diametral pair of X, which consists of two corners. Moreover, since T is convex,
it contains also the line segment between these two corners, implying that X is bounded by
this line segment. |

Since each tile in a cage has to cover a line segment between two corners, it follows that:
» Corollary 2.3. A cage contains at most 3 tiles.

Finally, we can analyze the three possible numbers of tiles inside a cage to show that all
of them can only appear for triangular tiles.

» Theorem 2.4. If a convex monohedral tiling is not flag, then the tiles are triangles.

Proof. Assume that tiles (T3, 7%, T5) exist that form a cage X. Let ¢ be the number of tiles
inside the cage. We know that ¢ € {1,2,3} from Corollary 2.3.

If ¢ =1, then X is a tile itself, and hence convex. Because the cage is a pseudotriangle, it
is convex if and only if it is a triangle.

If ¢ = 2, Lemma 2.2 implies that X has two line segments as sides, and a third concave arc
which might be a line segment or a polyline with two segments; a polyline with more vertices
is impossible because X is the union of two convex sets. Let v be the corner of X opposite
to that third concave arc. Since the two tiles inside the cage intersect in a line segment from
v to a point on the opposite arc, the only possibility is that the tiles are triangles.

If ¢ = 3, the three tiles inside the cage have to intersect in a common point x as otherwise,
they would form a cage again, and X would contain at least 4 tiles. Moreover, by Lemma 2.2,
X is a triangle, and each corner is an intersection point of two tiles inside the cage. It follows
that the three line segments joining x with the corners of X are the boundaries of the three
tiles. However, these line segments split X into three triangles. |

We remark that the converse of Theorem 2.4 is not true: there are triangular tilings
which are flag (an example can be obtained from the square tiling in Figure 1 (left) by
subdividing each square into two triangles arbitrarily). However, the converse becomes true
with a further restriction: we call a tiling face-to-face if the intersection of two tiles is a facet
of both tiles (that is, the tiling carries the structure of a cell complex). For a face-to-face
tiling with triangles, it is easy to see that for any triangle 7', the three neighboring tiles
sharing an edge with T form a cage that contains exactly T. Hence, a planar monohedral
face-to-face tiling is flag if and only if the tiles are not triangles.

3 Non-convex tilings

Non-convex monohedral tilings have a long history of research. A remarkable case of instances
are spiral tilings, for instance the Voderberg tiling! or the spiral version of the “Bent Wedge

! See https://en.wikipedia.org/wiki/Voderberg_tiling
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tiling”2. By inspecting these tilings, it is not difficult to detect obstructing triples, refuting
the possibility that Theorem 2.4 remains true without the convexity assumption.

For an arbitrary integer n > 3, we describe a construction of a non-convex monohedral
tiling with tiles having 2n + 1 vertices such that an obstructing triple with cage number n —1
exists. This shows that also Corollary 2.3 is a property that crucially relies on the convexity
of the tiles. Our construction is a variant of so-called radial tilings®. Consider the regular
6n-gon P inscribed in the unit circle and fix an arbitrary vertex B on that polygon (Figure 3
(left)). Let D be a point on the unit circle such that the triangle OBD is equilateral. In fact,
D is a vertex of P. Let ¢ be the circular arc between O and B of the (unit) circle centered
at D. Divide ¢ in n sub-arcs of identical length, using n — 1 additional subdivision points.
Let p; denote the polyline from O to B defined by these subdivision points.
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Figure 3 Left: Illustration of the construction of T' for n = 5. Right: Radial tiling using 7.

Next, apply a rotation around the origin (in either direction) by ?s_Zv so that B is mapped
to a neighboring vertex C of P. This rotation maps p; into a polyline ps from O to C. The
polygon T bounded by p1, p2, and the line segment BC' is a polygon with 2n + 1 vertices.

We argue that T indeed admits a monohedral tiling. First of all, by rotating 1" around the
origin by multiples of 2—;, 6n copies of T cover P. To cover the polygonal annulus between
P and 2P, we observe that the 6n reflections of the inner tiles can be completed with 12n
congruent tiles to fill out the annulus. Extending this idea for the annulus between P and
(i + 1)P, we can cover the entire plane with copies of T' (see Figure 3 (right)).

Finally, to construct a large cage, we modify the tiling inside P: we split the 6n tiles
into 6 pairwise disjoint groups, each consisting of n consecutive copies of T. Consider such a
group G and denote with B and D its two extreme vertices on P. Note that the triangle
OBD is equilateral and that the boundary of G consists of three identical polygonal chains
(two of them convex and one reflex). It is therefore possible to reflect the whole group G,
such that it again covers the same space, and that all tiles in the group intersect at D instead
of O. We reflect 3 of the 6 groups inside P, alternating between reflected and unreflected
groups. The tiles outside of P are left unchanged. See Figure 4 for two examples. We observe
that the cage number of these tilings is n — 1.

2 See Steve Dutch’s webpage https://www.uwgb.edu/dutchs/symmetry/radspiri.htm
3 See also https://www.uwgb.edu/dutchs/symmetry/rad-spir.htm
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I Figure 4 The final outcome of our construction after rearranging the innermost tiles for n = 4
(left) and n = 8 (right). In both cases, there are 6 groups of tiles around the origin, and three of
them are rotated. The tile of a rotated group at the boundary of the 6n-gon together with the
extremal tiles of the neighboring (unrotated) groups form an obstructing triple with cage number 3
on the left, and 7 on the right.

"4 Conclusion

Various questions remain open for the non-convex case. For instance: is there a monohedral
tiling that is flag such that its nerve is not a flag complex? While it is rather simple to give
an example of four non-convex shapes whose nerve is the boundary of a tetrahedron, it is not
so simple to provide such an example with congruent shapes, and even less so to construct
such a scenario in a monohedral tiling. Another question is what would be the maximal cage
number possible for a monohedral tiling with a k-vertex polygon. Our paper establishes the
lower bound of % We are currently not able to provide any upper bound.

More in line with our original motivation, we plan to investigate convex monohedral
tilings in higher dimension next. In detail, we want to characterize large classes of such tilings
for which the nerve is a flag complex. Already in three dimensions, the natural generalization
of Theorem 2.4 that all non-tetrahedral tilings have this property fails because we can simply
extend Figure 1 (right) to the third dimension using triangular prisms. A statement in reach
seems to be the following: restricting to face-to-face tilings, we call a tiling in R? generic if
at most d + 1 tiles meet in a common point. We claim that the nerve of a generic tiling is a
flag complex. This would include the permutahedral scenario considered in [2].
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—— Abstract

We consider the problem of finding a mazimum cut in a graph G = (V, E), that is, a partition
V1UV; of V such that the number of edges between Vi and V5 is maximum. It is well known that
the decision problem whether G has a cut of at least a given size is in general NP-complete. We
show that this problem remains hard when restricting the input to segment intersection graphs.
These are graphs whose vertices can be drawn as straight-line segments, where two vertices share
an edge if and only if the corresponding segments intersect. We obtain our result by a reduction
from a variant of PLANAR MAX-2-SAT that we introduce and also show to be NP-complete.

1 Introduction

For a graph G = (V, E), consider a partition V' = V,UV;5 of V. The set Ej5 C F of edges
with one endpoint in V; and one endpoint in V5 is called a cut (induced by V; and V3), and
the cardinality |F12| is called the size of the cut. A mazimum cut of G is a cut whose size is
as large as possible. The problem MAXCUT is to find the size of a maximum cut in a given
graph G. MAXCUT can also be cast as a vertex coloring problem: what is the maximum
number of bichromatic edges that can be obtained by coloring each vertex with one of two
possible colors? The decision version of MAXCUT asks whether GG contains a cut of size at
least k, for a given k € N. It is NP-complete for general graphs [3]. Moreover, MAXCUT is
hard to approximate [7,8]. On the other hand, there exists a PTAS for MAXCUT in dense
graphs [1]. For planar graphs, MAXCUT can be solved in polynomial time [6], and the same
is true for several other graph classes [2].

A segment intersection graph is a graph whose vertices can be drawn as straight-line
segments (that pairwise intersect in at most one point, in their relative interiors), such
that two vertices share an edge if and only if the corresponding segments intersect. In a
(representation of a) segment intersection graph, a maximum cut corresponds to a 2-coloring
of the segments such that the number of bichromatic crossings, i.e., crossings of segments
with different colors, is maximum. So far, the complexity status of MAXCUT on line segment
intersection graphs seems to be open [2]. We show that the decision version of MAXCUT is
NP-complete even when the input is restricted to segment intersection graphs. We obtain
this result via a reduction from a variant of PLANAR MAX-2-SAT, that we introduce and
show to be NP-complete as well in Section 2.

e This project has been supported by the Austrian Science Fund (FWF) grant W1230 and
508 the European Union’s Horizon 2020 research and innovation programme under the Marie
e Sktodowska-Curie grant agreement No 734922.
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In addition to the intrinsic interest of the problem, our study is motivated by the following
question that was posed by Ruy Fabila-Monroy at the workshop “Reunién de Optimizacion,
Matematicas y Algoritmos” in the framework of the project CONNECT: let D be a straight-
line drawing of the complete graph K,, on n vertices. A k-edge-coloring x of K, assigns to
each edge of K, a color from {1,...,k}. Let éry (D, x) be the number of monochromatic
edge crossings in D for the y, that is, crossings of edges with the same color. What is the best
drawing D and the best k-edge-coloring x of K, in order to minimize ér (D, x)? During the
workshop, Francisco Javier Zaragoza Martinez observed the following relation to maximum
cuts: For a fixed drawing D, the total number of crossings is fixed. Thus, a k-edge-coloring x
with the minimum number of monochromatic crossings maximizes the number of bichromatic
crossings. Further, any geometric graph can be interpreted as a segment intersection graph.
Hence finding a 2-edge coloring of K,, with the minimum number of monochromatic crossings
is equivalent to finding a maximum cut in the segment intersection graph D. We remark
that our construction does not show hardness of MaxCut for straight-line drawings of K.

2 Planar Max-2-SAT

We will use a reduction from a variant of MAX2SAT. In MAX2SAT, we are given a Boolean
formula ¢ in conjunctive normal form (CNF) with at most two literals per clause and an
integer k. We need to determine whether there is an assignment to the variables of ¢ that
satisfies at least k clauses. MAX2SAT it NP-complete [4]. We will consider a variant of
MAX2SAT where we require the 2-CNF formula ¢ to be planar and clause-tree-linked, two
notions that we will now define.

Given a CNF formula ¢ with clause set C' and variable set V, the incidence graph
Gy = (CUV,E) is the graph that contains an edge between a variable and a clause if and
only if the variable or its negation appear as a literal in the clause. We say that ¢ is planar if
G is a planar graph. The problems PLANAR 3-SAT and PLANAR MAX-2-SAT are 3-SAT
and MAX2SAT restricted to planar formulas. PLANAR 3-SAT is NP-complete [9]. To see
that PLANAR MAX-2-SAT is NP-hard, it can be checked that the reduction from 3-SAT to
Max-2-SAT in [4] preserves planarity; see for example Theorem 2 in [5] and the proof of
Theorem 2.1 below.

For PLANAR 3-SAT, we can enforce even more conditions without making the problem
tractable: we say that a planar 3-CNF formula ¢ is clause-linked if there exists a path
P connecting the clauses in G(¢) such that G(¢) U P is still a planar graph. CLAUSE-
LINKED PLANAR 3-SAT, which is 3-SAT restricted to clause-linked planar formulas, is still
NP-complete, see for example [10].

Similarly, we can add more conditions on MAX-2-SAT: we say that a planar 2-CNF
formula ¢ is clause-tree-linked if there exists a spanning tree T of the clauses in G(¢) such
that G(¢)UT is still a planar graph. We define CLAUSE-TREE-LINKED PLANAR MAX-2-SAT
as MAX-2-SAT restricted to clause-tree-linked planar formulas.

» Theorem 2.1. CLAUSE-TREE-LINKED PLANAR MAX-2-SAT is NP-complete.

Proof. To show NP-completeness of CLAUSE-TREE-LINKED PLANAR MAX-2-SAT, we need
to show its membership in NP and its NP-hardness. Membership in NP directly follows
from the fact that CLAUSE-TREE-LINKED PLANAR MAX-2-SAT is a special case of the NP-
complete problem Max-2-SAT. We prove NP-hardness by reduction from CLAUSE-LINKED
PrLANAR 3-SAT.

In CLAUSE-LINKED PLANAR 3-SAT, we have as input a 3-CNF formula ¢ with variable
set V and clause set C, together with a linear ordering o of the elements of C'. Further,
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the incidence graph G(¢) = (C UV, E) together with the path P(o) = (C, Ep) on C that
is induced by the linear ordering o is still planar. To transform this input to an input of
CLAUSE-TREE-LINKED PLANAR MAX-2-SAT, we utilize the following reduction function of
the well known reduction from 3-SAT to MAX-2-SAT [4]: Every clause ¢ = (z,y, 2) in ¢ is
replaced by a 2-CNF formula ¢’ of the form

=z AyAzAwA(mzV-y)A(mzV=2)A(myV=2)A(zV-w)A(yV-w)A(zV-w),

where w is an additional variable that is used exclusively used for one clause of ¢. The
complete 2-CNF formula for the MAX-2-SAT is then ¢’ := /\ . ¢’. The target value for the
number of clauses that should be satisfied in ¢’ is k' := 7|C|. The reduction from 3-SAT to
MAX-2-SAT follows from the fact any variable assignment that does not satisfy a clause
c in ¢ satisfies at most six of the clauses in ¢/, while an assignment satisfying ¢ satisfies
exactly seven clauses in ¢/. What remains to be proven is that the resulting incidence graph
G'(¢') admits a tree T'(0) = (C’, Er) such that G'(¢) together with T'(o0) is still a planar
graph. To this end, consider a plane embedding D of the graph G(¢) together with the
path P(o) = (C, P). We first construct a plane embedding! of G’(¢') from D. For a clause
c=(xVyVz)in ¢, the sub graph in G(¢) induced by ¢ and its variables z, y, and z is a
tree with center ¢ and leaves z, y, and z; see Figure 1 (left). To obtain an embedding of
G(¢'), we start with the embedding of G(¢). For every clause ¢ in ¢ replace the tree of ¢
(and its variables) by an embedding of the sub graph induced by ¢’ (and its variables) in
G'(¢') as depicted in Figure 1 (right). Because the variable vertices z, y and z all lie in the
unbounded face of this drawing, the resulting embedding of G’(¢’) is again plane.

Figure 1 The subgraph of a clause ¢ and its variables in ¢ (left), and the according subgraph
of the transformation ¢’ and its variables (right). Variable vertices are drawn as dots while clause
vertices are drawn shaded.

Further, in P(0), ¢ is incident to one or two edges going to its neighbor(s) in the linear
order o on C. We extend the drawing of P(0) in D to a drawing of a tree through all clauses
of ¢ in D’ such that the total drawing remains plane. It is easy to see that the drawing
in Figure 1 (right) can be extended by a path P’ through all the clauses that starts and
ends in the unbounded face. If ¢ is an endpoint of P(0) and in D, the edge of P(0) at ¢ is
between the ones to z and x or y, respectively, then we replace ¢ in the drawing P(o) by
(z) or (y), respectively, and append P’ to the drawing of P(0). If in D, the two path edges

1 It has been known that the reduction from 3-SAT to MAX-2-SAT preserves planarity [5]. We reprove
the statement via a concrete embedding, which we then utilize to also show clause-tree-linkedness.
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at c¢ are neighboring and between the ones to z and x or y, respectively, then we replace ¢
in the drawing P(o) by (z) or (y), respectively, and append P’ as a branch to the drawing
of P(o). If in D, the path separates z from z and y in the order around ¢, then we replace
the vertex ¢ in the drawing of P(o0) by the path P’. Finally, note that the drawing of ¢’ and
its variables is not symmetric, but ¢’ itself is. Hence, an appropriate permutation of x, ¥,
and z in the drawing always yields a drawing of ¢’ that fits one of the above cases. This
finishes the reduction. |

3 Max-Cut for Segment Intersection Graphs

» Theorem 3.1. The decision version of the MAX-CUT problem is NP-complete even when
restricted to segment intersection graphs.

Proof. We prove NP-hardness by reduction from CLAUSE-TREE-LINKED PLANAR MAX-2-
SAT. For any clause-tree-linked planar 2-SAT formula ¢ with m clauses we construct a line
segment arrangement .S with the property that there is an assignment satisfying at least
m — k clauses of ¢ if and only if there is a 2-coloring of the segments of S with at most
m + 2k monochromatic crossings.

Let ¢ be a clause-tree-linked planar 2-SAT formula and let G(¢) be its associated graph
and T the tree through its clauses. Consider a plane drawing of G(¢) UT. We will mimic the
formula ¢ by constructing line segment configurations, called gadgets, that serve as variables,
wires, splits, negations and clauses, and concatenating them according to the drawing of the
graph G(¢). We will use wire gadgets and split gadgets to propagate the truth assignment of
a variable along the edges between the variable and the clauses containing it, while negation
gadgets will serve to invert the truth assignment of a variable (for negative literals).

As variable gadget, we just take a single line segment. Each line segment will be colored
with one of two colors, without loss of generality red and blue, one of them representing the
true state, the other one the false state. For a wire gadget, we draw two segments a and b
that do not cross each other and 2m + 1 other segments, each of which crosses a and b
but no other segment. See Figure 2 (left) for an illustration. It follows that if @ and b
get the same color, we can color the gadget without monochromatic crossings, whereas
if @ and b get different colors, any coloring of the remaining edges yields exactly 2m + 1
monochromatic crossings. To build a split gadget, we repeat the construction of the wire
gadget twice; see Figure 2 (middle). For the negation gadget, we again draw two segments
a and b that do not cross each other. Further, we draw two families C and D of 2m + 1
pairwise non-crossing segments each, such that each segment of C' crosses a, each segment of
D crosses b, and each segment of C crosses each segment of D; see Figure 2 (right). Note
that for the negation gadget we have at least 2m + 1 monochromatic crossings if a and b have
the same color. However, if a and b have different colors, this gadget can again be colored
without monochromatic crossings.

Figure 2 A wire gadget (left), a split gadget (middle) and a negation gadget (right).
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It remains to construct the clause gadgets. For any two literals that form a clause, draw
two corresponding segments a and b and a segment ¢, called tree segment, such that both
a and b cross t. Further, we draw two additional segments ¢ and d, where ¢ crosses only
a and d and d crosses only b and c. See Figure 3 for an illustration. Assume that ¢ is colored
red. If both a and b are blue, coloring ¢ and d without obtaining a monochromatic crossing
is impossible, but we can color ¢ and d such that we have only one monochromatic crossing.
The same holds if both a and b are red, but in this case there are also two monochromatic
crossings between ¢, a, and b. If a is red and b is blue or vice versa, we have a monochromatic
crossing between a or b and t, but we can color ¢ and d such that they are not involved in any
monochromatic crossing. So, to summarize, every clause requires at least one monochromatic
crossing and we have a coloring with exactly one such crossing unless a and b have the
same color as ¢, in which case the clause requires at least three monochromatic crossings.
In our construction, the colors of the tree segments will represent the false state. Hence,
any satisfied clause can be drawn with only one monochromatic crossing, while unsatisfied
clauses require at least three monochromatic crossings.

N .

Figure 3 A clause gadget and some possible colorings of it. Monochromatic crossings are marked
with small circles.

Using these gadgets, we construct a line segment arrangement that goes essentially along
the edges of the given drawing of G(¢). To enforce that the tree segments have the same
color, we connect them using wire gadgets according to the drawing of T'. Let S be the line
segment arrangement obtained by this construction. See Figure 4 for a small example.

T

(z VvV —w) (zVy)

(wV z) (yV —2)

Figure 4 A drawing of G(¢) for the 2-SAT formula ¢ = (z V —-w) A (x Vy) A (wV 2) A (y V —z),
with a tree T' connecting the clauses (left) and the segment arrangement derived from this drawing
(right). Dashed edges correspond to sets of 2m + 1 line segments.

Next we show that there is an assignment satisfying at least m — k out of the m clauses of ¢
if and only if there is a 2-coloring of the segments of S with at most m + 2k monochromatic
crossings, for any 0 < k < m.

EuroCG’'18
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First assume that there is a 2-coloring of the segments of S with at most 2k + m < 3m
monochromatic crossings. As each of the m clause gadgets needs at least one monochromatic
crossing, at most k clause gadgets can have three (or more) monochromatic crossings.
Furthermore, in each wire gadget, the segments corresponding to a and b in the illustration in
Figure 2 (left) must have the same color. Otherwise the gadget alone would already contain
at least 2m + 1 monochromatic crossings and hence the whole drawing would contain at least
2m+14+m > 3m+ 1 monochromatic crossings, a contradiction. For the same reason, all tree
segments have the same color and furthermore the segments corresponding to a, b, and v’ in
a split gadget share the same color; and in any negation gadget, the segments corresponding
to a and b must have different colors. Hence, interpreting the color of the tree segments as
representing the false state and assigning the truth states to the variables in ¢ according to
the color of their respective variable gadgets, we obtain a variable assignment for ¢ with at
most k unsatisfied clauses.

For the other direction, assume that there is an assignment satisfying at least m — k
clauses of ¢. Color the variable gadgets blue if the corresponding variable is assigned the
true state, and red otherwise. Color the tree segments in red and all the gadgets, except the
clause gadgets, without monochromatic crossings. Then the only monochromatic crossings
occur in the clause gadgets. Each of them induces one monochromatic crossing, and two
more if and only if the corresponding clause is unsatisfied. As there are at most k unsatisfied
clauses the coloring has at most 2k + m monochromatic crossings.

It is not hard to see that the line segment arrangement S can be constructed in polynomial
time, which concludes the NP-hardness part. Furthermore, the problem is clearly in NP as it
is a restricted version of the NP-complete problem MAX-CuUT, which finishes the proof. <«
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—— Abstract

We study non-monochromatic and conflict-free colorings on tree spaces, that is, one-dimensional

spaces with a tree topology. More specifically, we analyze the number of colors needed to color a
set A of n objects in a tree space T with & leaves, with each object being a connected subset of T,
in a non-monochromatic or conflict-free fashion. We prove that there exists a non-monochromatic
coloring with O(min(¢, v/k)) colors, where ¢ denotes the maximum number of leaves of any object
in A. This bound is tight in the worst case. This result implies that there exists a conflict-free
coloring with O(¢log k) colors.

1 Introduction

Conflict-free colorings, or CF-colorings for short, were introduced by Even et al. [4] and
Smorodinsky [8] to model frequency assignment to base stations in wireless networks. In the
basic setting one is given a set S of objects in the plane—often disks are considered—and
the goal is to assign a color to each object such that the following holds: for any point p
in the plane such that the set S, := {D € S | p € D} of objects containing p is non-empty,
Sp must contain an object whose color is different from the colors of the other objects
in Sp,. Even et al. proved, among other things, that any set of disks admits a CF-coloring
with O(logn) colors. Since then many different geometric variants of CF-colorings have been
studied. For example, Har-Peled and Smorodinsky [5] generalized the result to objects with
near-linear union complexity, while Even et al. [4] considered the dual version of the problem.
See the survey by Smorodinsky [10] for an overview. A restricted type of CF-colorings are
unique-maximum colorings (UM-colorings), in which the colors are identified with integers,
and the maximum color in the set S, is required to be unique. Another type of coloring,
often used as an intermediate step to obtain a CF-coloring, is non-monochromatic (NM). In
an NM-coloring—sometimes called a proper coloring—we only require that, for any point p
in the plane, if the set S, contains at least two elements, not all of them have the same color.
Smorodinsky [9] showed that if an NM-coloring on n elements using 5(n) colors is given, one
can create a CF-coloring using O(/(n) logn) colors.

CF-colorings can also be defined in a more abstract setting. Here one is given a hypergraph
H = (V, E) and the goal is to color V such that for every (non-empty) hyperedge e € E, there
is a vertex in e whose color is different from that of the other vertices in e. Ashok et al. [2]
showed that deciding whether a given hypergraph can be CF-colored using k colors is
fixed-parameter tractable. Note that the basic geometric version mentioned above—coloring
objects in R? with respect to points—can be phrased in terms of hypergraphs by letting the
objects be the vertex set V and for each point p in the plane creating a hyperedge e := S,.

* MdB and AM are supported by the Netherlands’ Organisation for Scientific Research (NWO) under
project no. 024.002.003. BA has been supported by NSF Grants CCF-11-17336, CCF-12-18791, and
CCF-15-40656, and by BSF grant 2014/170.
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Another avenue for constructing a hypergraph H to be colored is to start with a graph G,
let the vertices of H be the vertices of G and create hyperedges for (the sets of vertices
of) certain subgraphs of G. For example, Pach and Tardos [7] considered the case where
hyperedges are all the vertex neighborhoods. For this case, Abel et al. [1] recently showed
that a planar graph can always be colored with only three colors, if we allow some vertices
to be uncolored. (Otherwise, we can use a dummy color, increasing the number of colors to
four.) As another example, we let the hyperedges be induced by all the paths. This setting
is equivalent to an older notion of vertex ranking [3], also known as ordered coloring [6].

In this paper we study CF- and NM-colorings in a setting that is closely related to both
the geometric and the graph-based setting. More precisely, the spaces that we consider are
tree spaces—that is, one-dimensional spaces with a tree topology—and the objects that we
want to color are connected subsets (in other words, subtrees) of the given tree space. In this
setting, we are interested in how the complexity of the given tree space and of the objects
to be colored influence the chromatic number. Note that, if the given tree space is a single
curve, the problem reduces to coloring intervals on the real line.

Our contributions. Let 7 be the given tree space. It may be convenient to visualize T as
being embedded in R2, although the embedding is actually immaterial. We assume without
loss of generality that 7 is bounded—it does not have infinitely long branches—and define the
vertices of T in the natural manner. Any vertex of 7 is either an internal vertez (a branching
point of degree at least three) or a leaf. The curves connecting the vertices, whose union
is T, are called the edges of the tree space. We denote the number of leaves of T by k.

Let A be the set of n objects that we wish to color, where each object T' € A is a
connected subset of 7. Thus each object itself is also a tree. From now on, we will refer to
the objects in A as “trees”, and always use “tree space” when talking about 7. We denote
the maximum number of leaves of any tree in A by ¢. Note that internal vertices of a tree are
necessarily internal vertices of T, but leaves of a tree may also lie in the interior of an edge
of 7. CF-colorings of such a set A are now defined as above: for any point p € T, the set
Sp:={T € A|pe T} (if non-empty) should have a tree with a unique color. We now define
the CF-chromatic number X'1°*""**(k, ;n) as the minimum number of colors sufficient to
CF-color any set A of n trees of at most ¢ leaves each in a tree space of at most k leaves.
The NM-chromatic number Xtree:tree(k (:n) is defined similarly. We will show that?

nm

» Theorem 1.1 (Main result).
(i) Xtreetree(k f:n) < min(f + 3,2V6k + 2), and (i) X" (k, £;n) = O(Clog k).

In the full version we also (a) show how to use two fewer colors in part (i) of the

theorem and (b) provide two lower bounds for NM-colorings, namely X%¢®tee(f f:n) >
min (6 +1, {7”;8% ,n), which clearly also apply to CF-colorings, and X 1°"*°(k, (;n) >
[logy min(k,n)]; and (c) study other variants, for example by considering more general

network spaces (rather than tree spaces) and other types of objects to be colored.

2 The coloring algorithms

Preliminaries: The chain method. We start by describing a folklore technique, called the
chain method, to color intervals in R! in a non-monochromatic fashion using at most two

! Obviously the number of trees, n, is an upper bound as well. To avoid cluttering the bounds, we usually
omit this trivial bound.
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Figure 1 The original tree T' (left), the set UeeE(T) eNT (middle), and the new tree 7" (right).

colors. We order the intervals left-to-right by their left endpoints (in case of ties, we take
the longest interval first) and color them in this order using the so-called active color which
is defined as follows. We start with blue as the active color. We color the first interval,
then change the active color to red. We then use the following procedure: we color the
next interval I in the ordering using the active color, then if the right endpoint of I is not
contained in any other colored interval, we change the active color from red to blue or blue
to red. It is easy to show the resulting coloring is non-monochromatic.

Overview of the coloring procedure. Let 7 be a tree space and let A be a set of n trees
on T, each with at most ¢ leaves. We will NM-color A in two phases: first, we select a
subset C C A of size at most 6k — 12 and color it with at most min(¢ + 1,2v/6k) colors. In

the second phase we extend this coloring to the whole set A using at most two extra colors.
An edge e of T is a leaf edge if it is incident to a leaf; the remaining edges are internal.

We define C C A as the set of at most 6k — 12 trees selected as follows. For every pair (e, v),
where e is an edge of T and v is an endpoint of e that is not a leaf of T, we choose two trees
containing v and extending the furthest into e (if they exist), that is, trees T of A containing v
for which length(T N e) is maximal, and place them in A(e,v). Note that if two or more
trees of A fully contain e, then A(e,v) contains two of them, chosen arbitrarily. Note also
that, if a tree contains an internal edge e fully, it may be chosen by both endpoints. We now
define A(e) := A(e,u) U A(e,v) for each internal edge e = {u, v}, define A(e) := A(e,v) for
each leaf edge e = {u, v} with v being its non-leaf endpoint. Finally, we define C := (J A(e),
with the union taken over all edges e of T. Since A(e) contains at most four trees for any
internal edge e and at most two trees for any leaf edge e, and since the number of internal
edges of T is at most k — 3 and the number of leaf edges is at most k, where k is the number
of leaves of T (which, as a topological tree, does not have degree-two vertices), |C| < 6k — 12,
as claimed. We first explain how to color C.

Coloring C. We color C in two steps. Let E(T) be the set of edges e of T with T' € A(e).

Firstly, if £ > 21/6k we select all subtrees T with |E(T)| > v/6k, and give each of them a
unique color. Since 3, |A(e)| < 6k — 12 there are at most v/6k — 1 such trees, so we use at
most v/6k — 1 colors. Then for each uncolored T' € C we create a new tree T”, defined as the
smallest tree containing (J ¢ (1) €M7’ see Fig. 1. Note that 7" has at most £ := min(¢, V6k)
leaves because |E(T)| < v/6k. Define €' := {T" | T € C}. The second step is to color C’. We
need the following lemma, which shows that an NM-coloring of C’ carries over to C.

» Lemma 2.1. Any NM-coloring of C' corresponds to an NM-coloring of C, that is, if we give
each tree T € C the color of the corresponding tree T’ € C' then we obtain an NM-coloring.
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non-monochromatic

singly-colored

uncolored

Figure 2 A coloring of trees (left) and an illustration of the invariant for v (right).

Proof. Let ¢ be a point on an edge e of 7 contained in at least two trees of C (if no such
trees exists, the coloring is trivially non-monochromatic at g). Since ¢ is contained in at least
two trees of C, it is also contained in two trees of A(e). Call these trees 77 and T,. Note
that T either receives a color in the first coloring step—namely when |E(T})| > 2v/6k—or
T] € C' contains ¢ (since e € E(T})). A similar statement holds for T5. Since the colors used
in the first step are unique and C’ is NM-colored, this implies that T} and T5 have different
colors. Hence, C is NM-colored. |

Next we show how to NM-color C’. Fix an arbitrary root r of the tree space 7. Our
coloring procedure for C’ maintains the following invariant: any path from r to a leaf v
of T consists of three disjoint consecutive subpaths (some possibly empty), in this order, as
illustrated in Fig. 2:

a non-monochromatic subpath containing the root on which at least two trees are colored

with at least two different colors,

a singly-colored subpath containing exactly one colored tree, and

an uncolored subpath containing the leaf on which no tree is colored.

» Observation 2.2. Any set of trees containing r and satisfying the invariant described above
1s NM-colored if we disregard uncolored trees.

We color the trees T' € C’ that contain r in an arbitrary order, using ¢’ + 1 colors, as
follows: for each leaf v of T', we follow the path from v to the root r to find a singly-colored
part. Note that if we find a singly-colored part—by the invariant there is at most one such
part on the path from v to —we cannot use that color for T. Since T has at most ¢’ leaves,
this eliminates at most ¢’ colors. Hence, at least one color remains for 7.

» Lemma 2.3. The procedure described above maintains the invariant and colors all trees
of C' containing r with at most £’ + 1 colors.

Proof. Suppose the invariant holds before the coloring of 7. Then we need to make sure the
invariant still holds after T" has been colored. Let w be a leaf of 7 and 7, the path from w
to the root. If 7, does not contain a leaf of T" then the invariant obviously still holds on .
Now suppose 7, contains a leaf v of T', and let w, C m, be the path from v to r. The part
of m, that was uncolored (if it was non-empty) now is singly-colored. The part that was
singly-colored now becomes non-monochromatic, as we eliminated that color for T. And
the part that was already non-monochromatic stays so. Therefore the invariant is indeed
maintained for m,, concluding the proof. |

Once all the trees containing r are colored we delete r from 7T, that is, we consider the
space T \ {r}, and we take the closures of the resulting connected components. This creates
a number of subspaces such that each uncolored tree in C’ is contained in exactly one of
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Figure 3 When recursing on the subspace rooted at 7’ (leftmost), the invariant does not hold
anymore (middle left), as the parts are switched on the edge between r and r’. To remedy this, we
first color the tree extending the furthest into that edge (middle right), starting from r’. We then
trim the tree to fix the invariant (rightmost).

them. Consider such a subspace 7' and let 7" be the neighbor of r in 7’. We now want
to recursively color the uncolored trees in 7, taking 7’ as the root of 7’. However, the
invariant might not hold on the edge e from 7’ to the old root r: Since now r is considered
a child of 7/, the order of the three parts might switch on e—see Fig. 3. Suppose this is
the case, and let ¢, be the color of the singly-colored part on the edge e. Note that for the
order to switch, the non-monochromatic part needs to end on e, and therefore the only color
used in any singly-colored part of the tree rooted at r’ is ¢.. We overcome this problem
by carefully choosing the order in which we color the trees containing r’. Namely, we first
color the tree T extending the furthest in e. In this case, there is only one color forbidden,
namely c.. We can therefore easily color T. We can then trim the tree space 7' to remove

any non-monochromatic part and hence restore the invariant and continue with the coloring.

» Lemma 2.4. C admits an NM-coloring with min(¢ + 1,2v6k) colors.

Proof. The fact that the procedure above produces an NM-coloring follows from Lemmas 2.1
and 2.3. When ¢ > 2v/6k we use v6k — 1 colors to deal with trees T with |E(T)| > v/6k
and ¢’ 4+ 1 < min(¢, 2v/6k) + 1 < V6k + 1 colors for the other trees, giving 2v/6k colors in
total. When ¢ < 2v/6k we do not treat the trees with |E(T)| > v/6k separately, so we just
use ¢ + 1 < min(¢, \/@) +1 <4+ 1 colors. >

Extending the coloring from C to A. Let ¢: C — N be an NM-coloring on C. We extend
the coloring to A as follows. We start by coloring all trees containing an internal vertex of
T using an arbitrary color already used. Then, for each edge e = {r, '} we color the set of
uncolored trees contained in e using the chain method. For this we use two new colors, which
are used for all chains—we can re-use the same two colors for the chains, since trivially the
chains in any two edges e, e’ do not interact. (In the full version we describe a more careful
approach, which avoids using two new colors.) The following lemma proves the extended
coloring is non-monochromatic.

» Lemma 2.5. Any NM-coloring ¢ on C can be extended to A by using two extra colors.

Proof. Let A; be the subset of trees in A\ C that contain an internal vertex of T, and let
A be the remaining trees in A\ C. By Lemma 2.4 we have an NM-coloring on C, and the
chain method gives us an NM-coloring for the trees in As using two additional colors. It is
easy to see that together this gives us an NM-coloring on CU As. The trees in A; received an
arbitrary color already used. To prove that this gives an NM-coloring for 4 =C U A; U As,
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it suffices to prove that each tree T' € Ay is doubly-covered by C, that is, any point ¢ € T is
contained in at least two trees in C. To this end, let e be an edge such that g € e. Then,
since T ¢ C and T contains an endpoint v of e, the two trees in A(e, v) contain ¢q. Hence, T
is doubly-covered by C, as claimed. |

Proof of Theorem 1.1. For the NM-coloring part of the theorem, we use Lemmas 2.4 and 2.5.
For the second part, if £ > 2v/6k we again reduce C to C’ using at most v/6k — 1 colors. Then
use the result by Smorodinsky [9] on the NM-coloring on C’ provided by Lemma 2.3. Since this
coloring uses at most ¢/ + 1 colors and |C’| < 6k — 12, the CF-coloring uses O(£log k) colors.
We then extend the coloring to A using similar techniques as for the NM-coloring. This
coloring uses O(vklog k) colors if £ > 2v/6k, which is in O(¢log k), and directly O(¢log k)
colors otherwise. Note that a direct application of the result by Smorodinsty [9] would give
a O(¢logn) bound instead. <

3 Concluding remarks

We studied NM- and CF-colorings on tree spaces, where the objects to be colored are
connected subsets of the tree space. We showed that the number of colors can be bounded
as a function of the complexity (that is, number of leaves) of the tree space and the objects,
rather than on the number of objects. In the full version we show that this is also the case for
balls on network spaces. It would be interesting to find more settings where this is the case.
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—— Abstract
A consistent expansion of the well-spread dynamic two player split-screen to a larger number of

players is introduced and formally defined. Unfortunately such a pure solution does not exist, as
is proven in this paper. A visually appealing approximation is presented and discussed.

1 Introduction

1.1 Motivation through Multiplayer Games

In the early days of 2d computer games, most local multiplayer games were played on a
single screen. Newer gaming consoles revived this scenario for multiple players in front of a
single television set or console display.

This leaves two options to the developer: either all players have to stay very close to each
other in the virtual realm, or each player has its own independent window to the game’s
world and is allowed to stroll around freely. The former case severely limits gameplay while
the latter case requires a subdivision of the physical screen space into as many independent
windows as players participating. The most obvious and often used subdivisions for two
players are horizontally or vertically in the respective center. Applying both subdivisions
simultaneously solves the typical four player scenario.

The mentioned stationary horizontal and /or vertical subdivisions have multiple drawbacks,
we are going to tackle in this paper:

1. If two players stand right next to each other, both their windows would show the exact
same surroundings, essentially wasting half of the total screen space.

2. Multiplayer games might want to hint the players on their relative positions, e.g. player
one being left and slightly above player two. This requires additional display elements
like arrows, further cluttering the screen.

1.2 Dynamic Split-Screens to the Rescue

The two problems mentioned above can be fixed with a single simple concept often called
“dynamic split-screen”. A simple variation of it already appeared in a game in 1983 [2] basically
only solving the first mentioned drawback. Developers sporadically used and improved it
to also solve the second drawback ever since without much scientific interest. It realizes
the simple idea, that the separating line between two players need not be static but might
change and even vanish according to the player positions, as indicated in figure 1.

For two players there is not a lot of math to it. The separator in screen space is
perpendicular to the vector between the player positions in world space, and can therefore
be computed with a single arctan.

1.3 Formal Problem Formulation

Note that there is no ground truth. All criteria were chosen with aesthetics, fluent graphics
and gameplay in mind.
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Figure 1 The separator (red) changes its orientation dynamically according to the player positions
(green, blue) while they move (arrows). It will vanish for players being close to each other (right
image).

The following definition is helpful to simplify writing.

» Definition 1.1. Let the sum of a polygon P and a vector v be the polygon translated by
that vector, i.e. the vector added to every point of the polygon: P+v = {p+v|p € P}.

Today game worlds are massive in size but usually not infinite. We consider them finite
and surrounded by thick impassable walls, so we can treat them as infinite here.

» Definition 1.2. The world space is R?. Players move continuously through the world with
position w;(t) € R? for player i at time t.

The display hardware has a fixed amount of pixels and a given aspect ratio, but we
abstract this and use a square with real coordinates.

» Definition 1.3. The screen space is [—1, 1]2. The screen space position for player ¢ at time
t is denoted by s;(t) € [—1,1]*.

Since every coordinate used here is time dependent, the parameter ¢ is omitted throughout
the paper to avoid cluttering. A “scene” with fixed ¢ is considered and the following main
definition must hold for every t.

» Definition 1.4. A fair voronoi split-screen for n players comprises a set of n convex
polygons Sy, ..., S,—1 forming a subdivision of the screen space, one for each player, and
one designated point (screen space position) inside each S;, fulfilling the following criteria:

1. Fair: All S; have equal area.

2. Direction-indicating: If S; and S; share a boundary, this boundary would be parallel
to the bisector of w; and wj.

3. Fusible: If S; and S; overlap in world space, formally (S; — s; + w;)N(S; — s; +w;) # 0,
the boundary between S; and S; would be omitted, thereby fusing S; and S;.

4. Centered: s; is the center of the inscribed circle of S; for all non-fused S;. If S; is fused
with one or more other polygons Sj, Sk, ..., the centroid eV of w;, Wj, W, ... is mapped
to the centroid cf of the inscribed circles of S;, Sj, Sk, ... and s; < cf + w; — cfv.

5. Continuous: Just as w; moves continuously, so too s; and the boundary vertices of .S;.

Fairness is obvious from a gameplay perspective, direction-indication and fusibility are
the requested features from section 1.1, centeredness helps providing good visibility in every
direction, and continuity is required for aesthetics and fluent animation.

Figure 2 illustrates parts of the definition. The three equally sized (fair) S; are depicted
including the corresponding s; (centered). The red boundaries have the correct angles
(direction-indicating). In figure 2b two screen space regions are fused.
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(a) All three players are sufficiently far away (b) The screen space regions for the green and
from each other in world space, resulting in yellow player overlap in world space, hence
three disjoint screen space regions. they become visually fused in screen space.

Figure 2 Three players (thick squares in green, blue, yellow) with their respective region in screen
space, the shared boundaries of the S; in red, and the relative positions of the S; projected to world
space (colored polygons at the bottom).

Parts of definition 1.4 resemble the well-known voronoi diagram [3]. Hence the name
voronoi split-screen became commonly accepted. Do not jump to conclusions because
observation 1.6 tells us that we are not dealing with normal voronoi diagrams here.

» Observation 1.5. The dynamic split-screen for two players mentioned in section 1.2 equals
the voronoi diagram of the two player positions and fulfills definition 1.4.

» Observation 1.6. The voronoi diagram of n > 2 players in world space scaled uniformly
to screen space usually violates the fairness and centeredness conditions, while providing
direction-indication and being fusible. Therefore it is not a fair voronoi split-screen.

1.4 Related Results

The two player dynamic/voronoi split-screen appears quite often in games without special
emphasis, but only a few approaches for more than two players exist.

At GDC 2016 Eiserloh presented an approach [4]. They build the voronoi diagram of the
player positions in world space, map it to screen space, and reposition the player in screen
space to be the center of the inscribed circle in their corresponding area. Although the last
step guarantees a nice centeredness, the split-screen is neither fair, nor continuously fusible.

A different implementation, utilizing only the GPU, was made freely available by an
author with the pseudonym gorsman [5]. The voronoi diagram is used directly and hence the
cells are nicely fusible, but the split-screen is neither fair, nor centered.

Both mentioned approaches are expandable to an arbitrary number of players without
further complications. They lack fairness and either centeredness or fusibility.

EuroCG’'18
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2 Fair Voronoi Split-Screens are Almost Impossible

The fact that no fair split-screen by definition 1.4 is known for at least three players becomes
quite understandable, as the following theorem states their non-existence.

The proof is quite lengthy, so it is given in two lemmas. Both consider the following case
to derive a contradiction:

Let three players be positioned in world space at wo = (0,2),w; = (0, —2), ws = (100, 0).
wy and wy are close to each other, but their distance is slightly larger than the screen space’s
side length. ws is very far to the right, vertically between wy and w;. Obviously no two
regions can overlap in world space, hence fusion is prohibitive in this setting.

» Lemma 2.1. S, 51,55 all pairwise share a bounding edge (“they are neighbors”).

Proof. Since Sy, S1, .52 are convex polygons with equal area and they form a subdivision of a
square, either all are neighbors and we are done, or one polygon must separate the other two.
Since the angles of possible boundary edges are fixed by the direction-indication property,
one can go through all three cases and show that a correct subdivision is impossible under
these circumstances. Illustrated in figure 3a is the case where S should separate Sy and S.
Hence no polygon can separate the other two. <

» Lemma 2.2. Fair Voronoi Split-screens are impossible for three players.

Proof. Since Sy, 51,52 must be pairwise neighbors in screen space by lemma 2.1, and the
angles of their pairwise boundaries are given by the direction-indication property, we have
two possibilities:
Try to keep all 5;5; parallel to the corresponding w;w;. The only angle preserving
transformation of the player positions from world space to screen space is uniform scaling.
Since ws is far away, the scaling factor must be very small, and therefore the distance
between sy and s; becomes very small.
The common boundary of Sy and S7 must be between sy and s; which are very close to
each other, hence there is no placement for the boundary with sy and s; being centered
in their respective polygons, see figure 3b.
Parallelity is not preserved from world space to screen space. Let x,y be two players
where the shared boundary between S, and Sy, is perpendicular to w,w, due to direction-
indication, but not perpendicular to 5;5,. Let player x and y move towards each other
on the line wyw,, effectively not changing the angle of the boundary of S; and S,. At
some point w, = wy, but s, # s, see figure 3c. This motion is not continuously fusible.
The only two possibilities are either not centered or not continuous and therefore contradict
definition 1.4. <

» Theorem 2.3. Fuair Voronoi Split-screens are impossible for three or more players.

Proof. For any number larger than three, we place the first three players as in the proof for
lemma 2.2 and the others reasonably far to the right of the first three points. For the local
situation of the first three players, the proof of the three player case applies respectively. <«

3 A Quasi-Solution for Three Players

As established in the previous sections, a fair voronoi split-screen exists and is easy to
implement for two players, while being impossible—and therefore obviously quite hard to
implement—for three or more players.
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Figure 3 Illustrations for several parts of the main lemma’s proof.

Since the proposed split-screen might appear in fast-paced games and the human eye is
sluggish, some minor violations of the properties in definition 1.4 could be tolerable. The
maybe most noticeable violation would be disruptions in the continuous movement and
fusion, while a slight deviation in area sizes or centeredness could go unnoticed.

The presented algorithm 1 will utilize a relaxed centeredness condition to achieve fairness,
fusibility and a smooth movement. It starts by computing the screen space regions. Collinear
(or “almost collinear” for numeric stability) player positions are handled as a special case
because their voronoi diagram has no voronoi vertex with finite coordinates. Otherwise the
voronoi diagram is computed and moved around until all voronoi cells in the intersection
with the screen space have almost equal area. Since we work with a finite amount of pixels
in the end, a reasonable error threshold would be 0.01.

Computing the s; involves the “cheating” and violates the centeredness condition for
close-by player positions. The real center is computed and then slightly offset towards the
centroid from definition 1.4 scaled by the distance to the other players.

Afterwards fusibility is checked for all regions. If all are fusible, all three players would
act in the same window to the game world. Otherwise only two or none are fused. The
OpenGL stencil buffer [1] or a similar tool can be used to limit the rendering to an arbitrarily

shaped region of the screen space. Rendering the game world is always the same procedure,
only translated individually for each region.

4| Conclusion & Room for Lots of Variations

Fairness and centeredness are both very important gameplay aspects. This is the first solution
to provide both almost always, and its the first fair split-screen ever. The impossibility to
achieve all naturally desired features is shown. The approximation is visually quite close to
the (non-existing) optimum and barely interfering with fast-paced gameplay.

Quasi-solutions for more than three players remain a mystery. It seems, that fairness
becomes much harder to achieve for more than three players. Maybe fairness and direction-
indication together are impossible for a large enough number of players.

Many variations are possible: different kinds of “center”, i.e. intentionally misplaced with
more visibility in front than in the back, allow different sizes where stronger/faster units
have a larger area, relaxed direction-indication condition by a few degrees. Let’s discuss. ..
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1 if wq, w1, ws are collinear on line L then
2 S0, 51,8 + find two copies of L1 dividing the screen space into three equally
sized parts

3 else

4 V' D < compute voronoi diagram of wq, w1y, ws

5 v < sole voronoi vertex of V. D

6 translate vv (and the complete diagram with it) to (0, 0)

7 repeat

8 So, S1,S2 < cells of VN screen space

9 compute area sizes s; of all S;

10 error <~ max-_, 8; — min?_g s;

11 translate vv by an amount scaled by error in the general direction of largest 5;
12 until error small enough,;
13 for i < 0 to 2 do
14 ‘ center; < compute center of .S;
15 for i < 0 to 2 do
16 s; < is obtained by linear interpolating between center;, and the midpoint of

center; and the center of its closest neighbor, weighted with their distance
17 foreach (7, j) € {(0,1),(0,2),(1,2)} do

if (S; — center; + w;) N (S; — center; + w;) # 0 then

19 ‘ mark S; and S; as fusible

20 if Sy, 51,52 all marked as fusible then

18

21 ‘ render world centered at & (so — wo + 51 — w1 + 52 — w2) — VU
22 else if only two regions marked as fusible: S, S, then

23 set stencil mask to Sphon-fusible

24 render world centered at Spon-fusible — Wnon-fusible — VU

25 invert stencil mask

26 render world centered at % (S — Wq + Sp — wp) — VO

27 else

28 for i+ 0 to 2 do

29 set stencil mask to S;

30 render world centered at s; — w; — vv

Algorithm 1: Computing an almost fair voronoi split-screen for three players
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—— Abstract

In many domains, the aggregation or classification of data elements leads to various intersecting
sets. To allow for intuitive exploration and analysis of such data, set visualization aims to
represent the elements and sets graphically. In more theoretical literature, such set systems are
often referred to as hypergraphs. A support graph is a notion for drawing such a hypergraph,
understood as a regular graph spanning the same vertices (elements), in which each hyperedge
(set) induces a connected subgraph.

In this paper, we investigate finding a support graph of a hypergraph with fixed vertex loca-
tions under various constraints. We focus on enforcing planarity using a straight-line embedding,
while minimizing the total length of the edges of the support graph, and consider the effect of
the additional requirement that the support graph is acyclic.

1 Introduction

Intersecting sets are used in many domains to model various ways of clustering, grouping or
aggregating measurements or data elements. To allow for effective exploration and analysis
of such set systems, visualization is often used. Indeed, set visualization is an active subfield
of information visualization; Alsallakh et al. [3] recently surveyed it. We focus on the case
where elements have fixed positions in the plane, arising e.g. from geospatial locations.

On the theoretical side, such a set system is often referred to as a hypergraph H = (V, S),
with a set of vertices V' (elements) and hyperedges S (sets), where each hyperedge s € S is
some nonempty subset of V. A support graph of a hypergraph H = (V, S) is a (regular) graph
G = (V, E) on the same vertex set such that every hyperedge s € S induces a connected
subgraph in G [8]. In the remainder, we assume that V is a set of points in the plane and
that a support graph is embedded using straight-line edges.

Though there are various ways of visualizing sets, support graphs match to a popular
style in set visualization, namely that of connecting elements using colored links, such as
seen for example in Kelp-style diagrams [9, 13] (see also Fig. 1) or LineSets [2]. Finding
an embedded support graph that satisfies certain criteria therefore readily translates into a
good rendering of the corresponding set system. A “good” support graph should avoid edge
crossings, a standard quality criterion in the graph-drawing literature [14]. Moreover, as per
Tufte’s principle of ink minimization [15], it should have small total edge length.

* This work was started at Dagstuhl seminar 17332, Scalable Set Visualizations. T. Castermans is
supported by the Netherlands Organisation for Scientific Research (NWO, 314.99.117). W. Meulemans
is partially supported by the Netherlands eScience Centre (NLeSC, 027.015.G02).

34th European Workshop on Computational Geometry, Berlin, Germany, March 21-23, 2018.
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Figure 1 (a) A set system with colors indicating set membership. (b) The shortest plane support
of the corresponding hypergraph. (c) A Kelp-style rendering of the set system.

Contributions In Section 2, we explore theoretical properties of requiring planarity. In
particular, if there is at least one vertex that occurs in all hyperedges, then a plane support
tree exists. However, we show that the minimum spanning tree on these vertices is not
necessarily contained in any support tree or graph that is an approximation of the shortest
one. An analogous statement holds for plane versus nonplane support trees. In Section 3,
we turn to computational aspects and show that finding a plane support tree or graph with
minimal total edge length is NP-hard, even for only two hyperedges that are disjoint or if one
contains the other. In Section 4, we sketch an integer linear program to solve the problem.

Related Work Regarding support graphs for elements with fixed locations, some results are
already known. The results of Bereg et al. [5] imply that existence of a plane support tree
for two disjoint hyperedges can be decided in polynomial time; this readily implies the same
result for a plane support graph. To the best of our knowledge, the problem is still open
for |S| > 2; our result proves a sufficient condition but not a necessary one. This problem
has also been studied in a Steiner setting [4], where additional points may be placed. Van
Goethem et al. [16] enforce a stricter planarity than that of planar supports and investigate
the resulting properties for elements on a regular grid, where only neighboring elements can
be connected. However, length of the solution is of no concern in their results.

Without planarity, existence and length minimization of a (nonplane) support tree for
fixed elements can be solved in polynomial time [11,12]. However, acyclicity makes this
problem easier. Indeed, length minimization of a (nonplane) support graph is NP-hard for
three or more hyperedges [1]. In contrast, we show that this is in fact hard for two hyperedges
if we require a plane support graph or tree. Without the planarity requirement, Hurtado et
al. [10] show that length minimization for two hyperedges is solvable in polynomial time.

Planar support graphs without fixed elements have also received attention. For example,
Buchin et al. [8] show that deciding whether a planar support graph exists is NP-hard in
general; this proof readily works for elements with fixed locations, but note that it requires
many hyperedges. In contrast, our result requires only two hyperedges, but uses length
minimization. Brandes et al. [7] investigate support trees without fixed vertex locations,
under the additional constraint that the induced subgraph of each hyperedge is Hamiltonian,
and show that the existence of such a support can be checked in polynomial time.

2 Existential results

Before we study the computational problem of finding shortest plane support trees for a
given hypergraph, we observe that a plane support tree always exists if there is at least one
vertex that is contained in all hyperedges. To see why this is the case, consider the minimum
spanning tree 7' of the nonempty set A = [, g s, which is crossing-free. We can connect
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each remaining point to its closest point in A. The resulting graph is obviously a tree since
we add only leaves to T, it is a support as every hyperedge induces a connected subgraph,
and it is plane as no edge crossings are created when connecting to the closest point in A.
» Observation 1. Consider a hypergraph H = (V,S) with no three vertices in V on a line,
such that (),.qs # 0. H has a plane support tree.

We note that in a support tree the subgraph induced by A must be a connected subtree

ses

in order to satisfy the support property for all hyperedges. Next we show that using the
above idea to start with a minimum spanning tree of A, the length of the resulting support
tree cannot be bounded to be within a constant factor of the shortest plane support tree.

» Lemma 2.1. There is a family of n-vertex hypergraphs H = (V,S) with two hyperedges
S ={r,b} and A=rnNb+#0 such that any plane support tree of H that includes a minimum
spanning tree of A is a factor O(n) longer than the shortest plane support tree.

Proof. The hypergraph family is illustrated in Fig. 2. The set A = {u,v,w} consists of
three vertices whose minimum spanning tree T has length ¢+ 1 and is indicated by the black
edges in Fig. 2(a). The remaining vertices in V' \ A are indicated in red and blue (indicating
membership of r and b) and placed inside a disk of radius ¢ just left of the midpoint of edge
uv. The vertices alternate in colors from left to right and form two mirrored convex chains.

Y

:::: £ eV Uo<‘j?°(ﬂ ‘
o 02 /
ve (a) ve (b)

Figure 2 An n-point instance with approximation ratio O(n) if using a minimum spanning tree
on A. All edges are straight-line segments; curvature just emphasizes the effect of the convex chain.

Since edge uv of T splits the vertices in V'\ A and by their placement on convex chains, the

shortest extension of T into a plane support tree is to connect every vertex to u (Fig. 2(a)).

This yields a total length of the support tree of O(n) - £. If, however, A is connected by
a slightly longer tree, the remaining vertices in V' '\ A can be joined by two comb-shaped
structures as shown in Fig. 2(b). The resulting plane support tree has length of O(1) - ¢. =

The above result also holds if we allow a general plane support graph. By removing the
vertex w from the instance of Fig. 2 one can show in a similar fashion that a plane support
tree, which now necessarily includes the edge wv, is a factor O(n) longer than a shortest
nonplane support tree; this corollary does not immediately generalize to support graphs.

» Corollary 2.2. There is a family of n-vertex hypergraphs H = (V,S) with two hyperedges
S ={r,b} and A=7rNb# 0 such that any plane support tree of H is a factor O(n) longer
than the shortest nonplane support tree.

3 Computing a shortest plane support graph is NP-hard

Let us now turn towards the computational problem of finding the shortest plane support
graph. Unfortunately, this problem and several restricted variants are NP-hard.

» Theorem 3.1. Let H = (V,S) be a hypergraph with vertices V having fived locations in R?
and with S containing two hyperedges r and b such that r C b. It is NP-hard to decide
whether H admits a plane support tree with length at most L for some L > 0.

EuroCG’18
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Proof. We use a reduction from (rectilinear) planar monotone 3-SAT [6]. Here, we are given
a 3-CNF formula ¢ with n variables vq,...,v, and m clauses ci,..., ¢, such that every
clause either has three positive literals or three negative literals. Moreover, we are given
an embedding of ¢ as a plane graph, with rectangular vertices for variables on a horizontal
line, and clauses as rectangles above or below the line (depending on whether the clause is
positive or negative). Vertical edges connect clauses to the variables of their literals. We
assume without loss of generality that the clauses are numbered according to their nesting:
that is, ¢; < ¢; if ¢; is closer to the line of vertices than c; in the embedding.

We must construct a hypergraph H = (V, {r,b}) such that r C b. In the remainder, we
assign vertices to either r (red) or b (blue), understanding that any red vertex is also in b.

First, we place 3(n+1) red vertices using coordinates (3i-(m+1),y) for integers i € [0, n]
and integers y € [—1, 1]. Furthermore, we place n - (3m + 2) blue vertices using coordinates
(3i(m + 1) + 4,0) for integers ¢ € [0,n — 1] and j € [1,3m + 2].

We now place additional blue vertices for each clause ¢,. We assume that this clause has
positive literals for variable v;, v;, and wvy; the construction for clauses with negative literals
is symmetric, using negative y-coordinates instead. First, we place 3a + 1 blue vertices from
(3(i —1)(m+1)+3p,2) to (3(i — 1)(m + 1) + 3p, 2 + 3a) at unit distance, to represent the
incidence from ¢, to variable v;, using the given embedding to determine that c, is the pth
clause incident from above to v;. Analogously, we place the blue vertices for v; and vy. Now,
we place further blue vertices at unit distance with y-coordinate 2 + 3a from the leftmost to
the rightmost top vertex we just placed. The result is given in Fig. 3.

One clause requires at most 3(3m + 1) vertices for the variable incidence and less than
3n - (m+ 1) for the horizontal line connecting these. We can now readily measure the length
of the minimum spanning tree on the blue vertices of one clause. We use L, to denote this
length; note that L, is an integer at most 3(3m + 1) +3n - (m + 1).

The value of L that we select is 2(n+1) +3n - (m+ 1) + n(3m +2) +2m+ 3 o1 1) La-

This finalizes the construction. It is polynomial since we placed 3(n + 1) red vertices and
n - (3m — 2) blue vertices for the variables and at most m - (3(3m + 1) +3n - (m + 1)) for
the clauses: this is O(nm?) vertices. Moreover, we claim that our constructed hypergraph
admits a plane support tree of length at most L, if and only if ¢ is satisfiable.

Assume we have a plane support tree of length at most L. First, we observe that all

Figure 3 Construction for ¢ = (v2 V vz Vva) A (U1 V3 VU5) A (v1 V vz Vvg). Vertices in r and b
are red, vertices in b are blue. A plane support tree with length at most L is given in black lines.
(a) Representation of variable v1; the solution sets v; to true. (b) Representation of the first clause.
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points in 7 must be connected: the minimal way of doing so connects the three vertices with
the same x-coordinate and uses one horizontal line to connect one triplet to the next. This

has exactly length 2(n + 1) + 3n - (m + 1), corresponding to the first two terms defining L.

The minimal way of connecting the lines inside the variables to the red tree takes length
n(3m + 2) in total: this is the third term defining L. Finally, to connect the clause vertices,
we need length at least L, per clause, the last term of L. We note that any solution must
use these constructions on the blue vertices, since all vertices are at unit distance; other blue
vertices are at distance at least 2. However, the support tree is connected: thus it must still
have connections from each gadget to either a red vertex or a blue vertex of a variable. The
budget we have for this is 2m in total. Since each clause needs a connection of length at least
2, all clauses use exactly length 2. The only vertices within distance 2 of a clause are the

three blue vertices of the variables with y-coordinate zero (one of each literal of the clause).

Thus, each clause must have exactly one length-2 edge to one of these variable vertices. Since
the support tree is plane, this cannot cross the horizontal links used to connect the red
vertices. We can now readily obtain a satisfying assignment for ¢, by looking at which of the
two horizontal lines is used to connect the red vertices: if the one at the top is used, that
variable is set to false; it is set to true otherwise.

To prove the converse, assume that we have a satisfying assignment. Using the same
reasoning as above, we can construct the plane support tree by picking the connecting
horizontal lines for the red vertices according to the satisfying assignment: this readily leads
us to conclude that we can connect each clause using a length-2 connection that does not
intersect the horizontal lines for the red vertices. |

We observe that the above proof readily implies that finding the shortest plane support
graph is also NP-hard, as is the case that r is not a subset of b. Moreover, the proof can be
easily adapted to show the other special case of disjoint r and b: this needs slightly more
spacing such that we can add a few extra blue vertices that can be used to connect all the
blue vertices of the variables into a single component using only length-1 edges.

4 Integer linear program

We showed in Section 3 that finding the shortest plane support is NP-hard, and so are several
restricted versions of that problem. It is however possible to formulate these problems as
integer linear programs (ILP), allowing us to leverage effective ILP solvers. Below, we briefly
sketch how to obtain an ILP for a hypergraph H = (V,S).

We introduce variables e, ,, € {0,1}, indicating whether edge uv is selected for the support
graph. This readily allows us to represent a graph with fixed vertices. Because the vertex
locations are fixed, we can precompute edge lengths d,, ., as well as which pairs of edges
intersect. This gives the following basic program

minimize Zu,veV duv - €uw
subject to ey, + ey, <1 forall u,v,w,z € V if edges uv and wz intersect.

What remains is to ensure that the graph is also a support: we need additional constraints
that imply that each hyperedge in .S induces a connected subgraph. To this end, we construct
a flow tree for each hyperedge s. We pick an arbitrary sink for the hyperedge, o, € s, that
may receive flow, and let the remaining vertices in s generate one unit of flow. To formalize

this, we introduce variables fs.. € {0,1,...,]s| — 1} for each s € S and u,v € s with u # v.

We now need the following constraints: (a) the incoming flow at oy is exactly |s| — 1; (b)
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the outgoing flow at oy is zero; (c) except for o, each vertex in s sends out one unit of flow
more than it receives; (d) flow can be sent only over selected edges.

(@) Yues\fo.} foue, =1s|—1 forallses

(b) fsoow =0 for all s € S,v € s\ {os}
(©) XvesfurFfsuw = fspu) =1 forall s € S ues\{o}
(d) Fsuw <euw- (5| —1) for all s € S,u,v € s with u # v

Variants The above ILP results in the shortest plane support graph for H. It can easily
be modified to give a (shortest plane) support tree as well as to penalize or admit a limited
number of intersections. The latter requires additional variables to indicate whether both
edges of a crossing pair are used.
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—— Abstract

We show the exact values of Tverberg numbers of Z? and improve the bounds for Z* and Z7 x R*.

1 Introduction

Consider n points in R? and a positive integer m > 2. If n > (m — 1)(d + 1) + 1, the points
can always be partitioned into m subsets whose convex hulls contain a common point. This
is the celebrated theorem of Tverberg [11], which has been the topic of many generalizations
and variations since it was first proved in 1966. In this paper we formalize new versions of
Tverberg’s theorem where the coordinates of the points are integer. Our opening result closes
a gap in the literature. It deals with a Tverberg-type theorem in the case of Z2. According
to Eckhoff [6] it was stated by Doignon in a conference. Doignon (personal communication)
confirmed that this was not published.

» Theorem 1. Consider n points in Z2 and a positive integer m > 3. If n > 4m — 3, then
the points can be partitioned into m subsets whose convex hulls contain a common point in
72,

Such a partition is an integer m-Tverberg partition and such a common point is an in-
teger Tverberg point for that partition. Regarding the case m = 2, the integer 2-Tverberg
partitions are integer Radon partitions. Any configuration of at least 6 points admits an
integer Radon partition. This was proved by Doignon in his PhD thesis [5] and later dis-
covered independently by Onn [10]. All these values are optimal as shown by following
examples. The 5-point configuration {(0,0), (0,1),(2,0)(1,2),(3,2)}, exhibited by Onn in
the cited paper, has no Radon partition. To address the optimality when m > 3, consider
the set {(¢,i), (4,—i+1):i=—-m+2,—m+3,...,m—2,m—1}. (According to Eckhoff [6],
this set was proposed by Doignon during a conference.) It has 4m — 4 points and a moment
of reflection might convince the reader that it has no integer m-Tverberg partition.

More generally, one can define the Twerberg number Tv(S,m) for a subset S of R? and
an integer m > 2 as the smallest integer number n such that any multiset of n points in S
admits a partition into m subsets A1, As, ..., A,, with

(ﬁ conv(Ai)> NS #w.

(Here, by “partition of a multiset”, we mean that each element of a multiset A is contained
in a number of subsets that does not exceed its multiplicity in A.) Theorem 1 together with
the discussion that follows can then be rephrased as

TV(ZQ,m):{ 6 if m =2,

4m — 3 otherwise.
34th European Workshop on Computational Geometry, Berlin, Germany, March 21-23, 2018.
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Our second main result improves the upper bound for the case S = Z3.

» Theorem 2. The following inequality holds for all m > 2:
Tv(Z*,m) < 24m — 31.

Proofs of Theorems 1 and 2 are respectively given in Sections 2 and 3. The strategy of
both proofs is standard: we show that there exists an integer centerpoint (which we define
at the end of this section) of sufficient depth and that this centerpoint is actually a Tverberg
point of an m-Tverberg partition.

Choosing S of the form Z7 x R¥ leads to the “mixed integer” case, which is the common
generalization of the real and the integer cases. Our third main result is an inequality
simultaneously involving the three already considered instantiations of S: real, integer, and
mixed integer.

» Theorem 3. The following inequality holds for all positive integers j and k and allm > 2:
Tv(Z) x R* m) < Tv(Z7, Tv(RF, m)).

Finally, in Section 4, we prove Theorem 3 and collect some consequences of the main
theorems presented above, including the following result:

2(m—1)(k+1)+1<Tv(Z xR¥,m) <2 (m—1)(k+1)+1. (1)

To conclude the introduction we mention a key lemma about integral centerpoints that is
used for proving Theorems 1 and 2. Given a multiset A of points, a point p is a centerpoint
of depth o in A if every closed half-space containing p contains at least o points of A.

» Lemma 4. Consider a multiset A of points in Z. 1If |A| > 2%(m — 1) + 1 (counting
multiplicities), then there is a centerpoint p € Z% of depth m in A.

Although the present version is new, similar lemmas have been used throughout the
literature and their proofs typically rely on some version of Helly’s theorem [7]. We omit the
classical details here, and simply mention that we need the following theorem of Doignon
[4): Tf F is a finite family of at least 2¢ convex subsets of Z¢ such that any 2¢ members of
F have an intersection point in Z¢, there is a point p € Z¢ in every set in F.

In Sections 2 and 3 when we refer to Tverberg partitions or Tverberg points we focus on
integer Tverberg partitions.

Related Results from the Literature

The problem of computing the Tverbeg number for Z¢ with d > 3 seems to be challenging.
It has been identified as an interesting problem since the 1970’s and yet the following in-
equalities are almost all that is known about this problem: For the general case, De Loera
et al. [8] proved

24(m —1)+1 < Tv(z%,m) <d2%(m —1)+1 ford>1and m> 2. (2)
Two special cases get better bounds:
Tv(Z%,2) <17  and  5-2972 41 <Tv(2%2) ford>2. (3)

The left-hand side inequality is due to Bezdek and Blokhuis [2] and the right-hand side was
proved by Doignon in his PhD thesis (and rediscovered by Onn).
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The bounds for the “mixed integer” case include the bounds for the Radon number
(2-Tverberg number) found by Averkov and Weismantel [1].

2(k+1)+1<Tv(Z xR*2) < (j+ k)27 (k+1) —j — k+2.
Later, De Loera et al. [8] gave the following general bound for all Tverberg numbers:

Tv(Z? x RF,m) < (j + k)27 (m — 1)(k +1) + 1.

Note that (1) above is a simultaneous improvement of both of these.

2 Tverberg Numbers over Z*: Proof of Theorem 1

The theorem will follow easily from the following two lemmas, the first covering the case
m > 3 and the second the case m = 2.

» Lemma 5. Consider a multiset A of points in Z* with |A| > 4m —3 andm > 3. Ifp¢ A
is a centerpoint of depth m, then there is an m-Tverberg partition with p as Tverberg point.

» Lemma 6. Consider a multiset A of points in Z> with |A| > 6. If p & A is a centerpoint
of depth two, then there is a Radon partition with p as Tverberg point.

Proof of Theorem 1. Consider a multiset A of at least 4m —3 points in Z2. By Lemma 4, A
has an integer centerpoint p of depth m. If p is an element of A with multiplicity p > 0, then
take the singletons {p} as u of the sets in the Tverberg partition. Then p is a centerpoint of
depth m — p of the remaining 4m — u — 3 points. If 4 > m, we are done, and if u =m — 1,
the point p is in the convex hull of the remaining points and we take them to be the last set
in the desired partition. If u < m — 3, according to Lemma 5, there is an (m — u)-Tverberg
partition of the remaining points with p as Tverberg point. There is thus an m-Tverberg
partition of A with p as Tverberg point. The case = m — 2 is treated similarly with the
help of Lemma 6 in place of Lemma 5 <

Proof of Lemma 5. Since p is not in A, up to a radial projection, we can assume that the
points of A are arranged in a circle around p. Define ¢ and r to be respectively the quotient
and the remainder of the Euclidean division of [A] by m. Define moreover e to be [1].
Suppose first that p is a centerpoint of depth m 4+ e. In such a case, we arbitrarily select
a first point in A, and label clockwise the points with elements in [m] according to the

following pattern:
1,2,...,m,1,2,...,e, 1,2 ....m, 1,2, ....e,1,2,...m,1,2,.. .k,

where k = |A| —gm — (¢ —1)e. Note that we have k < e. Each half-plane delimited by a line
passing through p contains at least m + e consecutive points in this pattern and thus has
at least one point with each of the m different labels. Partitioning the points so that each
subset consists of all points with a fixed label, we therefore obtain an m-Tverberg partition
with p as Tverberg point.

Suppose now that p is not a centerpoint of depth m+e. There is thus a closed half-plane
H, delimited by a line passing through p with |H; N A| < m+e. The complementary closed
half-plane to H, which we denote by H_, is such that |H_NA| > 4m — 3 — (m+e¢). Define
£tobe |H_NA| Since e < %, we have £ > 2m. Denote the points in H_NA by xy,...,x,
where the indices are increasing when we move clockwise. We label x; with r 4+ ¢ from x;
to Tm—r, and then label x,,_,4; with j from @,,_,41 to ®,,. We then continue labeling

EuroCG’'18
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r-1 © 1

Figure 1 Labeling of the points in the half-plane H_.

the points of A, still moving clockwise, using labels 1,2,...,m,...,1,2,...m,1,2,...7. See
Figure 1 for an illustration of the labeling scheme.

The labeling pattern is such that any sequence of m consecutive points either has all m
labels, or contains the two consecutive points x,, and x,,+;. Let us prove that any closed
half-plane H delimited by a line passing through p contains at least one point with each
label. Once this is proved, the conclusion will be immediate by taking as subsets of points
those with same labels, as above.

If such an H does not simultaneously contain x,, and x,,+1, then H contains at least
one point with each label. Consider thus a closed half-plane H delimited by a line passing
through p and containing x,, and x,,+1. Note that according to Farkas’ lemma, ®,,4+1
cannot be separated from x; and x, by a line passing through p, since they are all in H_.
This means that either H contains 1, s, ..., Zmy1, or H contains &,,4+1, Tmi2,-..,2e. In
any case, H contains a point with each label. |

The proof of Lemma 6 is similar and left to the reader for brevity.

3 Tverberg Numbers over Z3: Proof of Theorem 2

We will make use of the following two lemmas. Lemma 7 is a consequence, upon close
inspection of the argument, of the proof of the main theorem in the already mentioned
paper by Bezdek and Blokhuis [2].

» Lemma 7. Consider a multiset A of at least 17 points in R and a centerpoint p of depth
3 in A. There is a bipartition of A into two subsets whose convex hulls contain p.

» Lemma 8. Consider a multiset A of points in R with |A| > 24m — 31 and m > 2. If
p & A is a centerpoint of depth 3m — 3, then there is an m-Tverberg partition of A with p
as Tverberg point.

Proof. Since p is not an element of A, we assume without loss of generality that the points
of A are located on a sphere centered at p, as in the proof of Lemma 5.

We claim that we can find pairwise disjoint subsets X1, Xs, ..., X,,,_o of A, each having p
in its convex hull and each being of cardinality at most four. (Here “pairwise disjoint” means
that each element of A is present in a number of X;’s that does not exceed its multiplicity in
A.) We proceed by contradiction. Suppose that we can find at most s < m — 2 such subsets
X,’s. Then, by Carathéodory’s theorem [3], p is not in the convex hull of the remaining
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points in A.Therefore there is a half-space H delimited by a plane containing p such that
H.NACU;_, X;. On the other hand, since each X; contains p in its convex hull (and we
can assume the X; are minimal with respect to containing p), we have |[H; N X;| < 3 for all
i € [s]. Therefore |[Hy NA| < |Hy N (U;—; Xi)| < 3s < 3(m — 2), which is a contradiction
since p is a centerpoint of depth 3m — 3 in A. There are thus m — 2 disjoint subsets
X1, Xo,..., X,;n_2 as claimed.

Let X denote U?:IQ X;. Consider an arbitrary half-space H, delimited by a plane
containing p. Since |Hy N X;| < 3 for all 4, we have |Hy N X| < 3(m — 2). Furthermore
|[HyNA| >3m—3,s0 |HiN(A\X)| > 3. Since H; is arbitrary, p is a centerpoint of depth
3of A\ X. Also, |A\ X| > |4| —4(m — 2) > 20m — 23 > 17, so Lemma 7 implies that
A\ X can be partitioned into two sets whose convex hulls contain p. With the subsets X,
we have therefore an m-Tverberg partition of A, with p as Tverberg point. |

From these two lemmas we can now finish the proof of Theorem 2.

Proof of Theorem 2. Consider a multiset A of 24m — 31 points in Z3. The case m = 2
is the already mentioned result by Bezdek and Blokhuis. Assume that m > 3. Applying
Lemma 4, A has an integer centerpoint p of depth 3m — 3. If p is an element of A with
multiplicity g > 0, then take the singletons {p} as p of the sets in the Tverberg partition.
If 4w > m, we are done. If u = m — 1, the point p is still in the convex hull of points
in A, and thus we are done. And if u < m — 2, the point p is still a centerpoint of depth
3m —p—3>3(m— p) — 3 of the remaining 24m — p — 31 > 24(m — u) — 31 points. Thus,
we may apply Lemma 8 to get an (m — p)-Tverberg partition of the remaining points, with
p as Tverberg point, and conclude the result. <

4| Tverberg Numbers over Z/ x R*

In this section, we prove Theorem 3. We adapt an approach by Mulzer and Werner |9,
Lemma 2.3] and show how all the results of our paper can be combined to improve known
bounds and to determine new exact values for the Tverberg number in the mixed integer
case.

Proof of Theorem 3. Let t = Tv(R¥,m) = (m — 1)(k + 1) + 1. Choose a multiset A in
77 x RF with |A| > Tv(Z7,t). Tt suffices to prove that A can be partitioned into m subsets
whose convex hulls contain a common point in Z7 x R¥,

Let A’ be the projection of A onto Z’. Since |A’| > Tv(Z?,t), there is a partition of A’
into ¢ subsets Q}, ..., Q} whose convex hulls contain a common point q in Z7. The Q) are
the projections onto Z7 of t disjoint subsets @Q; forming a partition of A. For each i € [t],
we can find a point g, € conv(Q);) projecting onto gq.

The t points qy, ..., q, belong to {q} x R*. As t = Tv(R*,m), there exists a partition
of [t] into Iy, ..., I, and a point p € {g} x R¥ such that p € conv (U,¢;, ;) for all £ € [m].
For each £ € [m], define Ay to be |J;c;, Qi- We have for each ¢ € [m]

P € conv (U qi> C conv (U conv(Qi)> = conv(Ay)

i€ly i€l

and the A, form the desired partition. <
Here are the new bounds and exact values we get:

(a) Tv(Z x R*,m) = 2(m — 1)(k + 1) + 1.

EuroCG’'18
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(b) TV(Z? x R¥,m) = 4(m — 1)(k + 1) + 1.
(c) Tv(Z® x R¥ m) < 24(m —1)(k+1) - 7.
(d) 27(m—1)(k+1)+1 < Tv(Z/ x R¥, m) < j29(m —1)(k+1) + 1.

The lower bound in (d) is obtained by repeated applications of Lemma 9 below, whose
proof, almost identical to that of Proposition 2.1 in [10], is omitted for brevity. The upper
bounds follow from Theorem 3, combined with the fact that Tv(Z, m) = 2m — 1 (consider
the median), Theorem 1, Theorem 2, and the upper bound in Equation (2), respectively.

» Lemma 9. Let j and k be two non-negative integers. Then we have

TVv(Z7T! x R* m) > 2Tv(Z? x R* m) — 2.
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—— Abstract
Updating an abstract Voronoi diagram in linear time, after deletion of one site, has been an open
problem for a long time. Similarly for concrete Voronoi diagrams of generalized sites, other than
points. In this abstract we present a simple, expected linear-time algorithm for this task. We
introduce the concept of a Voronoi-like diagram, a relaxed version of a Voronoi construct, that
has a structure similar to an abstract Voronoi diagram without however being one. Voronoi-
like diagrams serve as intermediate structures, which are considerably simpler to compute, thus,
making an expected linear-time construction possible.

1 Introduction

The Voronoi diagram of a set S of n simple geometric objects, called sites, is a well-known
geometric partitioning structure revealing proximity information for the input sites. Abstract
Voronoi diagrams [7] offer a unifying framework to various concrete instances. Some classic
Voronoi diagrams have been well investigated and optimal construction algorithms exist in
many cases, see [2] for references and more information.

For certain tree-like Voronoi diagrams linear-time construction algorithms are well known
to exist, e.g., [1, 4, 9, 5]. The first technique was introduced by Aggarwal et al. [1] for the
Voronoi diagram of points in convex position, given their convex hull. It can be used to
derive linear-time construction algorithms for other fundamental problems such as updating
a Voronoi diagram of point-sites in linear time, after deleting one site. A much simpler
randomized approach for the same problem has been introduced by Chew [4]. Klein and
Lingas [9] adapted the linear-time framework of [1] to abstract Voronoi diagrams under
restrictions, and showed that a Hamiltonian abstract Voronoi diagram can be computed in
linear time, given the order of Voronoi regions along an unbounded simple curve, which visits
each region ezractly once and can intersect each bisector only once. This construction has
been extended recently to include forest structures [3] under similar conditions, where no
region can have multiple faces within the domain enclosed by a curve. The medial axis of a
simple polygon is another well-known problem to admit a linear-time construction [5].

In this abstract we consider the problem of updating an abstract Voronoi diagram after
deletion of one site and provide an expected linear-time algorithm to achieve this task. To the
best of our knowledge, no linear-time construction algorithms are known for concrete diagrams
of non-point sites, nor for abstract Voronoi diagrams. Related is our expected linear-time
algorithm for the farthest-segment Voronoi diagram [6]. The approach in [6], however, is
geometric, relying on star-shapeness and visibility properties of segment Voronoi regions that
do not extend to the abstract model. In this abstract we provide a new formulation.

Abstract Voronoi diagrams (AVDs). AVDs were introduced by Klein [7]. Instead of
sites and distance measures, they are defined in terms of bisecting curves that satisfy some
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J(p,
D(p,q) (P )
p
D(q,p) q
Figure 1 A bisector J(p, ¢) and its dominance Figure 2 The Voronoi diagram V({p, ¢,7}) in
regions; D(p, q) is shown shaded. solid lines. The shaded region is VR(p, {p, q,7}).

simple combinatorial properties. Given a set S of n abstract sites, the bisector J(p, q) of two
sites p, ¢ € S is an unbounded curve, homeomorphic to a line, that divides the plane into two
open domains: the dominance region of p, D(p,q) (with label p), and the dominance region of
q, D(q,p) (with label q), see Fig. 1. The Voronoi region of p is: VR(p, S) = quS\{p} D(p,q)
and the (nearest-neighbor) abstract Voronoi diagram of S is V(S) = R? \ Upes VR(p, 5), see
Fig. 2. Following the traditional model of abstract Voronoi diagrams [7] an admissible system
of bisectors J is assumed to satisfy the following axioms, for every subset S’ C S:

A1) Each nearest Voronoi region VR(p, S") is non-empty and pathwise connected.

A2) Each point in the plane belongs to the closure of a nearest Voronoi region VR(p, S’).
(A3) After stereographic projection to the sphere, each bisector is a Jordan curve through the
north pole.

(A4) Any two bisectors J(p,q) and J(r,t) intersect transversally and in a finite number of
points. (It is possible to relax this axiom, see [8]).

V(S) is a plane graph of structural complexity O(n) and its regions are simply-connected.
It can be computed in time O(nlogn), randomized or deterministic, see [2]. To update V(S5),
after deleting one site s € S, we compute V(S \ {s}) within VR(s, S). The sequence of sites
along OVR(s, S) forms a Davenport-Schinzel sequence (DSS) of order 2 and this constitutes
a major difference from the respective problem for points where no repetition can occur.

Our results. We give a simple randomized algorithm to compute V(S'\ {s}) within VR(s, S)
in expected time linear on the complexity of 9VR(s, S). The algorithm is simple, not more
complicated than its counterpart for points [4], and this is achieved by computing simplified
intermediate structures. These are Voronoi-like diagrams, having a structure similar to an
abstract Voronoi diagram, without however being such diagrams. We prove that Voronoi-like
diagrams are well-defined and robust under an insertion operation, thus, making possible a
randomized incremental construction for V(S \ {s}) N VR(s) in expected linear time. Our
approach can be adapted (in fact, simplified) to compute, in expected linear time, the farthest
abstract Voronoi diagram after the sequence of its faces at infinity is known; the latter can
be computed in time O(nlogn). Our technique can be applied to concrete diagrams that
may not strictly fall under the AVD model such as Voronoi diagrams of line segments that
may intersect and of planar straight-line graphs (including simple and non-simple polygons).
For intersecting line segments, dVR(s, S) is a Davenport-Schinzel sequence of order 4 [10].

2 Problem formulation

Let S be a set of n abstract sites that define an admissible system of bisectors J = {J(p, q) :
p # q € S}. Bisectors that have a site p in common are called p-related. Two related bisectors
J(p,q) and J(p,r) can intersect at most twice; bisector J(g,r) also intersects with them at
the same point(s) [7]. Since related bisectors in J intersect at most twice, the sequence of
site occurrences along OVR(p, S), p € S, forms a DSS of order 2 (by [11, Theorem 5.7]).
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Figure 4 (a) Arcs «, § fulfill the p-monotone
Figure 3 The domain Ds = VR(s,S) N Dr.  path condition; they do not fulfill it (b) and (c).

To update V(S) after deleting one site s € S, we compute V(S \ {s}) within VR(s, S),
i.e., we compute V(S \ {s}) N VR(s, S); its structure is given in the following lemma.

» Lemma 1. V(S \ {s}) N VR(s,S) is a forest having exactly one face for each Voronoi
edge of OVR(s, S). Its leaves are the Voronoi vertices of O0VR(s,S), and points at infinity if
VR(s,S) is unbounded. If VR(s,S) is bounded then V(S \ {s}) N VR(s,S) is a tree.

We make a general position assumption that no three p-related bisectors intersect at the
same point. This implies that Voronoi vertices have degree 3. We consider a closed Jordan
curve I' large enough to enclose all intersections of bisectors in 7, and such that each bisector
crosses I exactly twice and transversally; the interior of I is denoted Dr. Our domain of
computation is Dy = VR(s,S) N Dr and we compute V(S \ {s}) N Ds, see Figure 3.

Let S denote the sequence of Voronoi edges along OVR(s, S), i.e., S = 9VR(s, S) N Dr.

Each arc a € S is induced by a site s, € S\ {s}, where a C J(s,5,). We can interpret the
arcs in S as sites that induce a Voronoi diagram V(S), where V(S) = V(S \ {s}) N D, see
Figure 7(a). In this respect, each arc a € S has a Voronoi region, VR(«a, S), which is the
face of V(S'\ {s}) N D; incident to a.

In the remaining of this section we define a Voronoi-like diagram for a subset S’ of arcs
in § (Def. 2). To this aim we need some definitions. For a site p € S and S’ C S, let
Tp.sr ={J(,q)|q € S’,q # p} denote the set of all p-related bisectors involving sites in S’

A path P in a bisector system J, s is a connected subset of alternating edges and
vertices in the arrangement of J, s». An arc a of P is a maximal connected set, along P, of
consecutive edges and vertices of the arrangement, which belong to the same bisector. The
common endpoint of two consecutive arcs of P is a vertexr of P; an arc of P is also called an
edge. For an arc « € P, let s, € S be the site that induces a, i.e., a C J(p, $a)-

A path P in J, g is called p-monotone, if any two consecutive arcs «, § € P correspond
to the Voronoi edges in OVR(p, {p, sa, sg}) that are incident to the common endpoint of «, 3
(see Fig. 4). The envelope of J, s/, with respect to site p, is the boundary of the Voronoi
region VR(p, S" U {p}), env(Jp.s:) = OVR(p, S" U {p}). Fig. 5 illustrates two p-monotone
paths, where (a) is an envelope. Notice, S = env(J; s\({s}) N Dr-.

Consider 8’ C S and let " = {5, € S| € 8’} C S\ {s} be its corresponding set of sites.
A boundary curve for 8" is a closed s-monotone path in J; ¢+ UT" that contains all arcs in &'.

Note that we include I in the definition of a boundary curve so that we unify the various
connected components of J; s- and obtain a single curve. The part of the plane enclosed in

Figure 5 (a) The envelope £ = env(J,, (q,rt})- Figure 6 P3 = P& 3, core arc 3* is bold and
(b) A p-monotone path P in J; (q,r}- black. The endpoints of 8 O 8* are z and y.
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Figure 7 (a) illustrates S in black (bold) and V(S) inred, S = («, 3,7, 6,¢,(,n,¥). (b) illustrates
Vi(P) for boundary curve P = (o, 8,7, 8 ,¢,m,9). S = (a, B,7,¢,7n) is shown in bold. The arcs of
P are original except the auxiliary arc 8 and the I'-arc g.

a boundary curve P is called the domain of P, denoted by Dp. Given P, we also use Sp to
denote the set of sites S’.

Figure 7(b) illustrates a boundary curve for 8’ C S, where S is shown bold in Figure 7(a).
S’ can admit several different boundary curves, one being the envelope env(Js s UT). A
boundary curve P consists of pieces of bisectors in J g, called boundary arcs, and pieces of
I, called T'-arcs; T'-arcs indicate the openings of the domain to infinity. Among the boundary
arcs in P, those that contain an arc of S’ are called original and others are called auziliary
arcs. Original arcs are expanded versions of the arcs in §'; to differenciate among them the
arcs in § are called core arcs (shown bold in Figure 7).

» Definition 2. Given a boundary curve P in J, s» UL, a Voronoi-like diagram of P is a
plane graph on J(5’) = {J(p,q) € J | p,q € S’} inducing a subdivision on the domain Dp
as follows (see Figure 7(b)): (1) There is exactly one face R(«) for each boundary arc « of P;
OR(a) consists of the arc o and an s,-monotone path in 7, s» UT. (2) Uaep\rm = Dp.
The Voronoi-like diagram of P is Vi(P) = Dp \ U,ep R().

In the full paper, we prove that Voronoi-like regions are related to real Voronoi regions
as supersets. For example, in Figure 7, the Voronoi-like region R(7n) (shown in 7(b)) is a
superset of Voronoi region VR(n,S) in 7(a); similarly for R(«). Real Voronoi regions are
induced by the envelope £ of 8, where £ = env(Js s» UT'), and V(E) = V(S') N Dg. It is not
hard to see that V(&) = V;(E). Thus, Vi(S) coincides with the real Voronoi diagram V(S).

In the full paper, we also prove that the Voronoi-like diagram of a boundary curve is
unique (if it exists). The complexity of V;(P) is O(|P|), where | - | denotes complexity, since
it is a planar graph with exactly one face per boundary arc and vertices of degree 3 (or 1).

3 Insertion in a Voronoi-like diagram

Consider a boundary curve P for 8’ C S and its Voronoi-like diagram V;(P) within the
domain Dp. Let 8* be an arc in S\ &', thus, 8* is contained in the closure of the domain
Dp. We define arc 8 2 B* as the connected component of J(s, sg) N Dp that contains 3*
(see Figure 6). We also define an insertion operation @ that inserts arc § in P, deriving a new
boundary curve Pg = P @ 3, and inserts R(S) in V;(P), deriving V;(Pg) = Vi(P) ® 5. Ps is
the boundary curve obtained by deleting the portion of P N D(sg, s) between the endpoints
of 8 and substituting it with 3, see Figure 6. Figure 8 enumerates the possible cases of
P @ B which is summarized in the following observation.

» Observation 3. Possible cases of inserting arc 3 in P, see Figure 8. Dp, C Dp.

(a) B straddles the endpoint of two consecutive boundary arcs; no arcs in P are deleted.
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Figure 8 Insertion cases for an arc 8 O 8*. The domain Dp is shown shaded.

(b) (Auxiliary) arcs in P are deleted by f; their regions are also deleted from V;(Pg).
(¢) An arc a € P is split into two arcs by §; R(«) in V;(P) will also be split.
(d) A T-arc is split in two; V;(Pg) may switch from being a tree to being a forest.
(e) A T-arc is deleted or shrunk by inserting 8. V;(Pg) may become a tree.
(f) P already contains a boundary arc D 8*; then 3 =  and Pg = P.
Note that Pg may contain fewer, the same number, or even one extra auxiliary arc
compared to P.

» Lemma 4. The curve Pg =P @ B is a boundary curve for 8" U {5*}.

Given V;(P) and arc 3, where 8* € S\ &', we define a merge curve J(8), within Dp UT,
which delimits OR(3) in V;(Pg), see Figure 6. We define J(5) incrementally, starting at
an endpoint of 3. Let x and y denote the endpoints of 3, where x, 5,y are assumed in
counterclockwise order around Pg.

» Definition 5. Given V;(P) and arc 8 C J(s, sg), the merge curve J(3) is a path (v1,...,vm)
in the arrangement of sg-related bisectors J, s, UT', connecting the endpoints of 3, v; = x
and v, = y. Each edge e; = (v;,v;41) is an arc of a bisector J(sg,-) or an arc on I'. For
i=1:if x € J(sg, Sa), then e; C J(sg,5q); it x € ', then e; C I'. Given v;, vertex v;41 and
edge e;+1 are defined as follows. (Wlog we assume a clockwise ordering of J(3)).

1. If e; C J(s8,5a), let v;11 be the other endpoint of the component J(sg,sq) N R(c)
incident to v;. If vip1 € J(sg,-) N J(ss,Sa), then e;x1 C J(sg,-). If v;p1 € T, then
€41 C T

2. If e; C T, let g be the I'-arc incident to v;. Let e;11 € J(sg,sy), where R(7) is the first
region, incident to g clockwise from v;, such that J(sg,s,) intersects g N R(7); let v;11
be this intersection point.

In the full paper we prove the following theorem, which shows that J(8) is well defined.

» Theorem 6. J(f3) is a unique sz-monotone path in Js, s, UL, which connects the endpoints
of B. J(B) can contain at most one edge per region of V;(P), with the exception of the first
and last edge, if vi and vy, are incident to the same face in V;(P). J(B) cannot intersect the
interior of arc 3.

We define R(j) as the area enclosed by S U J(B). Let Vi(P) @ 8 = ((V(P) \ R(B)) U
J(8)) N Dp, be the subdivision of Dp, obtained by inserting J(3) in V;(P) and deleting
any portion of V;(P) enclosed by J(8).

» Theorem 7. V,(P) & B is a Voronoi-like diagram for Pg =P & 3, denoted V;(Pg).

The time complexity to compute J(3) and update V;(Ps) is as follows: Let P denote
the finer version of P as obtained by intersecting P with V;(P). |P| is O(|P|), since [V,(P)]
O(|P|). Let o and 7 be the first original arcs on Pg occurring before and after 3. Let
d() be the number of arcs in P between a and v (both boundary and T-arcs). Given a, 7,
and V;(P), in all cases of Observation 3, except (¢), the merge curve J(8) and the diagram
Vi(Pg) can be computed in time O(|R(S)| + d(B)). In case (c), where an arc is split and a
new arc w is created by the insertion of 3, the time is O(|OR(3)| + |[OR(w)| + d(B)).
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4 A randomized incremental algorithm

Consider a random permutation of the set of arcs S, 0o = (e, ..., ap). For 1 <i < h define
S; = {a1,...,a;} € S to be the subset of the first ¢ arcs in 0. Given S;, let P; denote a
boundary curve for S;, which induces a domain D; = Dp,. The randomized algorithm is
inspired by the randomized, two-phase, approach of Chew [4] for the Voronoi diagram of
points in convex position; however, it constructs Voronoi-like diagrams of boundary curves P;
within a series of shrinking domains D; D D, ;1. In phase 1, the arcs in S get deleted one by
one in reverse order of o, while recording the neighbors of each deleted arc at the time of its
deletion. Let Py = 9(D(s, sq,)NDr) and D1 = D(8,84,) N Dr. Let R(ay) = Dy1. Vi(P1) =10
is the Voronoi-like diagram for P;. In phase 2, we start with V;(P;1) and incrementally
compute V;(Piy1), i = 1,...,h—1, by inserting arc o;11 in V;(P;), where Piy1 = P; & a1
and Vi(Piy1) = Vi(P;) ® aiy1. At the end, we obtain V(Py), where P, = S. We have
already established that V;(S) = V(S), thus, the algorithm is correct. P; may contain at
most 2i arcs (see Observation 3), thus, the complexity of V;(P;) is O(3).

Given the results on Voronoi-like diagrams in Sections 2 and 3, the time analysis becomes
similar to the one for the farthest-segment Voronoi diagram [6], with some additional cases
to consider since V;(P;) is a forest and not necessarily a tree.

» Lemma 8. The expected number of arcs in P; (auziliary boundary arcs and fine T-arcs)
that are visited while inserting a; 11 is O(1).

» Theorem 9. Given an abstract Voronoi diagram V(S), V(S \ {s}) N VR(s,S) can be
computed in expected O(h) time, where h is the complexity of 0VR(s,S). Thus, V(S \ {s})
can also be computed in expected time O(h).
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—— Abstract

We study the problem mentioned in the title, assuming the underlying sensor network is a unit

disk graph. That is, let S be a set of n sensors with transmission range 1. We wish to find a
data gathering tree (i.e., a rooted spanning tree) for the network, and to augment it with a data
mule based at one of the nodes of the tree. The mule’s job is to collect the data from the children
of a node w, if u is faulty. The goal is to find a gathering tree and to locate the mule at one of
its nodes, so that the expected length of the mule’s tour is minimized, where the mule can move
freely in the plane. We present an O(nlogn)-time constant-factor approximation algorithm for
this problem. Our algorithm is faster by a linear factor than the previous one due to Yedidsion
et al. [5].

1 Introduction

Given a set S of n sensors with wireless capabilities deployed in the plane, one would like to
gather the data collected by the sensors using a data gathering tree — a hierarchical structure
that determines the paths in which data flows from the sensors to the storage center (i.e., a
directed rooted tree). The transmission range of the sensors is 1, so our starting point is the
unit disk graph (UDG) G induced by S, that is, the graph over S in which there is an edge
between two sensors s, s2 € S if and only if the Euclidean distance between them, d(s1, s2),
is at most 1.

Assuming G is connected, our goal is to find a rooted spanning tree T' of G. However,
it is possible that some node u of the tree is faulty, in which case, in order not to lose the
data at the children of u, we employ a data mule that visits each of u’s children and collects
the data from them. The mule’s location is fixed when the gathering tree is determined; it
is at one of the nodes of the tree. Then, if some node w is faulty, the mule must leave its
base, travel to each of u’s children and return to its base, where the mule can move freely
in the plane. Thus, we would like to find a rooted spanning tree T' of G and to determine
the mule’s location, such that the expected length of the mule’s tour is minimum. In other
words, our goal is to find a rooted tree T' and a node v of T, such that the sum of T'SP"(u),
over all internal nodes u of T, is minimum, where T'SP"(u) is the shortest tour beginning
and ending at v and visiting each of the children of w.

This problem was introduced by Crowcroft et al. [2], who only studied its one-dimensional
version. Subsequently, Yedidsion et al. [5] considered the two-dimensional version of the
problem and presented an O(n?logn)-time constant-factor approximation algorithm for it.
That is, their algorithm finds a rooted tree and places the mule at one of its nodes, so
that the sum of tours corresponding to their tree is bounded by a constant times the sum
corresponding to the optimal solution. In this paper, we present an alternative, more efficient,
constant-factor approximation algorithm for the (two-dimensional version of the) problem.
The running time of our algorithm is O(nlogn).
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In general, some research has been done on various problems related to sensor networks
that are augmented with mobile elements, see, e.g., [2-4]. See [5] for more details on related
work.

2 Tree Construction

In this section we describe how to construct a spanning tree of the UDG induced by the set
of sensors S. The constructed tree will have some desirable properties, mentioned below. In
the subsequent section we will choose one of the nodes to serve as the tree’s root (and as the
mule’s base); this will determine the direction of the edges of the tree.

We begin by laying a regular grid of edge length % over the input scene. (Notice that any
two nodes within the same cell are at distance at most 1 from each other and are therefore
connected by an edge in the underlying UDG.) Next, in each non-empty grid cell, we pick an
arbitrary node to be the cell’s central node (CN) and connect all other nodes in the cell to
the CN. At this point the set of central nodes is a dominating set (DS) of UDG.

We now add some edges to connect between adjacent stars. More precisely, for any pair
of stars, if the distance between them is at most one, i.e., if there exist a node u in one and
v in the other such that d(u,v) < 1, then add an edge between the closest such pair of nodes.
We do so by running the following algorithm.

1. For each cell X:
Construct the Voronoi diagram of the nodes in X and preprocess it for point location
queries.
2. For each cell X:
For each of the 24 cells Y surrounding X (i.e., for each cell in the first or second circle
around X):
a. For each node u € Y:
Find the node v of X which is closest to u.
b. Let (u,v) be the closest pair that was found.
c. Ifd(u,v) <1
E +— EU{(u,v)}
3. Eliminate the cycles from the current graph by running DF'S.

Let T be the tree that was obtained and notice that the set of its internal nodes is a
connected dominating set (CDS) of UDG. We call an internal node of T' a backbone node, and
denote the set of internal nodes of T' by BBNy. Thus BBN7 is a CDS of UDG. Actually,
BBNry is an area constrained CDS (ACCDS) of UDG, where a CDS is an ACCDS if the
number of nodes of the set in any disk of constant area A is O(A). This is because the
number of backbone nodes in any cell is bounded by 25 (the cell’s CN plus at most 24
backbone nodes that are created by the code fragment above).

Finally, it is easy to see that the total time required to construct T is O(nlogn). The
total time spent on building the Voronoi diagrams and their corresponding search structures
is O(nlogn), and, for each node we perform a constant number of point location queries, so
the total time spent on querying the diagrams is O(nlogn).
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3 Fixing the root and placing the mule

In [5], it was shown that the optimal solution with the additional constraint that the mule
must be placed at the root is a 2-approximation of the unconstrained optimal solution. We
therefore restrict our attention to the constrained version and present a constant-factor
approximation for it, which in turn is a constant-factor approximation for the unconstrained
version.

We focus on the more interesting and difficult case, where the area of the union of the
unit disks around the sensors is greater than some constant. When this area is small, the
number of backbone nodes (which is a linear function of the area) is small and the problem
becomes much easier.

3.1 Placing the mule

Let T be the tree that was constructed in the previous section, and let BBN = {u1,...,un}
be the set of its internal nodes (i.e., backbone nodes). In this section, we describe how to
determine the node of T' in which the mule will be placed (and that will serve as the root of
T). For a node u of T', let w(u) = >, d(u,u;), that is, w(u) is the sum of distances from u
to the internal nodes of T. We would like to place the mule at the node of T" for which this
value is minimum, however we cannot afford to compute all these values. Instead, we choose
a node v’ whose value w(v’) is a good approximation of the minimum value.

We use the data structure of Bose et al. [1], which is built over a set of points in the
plane (given some € > 0), and which supports sum-of-distances queries. More precisely, we
construct the data structure over the set BBN7, in O(%nlogn) time and O(Z%) space, and
perform n queries in it, one per each node in T', in total O(E%nlog n) time. The answer to a
query with node w is a value w.(u), such that (1 — ev/2)w(u) < w.(u) < (14 ev/2)w(u), and
let v" be the node whose returned value (i.e., we(v')) is minimum.

Denote by OPTr the sum of tours corresponding to the optimal location in tree T', and
denote by OPTrp« the sum of tours corresponding to the optimal location in the (unknown)
optimal tree T*. We prove below that the sum of tours corresponding to v" is bounded by
some constant times OPTr«.

» Theorem 3.1. Choosing v’ as the location for the mule yields a constant-factor approzima-
tion of OPTrp«, for sufficiently large m. Moreover, the total running time of our algorithm is
O(nlogn).

Proof. The proof is based on the following three claims, which correspond to Lemmas 3.2-3.5
below.

1. There exists a constant ¢’ such that OPTr < ¢ - OPTrp-.

2. Placing the mule at the node v such that w(v) = min{w(u) : v € BBNr} yields a
2-approximation of O PTr, for sufficiently large m.

3. The sum of tours corresponding to v is a 4-approximation of the sum of tours corre-
sponding to v, for sufficiently large m.

From these claims it follows that placing the mule at v’ yields a ¢ = 8c¢’-approximation

of OPTr~, for sufficiently large m. As for the running time, the tree T' is constructed in

O(nlogn) time, after which the node v’ is found in O(nlogn) time. <

We now prove the 3 lemmas mentioned in the proof of Theorem 3.1.

» Lemma 3.2. There exists a constant ¢’ such that OPTyr < ¢ - OPTp«.

EuroCG’18
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TSP (us)

Figure 1 Proof of Lemma 3.2. Left: Cr(u;) = {a,b,¢,d, e}. Right: The nodes that 7"s mule will
visit if u; is faulty.

Proof. Let v* be the optimal location in T*. We will show that the sum of tours corresponding
to v* in T is already bounded by some constant ¢’ times the sum of tours corresponding to
v* in T*. But the former sum is at least O P17 and the latter sum is equal to OPTrp+«, so we
may conclude that OPTr < ¢ - OPTp-.

Let Cr(u;) be the set of u;’s children in T'. Instead of visiting the nodes in Cp(u;) if u;
is faulty, T”s mule will do the following. For each node w, which in 7™ is a parent of a node
in Cr(u;), T's mule will visit the nodes in Cz-(w). In other words, we replace TSP (u;)
by =, TSP (w), where the sum is over all nodes w which in 7* have a child in Cr(u;);
see Figure 1. Clearly, by doing so, T’s mule will still visit the nodes in Cr(u;), but it may
also visit other nodes, and in either way, the total distance traveled by 7’s mule can only
increase.

Observe, however, that each of the nodes w in the latter sum is at distance at most 2 from
u;. S0, since the internal nodes of T' constitute an ACCDS, the number of internal nodes of
T that lie within distance at most 2 from w is bounded by some constant ¢, and therefore,
the number of times that 7”s mule will need to visit the nodes in Cr~(w) is bounded by some
constant ¢’. We conclude that the total distance traveled by T”s mule (after replacing the terms
TSPg (u;) by the corresponding sums) is bounded by ¢’ D weBBNp» TSPy (w) =c -OPTp-,
which implies that > | TSPY (u;) < ¢/ - OPTrp-. <

From now on, we are dealing only with the tree T, so we write T'SP" instead of T'S P}
and BBN instead of BBNp. Our proof of the next two lemmas relies on the following
observation, which follows immediately from the way 71" was constructed.

» Observation 3.3. Let v1, vy be two nodes and let u be a backbone node. Then, there exists
at most one node that is a child of u, when the mule is at vy, but is not a child of u, when
the mule is at vs.

» Lemma 3.4. Placing the mule at the node v such that w(v) = min{w(u) : u € BBN} is
a 2-approzimation of OPTr, for sufficiently large m.

Proof. Let v* be the node in which the mule is placed in the optimal solution for T, i.e.,
S TSP (u;) = OPTr. We first show that >.7"  TSPY(u;) < Yt (TSP (u;) + 6).
Denote by s; and ¢; the first and last nodes that are visited in the tour taken by the mule
based in v* when wu; fails, and denote by 7(s;,...,t;) the length of the portion of this tour
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beginning at s; and ending at t;. Then, TSPV (u;) = d(v*,s;) + 7(sq, ..., t;) +d(t;,v*), and,
by Observation 3.3, TSP (u;) < d(v,u;) + d(ui, 8;) + 7(84y -« .y ti) + d(ti, ;) + d(ui, v) + 2,
where 2 is an upper bound on the total length of the back-and-forth trips from wu; to visit
the at most one child of v that is not also v*’s child. So,

ZTSP” ;) Z vyu) + d(ug, 8i) + (84,0, t;) + d(ti, us) + d(ug, v) + 2)

<® Z(d(v* w;) + d(wi, 8i) + (i, ..o, t) + d(ti, w) + d(ug, v*) +2)
i=1

< ) e

<Y (TSP (u;) +6)

i=1

Y+ 1+ d(ug, i) +7(Siy .o ti) +d(ts,w;) + 1+ d(t;,v*) + 2)

<.

where inequality () is true since w(v) < w(v*) and inequality (i7) is true since d(v*, u;) <
d(v*, ;) +d(s;, u;) < d(v*,s;)+1, and similarly, d(u;, v*) < d(u;, t;) +d(t;, v*) < 1+d(t;, v*).

Now, since BBN is an ACCDS, if we assume that m is sufficiently large, then the
average tour length from v* (i.e., (3°7°, TSP? (u;))/m) is greater than 6, and there-
fore .70 (TSPY (u;) +6) < 257" TSPY (u;). Thus, for sufficiently large m, we get
S TSP (u;) <230 TSPV (u;) = 20PTr. <

» Lemma 3.5. >1" | TSP (u;) < 457" TSPY(u;), for sufficiently large m.
Proof. Since w,(v") < w.(v),

(1 —eV2)w(®) < w.(v") < w.(v) < (14 evV2)w(v) ,
or

id(v’,ui) < 1+E[Zd (v, u;)
i=1

Now, as in the proof of Lemma 3.4, we write TSPU(’U,Z') =d(v,8;) +7(si,...,t;) +d(t;,v),
where s; and t; are the first and last nodes visited by the mule based at v when wu; fails, and
(84 - .., 1;) is the portion of T'SPY(u;) beginning at s; and ending at ;. Then,

id(v',sl Z ’U Uz +d ’U/Z, 1, 11—§§Z 'U uz +duz7 z))v
i—1 —

and, similarly,
S 1
Zd(vlvti) +€\[Z U Ul +d uza 7)) :
i=1

Again, as in the proof of Lemma 3.4,

ZTSP” u;) Z v 8i) + (s, t) Fd(t,0") +2)

SO

/\

ZTSPU’(uZ-) < 1 ti:? Z (v,w;) + d(ug, 8;) +7(Siy -5 t) + d(v,u) + d(ug, t;) + 2)
< 1+6v2

< 1—5{2 (TSP (u;) +6) .

EuroCG’18
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Now, since BBN is an ACCDS, if we assume that m is sufficiently large, then the
average tour length from v (i.e., (3~ T'SP"(u;))/m) is greater than 6, and therefore
S (TSP (u;)+6) <237 TSPY(u;). Thus, for sufficiently large m, we get 7" | TSPY (u;) <
457" TSP (u;), by choosing € < 1/(3v/2). <
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—— Abstract

We study several problems concerning convex polygons whose vertices lie on a grid defined by

the Cartesian product of two sets of n real numbers, using each coordinate at most once. First,
we prove that all such grids contain a convex polygon with Q(logn) vertices and that this bound
is asymptotically tight. Second, we present two polynomial-time algorithms that find the largest
convex polygon of a restricted type. These algorithms give an approximation of the unrestricted
case. It is unknown whether the unrestricted problem can be solved in polynomial time.

1 Introduction

A fast way to generate a random convex polygon, based on a proof by Pavel Valtr [7], first
generates two random sets of n integer coordinates before significantly transforming the
y-coordinates to produce a convex n-gon with the original xz-coordinates. What happens
if we do not transform the y-coordinates, and instead ask for a convex polygon with the
original z- and y-coordinates?

Formally, we say that two sets, X and Y, each containing n real numbers, form a grid
X xY. A grid supports a convex polygon P if for every vertex of P, its x-coordinate is in X
and its y-coordinate is in Y, and no two vertices of P share an z- or y-coordinate.

It turns out that not every n x n grid supports a convex n-gon. In fact, this is true
already for n =5 (see Figure 1). This raises several interesting questions. Can we quickly
decide whether a grid supports a convex n-gon? Or can we find the largest k such that it
supports a convex k-gon? And what is the largest k such that any n x n grid supports a
convex k-gon? We initiate the study of these questions.

There is a rich history of problems involving convex subsets, including the famous Happy
Ending Problem: that any set of five points in the plane in general position contain four
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Figure 1 Maximum-size supported convex polygons of respective sizes 3, 4, 4, and 5 in n X n
grids, where n is between 3 and 6.

points in convex position. Generalizing this result, Erdds and Szekeres conjectured that every
set of 2772 4+ 1 points in general position contains n points in convex position and that this
is tight [2]. While this conjecture has been proven only for n < 6 [6], and the current best
upper bound is 27+o(™) [5], the asymptotics are known to be correct for the lower bound: a
set of n points in general position always contains 2(logn) points in convex position [2].

Algorithmically, the problem of finding the largest convex subset of a set of n points in
the plane in general position can be solved in O(n?) time [1]. While this approach likely
generalizes to finding the largest convex subset in a grid, it is not clear how to include
the restriction that each coordinate is used at most once. On the negative side, it was
recently shown that the problem of finding the largest convex subset in a point set in R? for
dimensions d > 3 is NP-hard [3].

The remainder of the paper is structured as follows. First, in Section 2, we give an
asymptotically tight lower bound on the maximum size convex polygon supported by an
n X n grid. Then, in Section 3, we provide algorithms to find, for a given grid, the largest
supported convex polygon of two special types. These algorithms give a constant-factor
approximation of the size of the largest supported convex polygon.

2 General bounds

We consider two special types of convex polygons. We classify a convex polygon P with
vertices ((1,y1),- .., (g, yx)) (in clockwise order), as follows:
Convez caps come in four types {,¢,~,)}. We have
P e~ ifand only if (z;)F_; is increasing;
Pe¢ if and only if (y;)F_; is increasing;
P e~ if and only if (mi)le is decreasing;
Pe) ifand only if (y:)%, is decreasing.
Convez chains come in four types {,, /A }. We have
F=CNr, Y=nN), N=wNE¢ J=)Nu.

Figure 1 illustrates some maximum-size supported convex polygons for various grids.
For n xn grids with n < 4, the largest supported convex polygon always has size n. For n > 4,
this size can be less than n (as for n =5 in Figure 1). Interestingly, for n = 6, there always
exists a supported convex polygon of size at least 5.

» Lemma 2.1. Every 6 x 6 grid X x Y supports a convex polygon of size at least 5.

Proof. Let X' = X \ {min(X),max(X)} and Y/ = Y \ {min(Y),max(Y)}. The 4 x 4
grid X’ x Y’ supports a convex chain P’ of size 3 between two opposite corners of X' x Y.
Then one z-coordinate ' € X’ and one y-coordinate y’ € Y’ are not used by P’. Without
loss of generality, assume that P’ € /. Then the convex polygon containing the points of P’
and (2, min(Y")) and (max(X),y’) is a supported convex polygon of size 5on X XY. <«
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Figure 2 An 8 x 8 grid without convex chains of size greater than 4 = log, 8+ 1. X = {1,...,8},
Y ={0,7,63,70,511,518,574,581}. Two lines through pairs of grid points are drawn in blue.

More generally, by Lemma 2.2, every grid supports a convex chain of size Q(logn). We
show in Lemma 2.3 that this bound is asymptotically tight: for each n, there exists a grid
for which the maximum convex chain has size O(logn). Since every convex cap consists of
two convex chains (some of which may be empty), and each convex polygon is composed of
two convex caps, the same asymptotic bounds hold for maximum convex caps and polygons.

» Lemma 2.2. Every n xn grid X xY supports a convex polygon of size Q(logn).

Proof. By Payne and Wood [4], every set of k points with at most £ collinear contains a set
of Q(y/k/logl) points in general position. Here, we have n? points with at most n collinear,
so there is a set of Q(y/n2/logn) = Q(n/+/logn) points in general position. By Suk [5], every
set of 251°(F) points in general position contains a set of k points in convex position. Hence,
we can find a subset of Q(log(n/y/logn)) = Q(logn) points in convex position. Eliminating
points with the same z- or same y-coordinate reduces the size by at most 75%, so this
asymptotic bound also holds when coordinates in X and Y may be used at most once. <«

For the upper bound, we construct a family of grids without any large convex chain.

For n = 8, this grid is depicted in Figure 2.

» Lemma 2.3. For every n € N, there exists an n x n grid X XY that does not support any
convex chain of size greater than [logn] + 1.

Proof. Let g(n) be the maximum value such that for all X and Y of size n, the grid X x Y
supports a convex polygon of size g(n); clearly g(n) is nondecreasing. Let k be the minimum

integer such that n < 2¥. We show that ¢(2¥) < k + 1 to establish that g(n) < g(2%) <k +1.

Without loss of generality, assume that n = 2%, and let X = {1,...,n}. For a k-bit
integer m, let m; be the bit at its i-th position, such that m = Zf;ol m;2'. Let Y =

{Zf:_ol mi(n*t1—1) |0 <m <n—1}. Both X and Y are symmetric: X = {max(X)+1—z |

39:3
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z€X}and Y = {max(Y) —y | y € Y}. Thus, it suffices to show that no P € /* of size
greater than k + 1 exists.

Consider p = (z,y) and p’ = (2/,y') € X XY with y = Zi:ol mi(n*t — 1) and ¢ =
Zf;ol mf(n*t! —1). The slope of the line between p and p’ is slope(p,p’) = Zf;ol (m} —
m;)(n'tt —1)/(z" — x). Let j be the largest index such that m; # m/;. Assume that z < '
and y < 9/, then 1 <z’ — 2 <n — 1 and we bound the slope as follows:

it -1 1 S (i ma) (et - 1)

o slope(p, p')
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Hence, slope(p,p’) € I; = [*-——,n"-——]. Consider the family of intervals Iy, I1,..., Ix_1
defined analogously. For n > 1, we have max(/;) < min(I;11). Suppose for a contradiction
that some P € ¢ is of size greater than k + 1. Then, since the slopes of the first k + 1 edges
of P decrease monotonically, there must be three consecutive vertices p = (x,y), p’' = (¢/,y'),
and p” = (2”,y"”) of P such that both slope(p,p’) € I; and slope(p’,p”) € I;. Let y =
Zf;ol m;(nttt — 1) and v = Zf;ol mi(nitt — 1) and y” = Zf;ol mf(n*+1 —1). Then j
is the largest index such that m; # m/, and also the largest index such that m/ # m/.
Because m < m' <m”, we have m; < m/ < m/, which is impossible since each of m;, m/

J
and m;-' is either 0 or 1. Hence, there are no convex chains of size greater than k + 1. <

3 Algorithms

In this section, we describe polynomial time algorithms for finding convex chains and caps of
maximum size, as well as polynomial time approximation algorithms for finding the maximum
size of a convex polygon. We make use of the following general observation:

» Observation 3.1. If a supported convex polygon P is in a set of 7, N, J,\, v, D, ~,
or ¢, then any subsequence of P also lies in that set.

Convex chains. Given a grid X x Y, we provide an algorithm to compute a supported
convex chain P € Y of maximum size. For this, we use a dynamic program to compute for
each edge (p1,p2) € E = (X x Y)?2, the maximum size R(p1, p2) of a chain of ™ with p; and
p2 as first two vertices, or (p1) if p1 = p2 (in which case R(p1,p2) = 1). By Observation 3.1,
removing the first vertex from a chain of  again yields a chain of ™.

» Observation 3.2. If A = (a1,...,a;) €N and B = (by,...,bp) € N with k > 2, { > 2
and ax—1 = by and ap, = ba, then (ay,...,ak—2,b1,...,bp) also lies in ™\ and has size k+£—2.

Conversely, by Observation 3.2, for a chain P in ., adding a vertex v at the front yields
a chain of N if (v, p1,p2) € M: the z- (resp., y-) coordinate of v is less (resp., greater) than
those of vertices of P, so distinctness is maintained. Therefore we can find the maximum
size of a chain starting with p; and p, based on chains without p; as follows:

- if p1 # p2 and (p1,p2) & ™
R(p17p2) = 1 if P1 = P2
MaX (p, py,w)eN or v=ps R(p27 U) + 1 otherwise.

Since the z-coordinate of the first vertex of a ™ chain is less than those of subsequent
vertices, this formula is well defined. For sequences of constant size, membership in
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can be checked in constant time. So the running time to compute R(e) for all edges
is O(|E| - |X x Y|) = O(n®), and the space complexity is O(|E|) = O(n*). This algorithm
can easily be adapted to find the maximum size convex chains in {,", /,A.} with the same
time and space complexity. We thus conclude the following:

» Lemma 3.3. For a given n X n grid, we can compute a mazximum Size convexr chain in
O(n®) time and O(n*) space.

Convex caps. To compute the maximum size of a convex cap in ~, we compute the
maximum size of two convex chains that use distinct y-coordinates. Specifically, for two
edges | = (I1,l2) and r = (r1,72), we compute the maximum total size C(I,r) of a pair
of chains A € /# and B € ™ such that their vertices use distinct y-coordinates and such
that A ends with vertices 1 and Iy (or A = (Iy) if Iy = l3), and B starts with vertices 7
and 7o (or B = (1) if r1 = r3). To compute C(I,r), we reuse the algorithm of Lemma 3.3
to compute L(p1,p2) (resp., R(p1,p2)), the size of a largest convex chain P in /* (resp., ),
ending (resp., starting) in vertices p; and po, or P = (p1) if p1 = pa.

The desired quantity C(l,r) can now be computed using a dynamic program. The main
idea is that we can always safely eliminate the highest vertex of the two chains, to find a
smaller subproblem, as this vertex cannot be (implicitly) part of the optimal solution to a
subproblem. In particular, if [ is a single vertex and it is highest, we can simply use the value
of R(ry,r2), incrementing it by one for the one vertex of I. Analogously, we handle the case
if r is or both [ and r are a single vertex. The interesting case is when both chains end in
an edge. Here, we observe that we can easily check whether [ and r use unique coordinates.
If not, then this subproblem is invalid; otherwise, we may find a smaller subproblem by
eliminating the highest vertex and checking all possible subchains that could lead to it.

With the reasoning above, we obtain the recurrence below. The first case eliminates
invalid edges and combinations that use a coordinate more than once or that do not give a
cap. After the first, it holds that [ € 7, r € » and that [ and r use unique coordinates.

—00 ifly £l and 1 ¢ 7, or
r1 #roand r €, or
{liy,loy} N {r1y,ma.y} # 0

C(l T) _ 2 otherwise, ifly =1y and ry =7y
) Ly, le) +1 otherwise, if 11 = 75 and lo.y < r1.y
R(ri,me) +1 otherwise, if [; =y and lo.y > 1.y

MaX(y 1, 15)€” or v=l1 C((v,lh),r)+1 otherwise, if lo.y > 1.y
MAX(,, 1y e or v=ry C (L5 (12,0)) +1  otherwise, lr.y < r1.y.

We can compute C(I,7) for all [ and r in O(|E]?|X x Y]|) = O(n'?) time and O(|E|?) =
O(n®) space. With C(I,r), we can easily find the size of a maximum size cap P in ~, using
the observation below, and analogous observations for the special case k = 1 and/or ¢ = 1.

» Observation 3.4. If A = (a1,...,ax) €7 and B = (by,...,by) € y with k > 2, £ > 2
and (ag—1,ax,b1,b2) € ~ and A and B use distinct y-coordinates, then (a1, ...,ax—2,b1,...,bs)
lies in ~ and has size k + {.

» Lemma 3.5. For a given n xn grid, we can compute a maximum size convex cap in O(n'?)
time and O(n®) space.

Convex n-chains and n-caps. If we are solely interested in deciding whether a convex chain
or cap exists that has | X| = |Y| = n vertices, we can improve upon the previous algorithms
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39:6 On Convex Polygons in Cartesian Products

considerably. Let X = {x1,...,2,} and Y = {y1,...,yn} with z; < ;41 and y; < y;41. To
test whether /7 supports a chain of size n, it suffices to test the chain ((x1,v1),...,(@n,Yn)),
which can be done in linear time.

To test whether ~ supports a convex cap of size n, we adapt the algorithm of Lemma 3.5.
Suppose P is a cap of ~ of size n. For k < n, let A, € 7~ and Bj, € ™ be the subchains of Ap
and Bp obtained after discarding vertices with y-coordinates greater than yi. Let (I1,l2)
be the last edge of Ay and let (ri,72) be the first edge of By. Then h, i and j exist
such that i < j < k and ly.x = zp, lo.x = Tpy1, 1.2 = Tp_gtrht2, 72T = Tp—k+hts
and {l.y,lo.y, "1y, 2.y} = {¥i, Y;, Yk—1, Y }. Suppose we adapt the formula for C(I,r) to
consider only entries of this form, and adapt the formulas for L and R to consider only entries
of the form ((x;—1,yi—1), (zi,y:)) and ((Xp—i,Yi-1), (Tn—i+1,¥:)), respectively. We then
obtain O(|Y'|?|X|) possible values for (I,7), and the corresponding values can be computed
in O([Y[*|X|) = O(n®) time and O(n*) space. Testing whether ~ supports a cap of size n
can be done within the same time and space bounds.

Approximation. Although an efficient algorithm for computing the maximum size of a
supported convex polygon is left as an open problem, the algorithms above provide constant-
factor approximations. A convex cap P € n is composed of two convex chains (Ap € 77
and Bp €\ as defined before), which are themselves caps in ~, and one of which has at
least half the size of P. Hence, the algorithms to compute the maximum size of an z- and
y-monotone chain provide a factor %—approximation on the size of the largest cap. Similarly,
a convex polygon P is composed of four z- and y-monotone convex chains, one of which
contains at least a quarter of the vertices of P. Furthermore, P is composed of a convex
cap and a convex cup, one of which contains at least half of the vertices of P. Thus, the
algorithms in Lemma 3.3 and Lemma 3.5, respectively, yield factor i— and %—approximations
for the maximum size of a convex polygon supported by X x Y.
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—— Abstract

A rollercoaster is a sequence of real numbers for which every maximal contiguous subsequence,

that is increasing or decreasing, has length at least three. By translating this sequence to a set of
points in the plane, a rollercoaster can be defined as a polygonal path for which every maximal sub-
path, with positive- or negative-slope edges, has at least three points. Given a sequence of distinct
real numbers, the rollercoaster problem asks for a maximum-length (not necessarily contiguous)
subsequence that is a rollercoaster. It was conjectured that every sequence of n distinct real
numbers contains a rollercoaster of length at least [n/2] for n > 7, while the best known lower
bound is Q(n/logn). In this paper we prove this conjecture. Our proof is constructive and implies
a linear-time algorithm for computing a rollercoaster of this length. Extending the O(nlogn)-
time algorithm for computing a longest increasing subsequence, we show how to compute a
maximum-length rollercoaster within the same time bound. A maximum-length rollercoaster in
a permutation of {1,...,n} can be computed in O(nloglogn) time.

The search for rollercoasters was motivated by orthogeodesic point-set embedding of cater-
pillars. A caterpillar is a tree such that deleting the leaves gives a path, called the spine. A
top-view caterpillar is one of degree 4 such that the two leaves adjacent to each vertex lie on
opposite sides of the spine. As an application of our result on rollercoasters, we are able to find a
planar drawing of every n-node top-view caterpillar on every set of %571 points in the plane, such
that each edge is an orthogonal path with one bend. This improves the previous best known
upper bound on the number of required points, which is O(nlogn). We also show that such a
drawing can be obtained in linear time, provided that the points are given in sorted order.

1 Introduction

A run in a sequence of real numbers is a maximal contiguous subsequence that is increasing
(an “ascent”) or decreasing (a “descent”). A rollercoaster is a sequence of real numbers such
that every run has length at least three. For example the sequence (8,5,1,3,4,7,6,2) is a
rollercoaster with runs (8,5,1), (1,3,4,7), (7,6,2), which have lengths 3, 4, 3, respectively.
The sequence (8,5,1,7,6,2,3,4) is not a rollercoaster because its run (1,7) has length 2.
Given a sequence S = (s1, 82, ..., S,) of n distinct real numbers, the rollercoaster problem
is to find a maximum-size set of indices i1 < iz < --- < i) such that (s;,, Siy,..., 8, ) Is a
rollercoaster. In other words, this problem asks for a longest rollercoaster in S, i.e., a longest
subsequence of S that is a rollercoaster.

One can interpret S as a set P of points in the plane by translating each number s; € S
to a point p; = (i, s;). With this translation, a rollercoaster in S translates to a “rollercoaster’
in P, which is a polygonal path whose vertices are points of P and such that every maximal
sub-path, with positive- or negative-slope edges, has at least three points. See Figure 1(a).
Conversely, for any point set in the plane, the y-coordinates of the points, ordered by their
z-coordinates, forms a sequence of numbers. Therefore, any rollercoaster in P translates to a
rollercoaster of the same length in S.

i
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Figure 1 (a) Translating the sequence (8,5, 1,3,4,7,6,2) to a set of points. (b) A planar L-shaped
drawing of a top-view caterpillar.

The best known lower bound on the length of a longest rollercoaster is (n/logn) due to
Biedl et al. [2]. They conjectured that

» Conjecture 1.1. Every sequence of n > 7 distinct real numbers contains a rollercoaster of
length at least [n/2].

Conjecture 1.1 can be viewed as a statement about patterns in permutations, a topic
with a long history, and the subject of much current research. For example, the Eulerian
polynomials, introduced by Euler in 1749, are the generating function for the number of
descents in permutations. For surveys of recent work, see, for example, Linton et al. [7] and
Kitaev [6]. Specifically, Conjecture 1.1 is related to the following seminal result of Erdés
and Szekeres [3] in the sense that they prove the existence of an increasing or a decreasing
subsequence of length at least v/n + 1 for n = ab+ 1, which is essentially a rollercoaster with
one run.

» Theorem 1.2 (Erdés and Szekeres, 1935). Every sequence of ab+ 1 distinct real numbers
contains an increasing subsequence of length at least a + 1 or a decreasing subsequence of
length at least b+ 1.

Hammersley [5] gave an elegant proof of the Erdés-Szekeres theorem that is short, simple,
and based on the pigeonhole principle. The Erd&s-Szekeres theorem also follows from the
well-known decomposition of Dilworth (see [9]). The following is a restatement of Dilworth’s
decomposition for sequences of numbers.

» Theorem 1.3 (Dilworth, 1950). Any finite sequence S of distinct real numbers can be
partitioned into k ascending sequences where k is the maximum length of a descending
sequence in S.

Besides its inherent interest, the study of rollercoasters is motivated by point-set em-
bedding of caterpillars [2]. A caterpillar is a tree such that deleting the leaves gives a path,
called the spine. An ordered caterpillar is a caterpillar in which the cyclic order of edges
incident to each vertex is specified. A top-view caterpillar is an ordered caterpillar where all
vertices have degree 4 or 1 such that the two leaves adjacent to each vertex lie on opposite
sides of the spine. Planar orthogonal drawings of trees on a fixed set of points in the plane
have been explored recently, see e.g., [2,4,8]; in these drawings every edge is drawn as an
orthogonal path between two points, and the edges are non-intersecting. A planar L-shaped
drawing is a simple type of planar orthogonal drawing in which every edge is an orthogonal
path of exactly two segments. Such a path is called an L-shaped edge. For example see the
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top-view caterpillar in Figure 1(b) together with a planar L-shaped drawing on a given point
set. Biedl et al. [2] proved that every top-view caterpillar on n vertices has a planar L-shaped
drawing on every set of O(nlogn) points in the plane that is in general orthogonal position,
meaning that no two points have the same z- or y-coordinate.

Due to space restrictions we cannot give all the proofs. We refer the interested reader to
the full version [1].

2 Rollercoasters

Our main result is to show that Conjecture 1.1 holds. In fact we prove something stronger:
every sequence of n distinct numbers contains two rollercoasters of total length n. Our proof
is constructive and yields a linear-time algorithm for computing such rollercoasters. The
length 4 sequence (3,4, 1,2) has no rollercoaster, and it can be shown that for n = 5,6,7 the
longest rollercoaster has length 3. Therefore, we only consider n > 8.

» Theorem 2.1. Every sequence of n > 8 distinct real numbers contains a rollercoaster of
length at least [n/2]; such a rollercoaster can be computed in linear time. The lower bound
of [n/2] is tight in the worst case.

Proof. Consider a sequence with n > 8 distinct real numbers, and let P be its point-set
translation with points p1,...,p, that are ordered from left to right. We define a pseudo-
rollercoaster as a sequence in which every run is a 3-ascent (an ascent of length at least 3)
or a 3-descent, except possibly the first run. We present an algorithm that computes two
pseudo-rollercoasters Ry and Rp in P such that |R1| + |Rz| > n; the length of the longer
one is at least [n/2]. Then with a more involved proof we show how to extend this longer
pseudo-rollercoaster to obtain a rollercoaster of length at least [n/2]; this will prove the
lower bound.

First we provide a high-level description of our algorithm as depicted in Figure 2. Our
algorithm is iterative, and proceeds by sweeping the plane by a vertical line ¢ from left to
right. We maintain the following invariant: At the beginning of every iteration we have two
pseudo-rollercoasters whose union is the set of all points to the left of £ and such that the last
run of one of them is an ascent and the last run of the other one is a descent. Furthermore,
these two last runs have a point in common.

a

R—l o °

Figure 2 One iteration of algorithm: Constructing two pseudo-rollercoasters.

During every iteration we move ¢ forward and try to extend the current pseudo-rollercoas-
ters. If this is not immediately possible with the next point, then we move ¢ farther and
stop as soon as we are able to split all the new points into two chains that can be appended
to the current pseudo-rollercoasters to obtain two new pseudo-rollercoasters that satisfy the
invariant. See Figure 2. Now we present our iterative algorithm in detail.

The First Iteration: We take the leftmost point py, and initialize each of the two pseudo-
rollercoasters by p; alone. We may consider one of the pseudo-rollercoasters to end in an

40:3
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ascent and the other pseudo-rollercoaster to end in a descent. The two runs have a point in
common.
An Intermediate Iteration: By the above invariant we have two pseudo-rollercoasters R 4
and Rp whose union is the set of all points to the left of £ and such that the last run of one
of them, say R4, is an ascent and the last run of Rp is a descent. Furthermore, the last
run of R4 and the last run of Rp have a point in common. During the current iteration
we make sure that every swept point will be added to R4 or Rp or both. We also make
sure that at the end of this iteration the invariant will hold for the next iteration. Let a
and d denote the rightmost points of R4 and Rp, respectively; see Figure 2. Let p; be the
first point to the right of ¢. If p; is above a, we add p; to R4 to complete this iteration.
Similarly, if p; is below d, we add p; to Rp to complete this iteration. In either case we
get two pseudo-rollercoasters that satisfy the invariant for the next iteration. Thus we may
assume that p; lies below a and above d. In particular, this means that a lies above d.
Consider the next point p;+1. (If there is no such point, go to the last iteration.) Suppose
without loss of generality that p;1; lies above p; as depicted in Figure 3. Then d, p;, pi+1
forms a 3-ascent. Continue considering points p;ya, ..., pr until for the first time, there is
a 3-descent in a,p;,...,pk. In other words, k is the smallest index for which a,p;, ..., pk
contains a descending chain of length 3. (If we run out of points before finding a 3-descent,
then go to the last iteration.)

v ol ’ A
| 5lored(Plc 7\1)>Pk~ Y

(N e

Figure 3 Illustration of an intermediate iteration of the algorithm.

Without pjy there is no descending chain of length 3. Thus the longest descending chain
has two points, and by Theorem 1.3, the sequence P’ = a,p;, pi+1,...,pr_1 is the union of
two ascending chains. We give an algorithm to find two such chains A; and Ay with A
starting at a and A, starting at p;. The algorithm also finds the 3-descent ending with py.
For every point ¢ € Ay we define its Aj-predecessor to be the rightmost point of A; that is
to the left of g. We denote the Aj-predecessor of ¢ by pred(q, A1).

The algorithm is as follows: While moving ¢ forward, we denote by r1 and ro the rightmost
points of A; and Aj, respectively; at the beginning r1 = a, r2 = p;, and pred(p;, A1) = a.
Let p be the next point to be considered. If p is above r; then we add p to A;. If p is
below r; and above ry, then we add p to A and set pred(p, A1) = r1. If p is below 7o, then
we find our desired first 3-descent formed by (in backwards order) py = p, prr = r2, and
prr = pred(ra, A1). See Figure 3. This algorithm runs in time O(k —4), which is proportional
to the number of swept points.

We add point d to the start of chain As. The resulting chains A; and Ay are shaded in
Figure 3. Observe that As ends at pys. Also, all points of P’ that are to the right of pgs (if
there are any) belong to Ay, and lie to the right of pg, and form an ascending chain. Let
A be this ascending chain. Let A} be the sub-chain of A; up to py; see Figure 3. Now we
form one pseudo-rollercoaster (shown in red/dashed) consisting of R4 followed by A} and
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then by the descending chain py», prs, pr. We form another pseudo-rollercoaster (shown in
blue/solid) consisting of Rp followed by As and then by AY. We need to verify that the
ascending chain added after d has length at least 3. This chain contains d, p; and py/. This
gives a chain of length at least 3 unless ¥’ = ¢, but in this case pg» = a, so p;y1 is part of
A7 and consequently part of this ascending chain. Thus we have constructed two longer
pseudo-rollercoasters whose union is the set of all points up to point pg, one ending with
a 3-ascent and one with a 3-descent and such that the last two runs share the point py.
Figure 4(a) shows an intermediate iteration.

The Last Iteration: If there are no points left, then we terminate the algorithm. Otherwise,
let p; be the first point to the right of ¢. Let a and d be the endpoints of the two pseudo-
rollercoasters obtained so far, such that a is the endpoint of an ascent and d is the endpoint
of a descent. Notice that p; is below a and above d, because otherwise this iteration would
be an intermediate one. For the same reason, the remaining points p;, ..., p, do not contain
a 3-ascent together with a 3-descent. If p; is the last point, i.e., « = n, then we discard this
point and terminate this iteration. Assume that i # n, and suppose without loss of generality
that the next point p;y, lies above p;. In this setting, by Theorem 1.3 and as described in
an intermediate iteration, with the remaining points, we can get two ascending chains A
and As such that Ay contains at least two points. By connecting Ay to a and As to d we get
two pseudo-rollercoasters whose union is all the points (in this iteration we do not need to
maintain the invariant).

Figure 4 (a) An intermediate iteration. (b) A point set for which any rollercoaster of length at
least n/4 + 3 does not contain p; and p,. The green (dashed) rollercoaster, which contains p1, has
length n/4 + 2. The red (solid) and blue (dash-dotted) chains are the two rollercoasters returned by
our algorithm.

Final Refinement: At the end of the algorithm, we obtain two pseudo-rollercoasters R
and R, that share p;, and their union contains all points of P, except possibly p,. Thus,
|R1| + |R2| = n, and the length of the longer one is at least [2].

This ends the presentation of our algorithm. It is not hard to see that the algorithm runs
in O(n) time.

To obtain rollercoasters (not just pseudo-rollercoasters), we remove p; from Ry and/or
R5 if the first run only contains two points. This gives two rollercoasters R, and Ry whose
union contains all points, except possibly p; and p,. The length of the longer one is at least
[”772] We can improve this bound to {%] by revisiting the first and last iterations of our
algorithm with some case analysis.

We note that there are point sets, with n points, for which every rollercoaster of length
at least n/4 4+ 3 does not contain any of p; and p,; see e.g., the point set in Figure 4(b). To
verify the tightness of the [n/2] lower bound, consider a set of n points in the plane where
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[n/2] of which lie on a positive-slope line segment in the (—, +)-quadrant and the other
|n/2] points lie on a positive-slope lines segment in the (4, —)-quadrant. <

3  Further Results

Our result can be extended to k-rollercoasters, i.e., sequences of real numbers in which every
run is either a k-ascent or a k-descent. Namely, for k > 4, every sequence of n > (k —1)% + 1
distinct real numbers contains a k-rollercoaster of length at least ﬁ — %

The algorithm presented in the proof of Theorem 2.1 does not necessarily compute the
longest rollercoaster in a sequence. This can be done in O(nlogn)-time by an algorithm
extending the classical algorithm for computing a longest increasing subsequence. This
algorithm can be implemented in O(nloglogn) time if each number in the input sequence is
an integer that fits in a constant number of memory words. Connected to this last result, we
give an estimate on the number of permutations of {1,...,n} that are rollercoasters. Namely,
let r(n) be the number of permutations of {1,2,...,n} that are rollercoasters. We show that
r(n) ~ ¢ -n!- A" where ¢ is a constant, approximately 0.204.

Finally, we study the problem of drawing a top-view caterpillar, with L-shaped edges, on
a set of points in the plane that is in general orthogonal position. Recall that a top-view
caterpillar is an ordered caterpillar of degree 4 such that the two leaves adjacent to each
vertex lie on opposite sides of the spine; see Figure 1(b) for an example. The best known
upper bound on the number of required points for a planar L-shaped drawing of every
n-vertex top-view caterpillar is O(nlogn); this bound is due to Biedl et al. [2]. We use
Theorem 2.1 and improve this bound to 22n+O0(1).

» Theorem 3.1. Any top-view caterpillar of n vertices has a planar L-shaped drawing on
any set of %n + O(1) points in the plane that is in general orthogonal position.
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—— Abstract

We show that the problem of guarding an z-monotone terrain from an altitude line and the

problem of guarding a uni-monotone polygon are equivalent. We present a polynomial time
algorithm for both problems, and show that the cardinality of a minimum guard set and the
cardinality of a maximum witness set coincide. Thus, uni-monotone polygons are perfect.

1 Introduction

Both the Art Gallery Problem (AGP) and the 1.5D Terrain Guarding Problem (TGP) are
well known problems in Computational Geometry. We are given a polygon P (AGP) or
an z-monotone chain T of line segments in R? (1.5D TGP) and need to place a minimum
number of point-shaped guards in P or on T, such that they cover all of P or T', respectively.
Both problems have been shown to be NP-hard: Krohn and Nilsson [3] proved the AGP to
be hard even for monotone polygons, and King and Krohn [2] established the NP-hardness
of both the discrete and the continuous TGP (with guards restricted to the terrain vertices
or guards located anywhere on the terrain).

The problem of guarding a uni-monotone polygon (an z-monotone polygon with a single
horizontal segment as one of its two chains) and the problem of guarding a terrain with
guards placed on a horizontal line above the terrain appear to be problems somewhere
between the 1.5D TGP and the AGP in monotone polygons. We show that, surprisingly,
both problems allow for a polynomial time algorithm: a simple sweep.

Moreover, we are able to construct a maximum witness set of the same cardinality as the
minimum guard set for uni-monotone polygons. Hence, we establish the first non-trivial class
of perfect polygons (earlier only proven for “rectilinear”[5] and “staircase” visibility [4]).

One application of guarding a terrain with guards placed on a horizontal line above
the terrain, the Altitude Terrain Guarding Problem (ATGP), comes from the idea of using
drones to surveil a complete geographical area. Usually, these drones will not be able to
fly arbitrarily high, which motivates to cap the allowed height for guards (and without this
restriction a single sufficiently high guard above the terrain will be enough). Of course,
eventually we are interested in working in two dimensions and a height, the 2.5D ATGP—one
dimension and height is a natural starting point for this.

2 Notation and Preliminaries

A polygon P is z-monotone if any line orthogonal to the z-axis has a simply connected
intersection with P. Its leftmost and rightmost vertex split the boundary in two x-monotone
polygonal chains. A uni-monotone polygon P is an xz-monotone polygon, such that one of
34th European Workshop on Computational Geometry, Berlin, Germany, March 21-23, 2018.
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its two chains is a single horizontal segment. W.l.o.g. we will assume the single horizontal
segment to be the upper chain for the remainder of this paper; we denote this segment
by H. The lower chain of P, LC(P), is defined by its vertices V(P) = {v1,...,v,} and
has edges E(P) = {e1,...,en_1} with e; = T;v;71. Due to uni-monotonicity the vertices
of P are totally ordered w.r.t. their x-coordinates. A point p € P sees or covers q € P if
and only if pg is fully contained in P. Vp(p) is the visibility polygon (VP) of p in P with
Vp(p) :={q € P | p sees g}. For G C P we abbreviate Vp(G) := U,cq Vr(9)-

A terrain T is an z-monotone chain of line segments in R? defined by its vertices
V(T) ={v1,...,v,} that has edges E(T) = {e1,...,en_1} with e; = T;0;771; and int(e;) :=
ei \ {vi,viy1} is e;’s interior. Due to monotonicity the points on T are totally ordered w.r.t.
their z-coordinates. For p,q € T, we write p < q (p < q) if p is (strictly) left of g.

An altitude line A at height aj for a terrain T is a horizontal line located a; above
the lowest (y-)coordinate of all vertices of T', with the leftmost point vertically above vy
and the rightmost point vertically above v,,. For this abstract we consider only the case
where the altitude line lies completely above T. The points on A are totally ordered as
well w.r.t. their z-coordinates, and we adapt the same notation as for two points on 7.
A point p € A sees or covers ¢ € T if and only if pg is nowhere below T (i.e. pg lies on
or above T'). Vr(p) is the wisibility region of p with Vr(p) := {q € T | p sees q}. For
G C A we abbreviate V7 (G) 1= J,cq Vr(g). We also define the visibility region for p € T
Vr(p) == {q € A| p sees q}.

For an edge e € P or e € T the strong VP (weak VP) is the set of points that see all of
e (at least one point of e): Vp(e) :={p € P:Vqg € epsees q} and Vy(e) :={pe A:Vq €
epsees q (Vp(e):={pe P:3qcepseesq} and Vi(e):={p € A:3q€epsees q}).

» Definition 2.1 (Altitude Terrain Guarding Problem). In the Altitude Terrain Guarding
Problem (ATGP), abbreviated ATGP(T),.A), we are given a terrain 7" and an altitude line A.
A guard set G C A is optimal w.r.t. ATGP(T, A) if G is feasible, that is, T' C Vr(G), and
|G| = OPT(T, A) := min{|C| | C C A is feasible w.r.t. ATGP(T, A)}.

» Definition 2.2 (Art Gallery Problem). In the Art Gallery Problem (AGP), abbreviated
AGP(G, W), we are given a polygon P and sets of guard candidates and points to cover
G,W C P. A guard set C C G is optimal w.r.t. AGP(G,W) if C is feasible, that is,
W CVp(C), and |C| = OPT(G,W) := min{|C| | C C G is feasible w.r.t. AGP(G,W)}. In
general, we want to solve the AGP for G = P and W = P, that is, AGP(P, P).

Aset WC P (W CT)is a witness set if YV w; # w; € W we have Vp(w;) N Vp(w;) = 0.
A polygon class P is perfect if the cardinality of an optimum guard set and the cardinality of
a maximum witness set coincide for all polygons P € P.

» Lemma 2.3. Let P be a uni-monotone polygon, with guard set G. Then there exists a
guard set G with |G| = |G™| and g € H Vg € G*. That is, if we want to solve the AGP
for a uni-monotone polygon, w.l.o.g. we can restrict our guards to be located on H.

Proof. Let G be an optimal guard set. Consider a point p € P, there exists a guard g € G
that covers p. Let g’ be the point located vertically above g on H. Because of P being
uni-monotone the triangle A(g, p, g*) must be empty, hence, also g* sees p. <

An analogous proof shows that we can always place guards on the altitude line A even if
we would be allowed to place them anywhere between the terrain 7' and A.

» Lemma 2.4. Let P be a uni-monotone polygon, G a guard set with g € H Vg € G that
covers LC(P), that is, LC(P) C Vp(G). Then G covers all of P, that is, P C Vp(G).
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Figure 1 (a) Terrain T and altitude line A is shown in black and red, resp.. g1,...,g4 are an

optimal guard cover. g2 and g3 both cover a critical edge both to their left and to their right. (b)
Example: each of the O(n) guards needs to shoot O(n) (colored) rays.

Proof. Assume there is a point p € P, p ¢ LC(P) with p ¢ Vp(G). Consider the point p=©,
which is located vertically below p on LC(P). Let g € G be a guard that sees p““. LC(P)
does not intersect the line pLCg, and because P is uni-monotone the triangle A(g, p, p©) is
empty, hence, g sees p; a contradiction. |

Consequently, the ATGP and the AGP for uni-monotone polygons are equivalent; we will
only refer to the ATGP in the remainder of this paper, with the understanding that all our
results can be applied directly to the AGP for uni-monotone polygons.

» Lemma 2.5. Letge A,peT,g<p. If p¢ Vr(g) thenVg' < g,9 € A:p ¢ Vr(g).

Before we present our algorithm, we observe that the ATGP is intrinsically different

from TGP. We repeat (and extend) a definition from [1]: For a feasible guard cover C' of
T (C CT for TGP and C C A for ATGP), an edge e € E is critical w.r.t. g € C if C'\ {g}
covers some part of, but not all of int(e). If e is critical w.r.t. some g € C, we call e critical
edge (e is critical iff more than one guard is responsible for covering its interior). g € C' is a
left-guard (right-guard) of e; € E if g < v; (vi41 < g) and e; is critical w.r.t. g. We call g a
left-guard (right-guard) if it is a left-guard (right-guard) of some e € E.
» Observation 2.6. For the TGP we have: Let C be finite and cover T, then no g € C'\ V(T
is both a left- and a right-guard, that is, no guard that is not on a vertex is responsible to
cover critical edges to its left and right, see Friedrichs et al. [1]. However, for the ATGP, any
guard g on A may be responsible to cover critical edges both to its left and to its right, that
is, guards may be both a left- and a right-guard, see Figure 1(a).

3 Sweep Algorithm

Our algorithm is a sweep, and informally it can be described as follows (the pseudocode for
our algorithm, using definitions from Section 3.1, is presented in Algorithm 1):

e We start with an empty set of guards, G = (), and at the leftmost point of A; all edges
E(T) are completely unseen.

e We sweep along A from left to right and place a guard g; whenever we could no longer
see all of an edge ¢’ if we would move more to the right.

e We compute the visibility polygon of g;, Vr(g;), and for each edge e = {v,w} partially
seen by g;, we split the edge, and only keep the open interval that is not yet guarded.

e Thus, whenever we insert a new guard g; we have a new set of “edges” F;(T') that are
still completely unseen, and Vf € E;(T) we have f C e € E(T).

e We continue placing new guards until ' C V1 (G).

e As we can define a witness set of |G| our guard set is optimal: we place a point witness
on ¢’ at the point p we would lose coverage of, if we had not placed guard g;.

EuroCG’'18
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3.1 How to Split the Partly Seen Edges

For each edge in the initial set of edges, e € E(T), we need to determine the point p¢
that closes the interval on A from which all of e is visible. We denote the set of points
ps Ve € E(T) as the set of closing points C, that is, C = Ueep(r){pt € A: (e S Vr(pf)) A
(e € Vr(p) Vp > p¢, p € A)}. The points in C are the rightmost points on A in the strong
visibility polygon of the edge e, for all edges. Analogously, we define the set of opening points
O: O =Uecpm{p? € A: (e CVr(p2)) A (e £ Vr(p) Vp < p?, p € A)}. For each edge e the
point in O is the leftmost point on A in the strong visibility polygon of e.

Moreover, whenever we place a new guard, we need to split partly seen edges to obtain
the new, completely unseen, possibly open, interval, and determine the point on A where we
would lose coverage of this edge (interval). That is, whenever we split an edge we need to
add the appropriate point to C.

To be able to easily identify whether an edge e of the terrain needs to be split due
to a new guard g, we define the set of “soft openings” S: the leftmost point on A in the
weak visibility polygon of e (if ¢ is to the right of this point—and to the left of the closing
point—it can see at least parts of e). We define S = Uecp(r){p; € A: (g € e,q € Vr(pZ)) A
(Fgce, qeVr(p)Vp<pi,pc Al

So, how do we preprocess our terrain such that we can easily identify the point on A that
we need to add to C when we split an edge? We make an initial sweep from the rightmost
to the leftmost vertex; for each vertex we shoot a ray to all other vertices to its left and
mark the points, mark points, where these rays hit the edges of the terrain. This leaves us
with O(n?) preprocessed intervals. For each mark point m we store the rightmost of the two
terrain vertices that defined the ray hitting the terrain at m, let this vertex be denoted by
v For each edge e; = {vj, Uj+1} with v;41 convex, this includes v;11 as a mark point.

Whenever the placement of a guard ¢ splits an edge e such that the open interval ¢/ C e
is not yet guarded, see for example Figure 2(a), we identify the mark, m.s to the right of e’
and shoot a ray r from the right endpoint of e’ through vy, , (the one we stored with m.).
The intersection point of r and A defines our new closing point p¢,, see Figure 2(b).

3.2 Minimum Guard Set and Perfect Polygons

» Lemma 3.1. The set G output by Algorithm 1 is feasible, that is, T C Vr(G).

Proof. Assume there is a point p € T with p ¢ V1 (G). p € e for some edge e € E(T). As p
is not covered, there exists no guard in G in the interval [p2, pt] on A. Thus, p¢ is never the

A r— A

(a) (b)
Figure 2 Terrain 7" and altitude line A is shown in black and red, resp.. The orange lines show
the rays from the preprocessing step, their intersection points with the terrain define the mark points.
Assume the open interval €’, shown in light green, is still unseen. To identify the closing point for e’

€

we identify the mark to the right of €, m.s, and shoot a ray, shown in dark green, from the right
end point of ¢’ through Um,, - The intersection point of r and A defines our new closing point pg,.
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INPUT : Terrain T, altitude line A, its leftmost point a, sets C, O, S of closing, opening, and soft
opening points for all edges in T, all ordered from left to right.
OUTPUT : An optimal guard set G.

1 E, = E(T) // set of edges that still need to be guarded
2 i:=1

3 go:=a // the point on A before the first guard is a
4 while E, # 0 // as long as there are still unseen edges
5 do

6 1. Sweep right from g;_; along .A until the first closing point ¢ € C is hit

7 2. Place g; onec, G=GU{g;},i:=1+1

8 3. for all e € E, // gi # p. by construction
9 do

10 if p? < g; < p. then

11 E, = E4\ {e} // if all of e is seen, delete it from Eg
12 c=C\{pc} // and delete the closing point from the event queue
13 else if g; < p? then

14 if p2 < g; // if g; can see the right point of e
15 then

16 Shoot a visibility ray from g; onto e, let the intersection point be r. // all points on e

to the right of 7. (incl. r.) are seen

17 Identify the mark m. immediately to the right of r. on e

18 Shoot a ray r from 7. through v,

19 Let p¢, be the intersection point of r and A // p¢, is the closing point for the still

unseen interval e’ C e

20 c=cu{py I\ {rc}
21 Sort C
22 | Eyg=Egu{e}\ {e}

Algorithm 1: Optimal Guard Set for ATGP

event point that defines the placement of a guard in lines 6,7 of Algorithm 1. Moreover, as
Agi : p° < gi < pS, e is never completely deleted from E, in lines 10-12. Consequently, for
some i we have g; < p? and p$ < g; (lines 14-22). As p ¢ V1 (G), we have p € €' C e.
Again, because p ¢ Vr(G), Bg; € [p2,pS] C A, j > i. Due to line 6 no guard may be
placed to the left of pS, hence, there is no guard placed in [p?,b] (b being the right end point
of A). So, €' is never deleted from Ey, a contradiction to G being the output of Alg. 1. <«

» Theorem 3.2. The set G output by Algorithm 1 is optimal.

Proof. To show that G is optimal, we need to show that G is feasible and that G is minimum.
Feasibility follows from Lemma 3.1, it remains to show that G is minimum. Given a witness
set W and a guard set G, [W| < |G| holds. Thus, if we can find a witness set W with
|[W| = |G|, we can show that G is minimum. We will place a witness for each guard
Algorithm 1 places. First, we need an auxiliary lemma (and omit the proof):

» Lemma 3.3. Let ¢ € C be the closing point for a complete edge (and not just an edge
interval) in line 6 of Algorithm 1 that enforces the placement of a guard g;. Then there exists
an edge ej = {v;,v,11} € E(T) for which c is the closing point, such that vj11 is a reflex
vertez, and v; is a convex vertes.

Now we can define our witness set: we consider the edges or edge intervals, which define
the closing point ¢ € C that leads to a placement of guard g; in lines 6,7 of Algorithm 1.

If ¢ is defined by some complete edge e; € E(T), let E, C E, be the set of edges for
which c is the closing point. We pick the rightmost edge e; € E. such that v; is a convex
vertex and v;j41 is a reflex vertex, which exists by Lemma 3.3, and choose w; = v;.

Otherwise, that is, if ¢ is only defined by edge intervals, we pick the rightmost such edge
interval e’ C e;. Then €’ = [vj,q) for some point ¢q € e;,q # v;+1, and we place a witness at
q°, a point &; to the left of ¢ on T: w; = ¢°. We define W = UlﬁllwZ By definition |W| = |G|,
and we still need to show that W is indeed a witness set.

EuroCG’'18
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Let S; be the strip of all points with z-coordinates between x(g;—1) + ¢ and z(g;). Let
pr and p4 be the vertical projection of a point p onto T and A, respectively. S; = {p €
R?: (2(gi—1) + ¢ < 2(p) < 2(9:) A (y(pr) < y(p) < y(pa))}. We show that Vo (w;) C S;Vi,
hence, Vr(wg) N Vr(we) = 0 Vwy, # we € W, which shows that W is a witness set.

If w; = v; for an edge e; € E(T), Vr(w;) contains the guard g;, but no other guard: If
gi—1 could see v;, we would have Z£(g;—1,v;,v; + 1) < 180° because v; is a convex vertex,
thus, g;—1 could see all of e;, a contradiction to e; € E,. Moreover, assume w; could see some
point p with z(p) < x(g;—1). The terrain does not intersect the line w;p, and because the
terrain is monotone the triangle A(w;, p, g;—1) would be empty, a contradiction to g;—; not
seeing w;. Hence, no guard g;,j < ¢ sees w;; a similar argument can be given for g;,j > .

If w; = ¢° for ¢ = [vj,q), Vr(w;) contains the guard g;, but no other guard: If g;_;
could see w;, ¢ would not be the endpoint of the edge interval, a contradiction. Moreover,
assume w; could see some point p with z(p) < x(g;—1). T does not intersect the line w;p, and
because T is monotone the triangle A(wj;,p, g;—1) would be empty, a contradiction. Thus,
again, no guard g;,j < i sees p (and the case j > ¢ can be shown similarly). <

We showed that there exists a maximum witness set W C T and a minimum guard set
G C A with [W| = |G|. By Lemma 2.3 and 2.4 the ATGP and the AGP for uni-monotone
polygons are equivalent. Thus, for a uni-monotone polygon P we can find a maximum
witness set W C LC(P) C P and a minimum guard set G C H C P with |W| = |G|:

» Theorem 3.4. Uni-monotone polygons are perfect.

3.3 Algorithm Runtime

The preprocessing step to compute the mark points costs O(n?), based on these we can
compute the closing points for all edges of the terrain. Similarly, we compute the mark points
from the left to compute the opening points (using the left vertex of an edge to shoot the
ray) and the soft opening points (using the right vertex of an edge to shoot the ray). Then,
whenever we insert a guard (of which we might add O(n)), we need to shoot O(n) rays, see
Figure 1(b), which altogether costs O(n?logn). Similarly, for each of the intersection points
e, we need to shoot a ray through v,,, . This gives a total runtime of O(n?logn). In fact,
when we stepwise build the convex hull of the terrain vertices from the right and only shoot
rays through vertices of this CH, we can reduce the preprocessing step to O(n).
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—— Abstract

The search for efficient algorithms to compute the straight skeleton of a simple polygon has resulted

in a variety of algorithms. We present a new approach that applies the divide-and-conquer paradigm
with the divide step based on the motorcycle graph. A practical randomized algorithm is obtained
that derives the straight skeleton from the motorcycle graph, with an expected running time of

O(dnlogn), where d is the decomposition depth of the motorcycle graph.

1 Introduction

The straight skeleton of a simple polygon was introduced to computational geometry about
two decades ago in [1]. It is defined as the trace of the vertices as the polygon shrinks by
moving its edges in a self-parallel manner towards the interior of the polygon. During this
offsetting process edges disappear (so-called edge events, see the dotted offset in Figure 1
where the edge e disappears), and reflex vertices may run into other edges (so-called split
events, see the dashed offset in Figure 1 where the vertex r runs into some edge and splits
it). For more detailed information see, for example, the section on straight skeletons in [2].

Initially, a simple priority queue algorithm with a running time of O(n?logn) has been
proposed, simulating the shrinking process by computing all edge and split events. A theo-
retical breakthrough was the first sub-quadratic algorithm, by Eppstein and Erickson in [5]
who also introduce the motorcycle graph. This graph consists of straight traces of ‘motor-
cycles’ that start at reflex vertices, with the speed and direction of the reflex vertex during
the shrinking process; see Figure 2 for an example. A motorcycle’s trace stops when it hits
either the (already existing) trace of another motorcycle or the boundary of the polygon
(as in [3] we assume that no two motorcycles collide). It seems that the motorcycle graph
encodes essential information needed for the construction of the straight skeleton; several
of the more recent algorithms for the straight skeleton build upon it. However, even the

Figure 1 Straight skeleton offsetting Figure 2 The motorcycle graph partitions
process with edge and split events. a nonconvex polygon into convex cells.
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Cs

Figure 3 Motorcycle regions Cs (motorcy- Figure 4 An inner motorcycle cell C,
cle cell) and C> U C5 (union of two regions). bounded by a cycle of dominant motorcycles.

derivation of the straight skeleton from the motorcycle graph has remained a complicated
task being hard to implement. Also, the computation of the motorcycle graph itself is a
challenging problem (the best known algorithm has a running time of O(n/3+€) [6]).

The global nature of split events complicates the design of efficient divide-and-conquer
algorithms for the straight skeleton. It took almost two decades (and several failing at-
tempts) until the first correct and efficient algorithm of this type was published, in Cheng
et al. [3]. Interestingly, this algorithm shows the currently best theoretical running time,
O(nlognlogr + r4/3+5), for a polygon with n edges and r reflex vertices.

Here and later on, let P denote a simple n-vertex polygon, M(P) its motorcycle graph,
and S(P) its straight skeleton (or just skeleton for brevity). The line segments forming S(P)
will be called arcs.

In this note, we present a very simple divide-and-conquer algorithm that computes S(P)
once M(P) is given. The idea is to divide P into cells according to M(P), to compute
the skeletons of the motorcycle cells separately, and then merge them into S(P). We start
in Section 2 by defining motorcycle regions and related concepts. The skeletons of regions
are the topic of Section 3, in particular the relationship between the skeleton of a region
and the skeletons of its subregions. The results from Section 3 are put to use in Section 4
for a divide-and-conquer algorithm that computes S(P). The divide step is trivial provided
M(P) is available. The conquer step is as simple as Chew’s [4] incremental method for the
medial axis of a convex polygon. We first describe the algorithm for motorcycle graphs that
are free of cycles. General motorcycle graphs are handled in Section 5, along with runtime
considerations depending on the structure of these graphs. If the structure of M(P) is nice
enough, the expected running time is O(nlog® n), while in the general case it is O(n?logn).

2 Motorcycle regions

The motorcycle graph M(P) partitions P into polygons called cells, which are convex be-
cause a motorcycle egde emanates from each reflex vertex of P, bisecting its interior angle.
We first assume that each cell is supported by edges of P. (Inner motorcycle cells, which are
caused by cycles in M(P), will be handled later.) To combine motorcycle cells we introduce
motorcycle regions. A motorcycle region, R, of M(P) is either a motorcycle cell defined by
M(P), or R = Ry U Ry where R; and R, are regions sharing some motorcycle edge. See
Figure 3 for an illustration of both kinds of regions.

From now on let R = Ry U Ry be a region of M(P), let m be the common motorcycle
edge of Ry and R, and denote with r the reflex vertex that defines m. To associate R with
a skeleton suitable for future merging steps, a so-called region polygon for R (which is a
superset of R and actually generates the desired skeleton) is needed. Following the recursive
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Figure 5 Motorcycle cell polygon (dashed, Figure 6 Motorcycle cell polygon (dashed)
open) using only the cell’s polygon edges. with the dominating edge e.

definition of motorcycle regions, we will define the region polygon for a motorcycle cell first,
and then show how the region polygons for R; and Ry are combined to obtain the region
polygon for R.

Consider some motorcycle cell C'. Each edge of C' is either supported by an edge of P
or by an edge of M(P). The former type of edges could be used to construct a (possibly
unbounded) convex polygon by extending them until adjacent edges intersect; see Figure 5
for an example. However, merging two such polygons can create a polygon whose skeleton
contains an arc longer than its motorcycle edge in M(P). This leads to complications during
the merging process.

The solution is to also add edges of P that define motorcycle edges supporting C. Let
m be a motorcycle edge supporting C, and let r be its reflex vertex in P. The edge e of P
incident to r and on the same side of m as C'is called a dominating edge of C. Combining all
dominating edges of C' with all edges of P that support C still results in a convex polygon,
the motorcycle cell polygon; see Figure 6 for an example. Note that the combined size of all
motorcycle cell polygons is O(n).

In the following, let R, R1 and R2 be the region polygons of R, R; and Rs, respectively.
To obtain R, the polygons R; and R5 need to be merged at both endpoints, say r and v,
of m. At the reflex vertex r this is done by simply truncating the respective edges of R, and
Rs. Concerning v, this endpoint either lies on a polygon edge (which, therefore, is already
part of the subregions’ polygons), or on another motorcycle edge m’ that dominates m, and
thus the corresponding dominating edge is already part of the subregions’ polygons. As a
consequence, the merging of Ry and R, at v is simple as well. Note that r is the only new
reflex vertex that gets introduced by the merge.

3 Straight skeletons of motorcycle regions

The skeleton of a region R of M(P) is defined as the part of the skeleton of R’s region
polygon that lies within R. That is, S(R) = S(R) N R.

As an important property of S(R), the skeleton arcs of reflex vertices are contained in R.
Therefore, such skeleton arcs cannot cross region boundaries during the merge process.

» Lemma 3.1. Let u be the arc of a reflex vertex r in S(R). Then u C R.

Proof. Vertex r is part of R, therefore its motorcycle edge m is completely contained in R.
If m hits the boundary of P, then the hit edge of P is also part of R, and thus the arc
u is contained in R. Assume now that m is blocked by another motorcycle edge m’. The
motorcycle cells that have parts of both m and m’ on their boundary are part of R. Therefore
the associated dominating edge of m’ with respect to these cells contributes to the boundary
of R. Thus u cannot cross m’, and u C R again. <
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Let us now look in more detail at the straight skeleton within a single motorcycle cell C'.
We say that an edge e of P is relevant for C, if the unique face fp(e) that e defines in S(P)
has a nonempty intersection with C.

» Theorem 3.2. The relevant edges for C' (extended if necessary) form a convex polygon in
the cyclic order given by P.

Proof. Clearly, the edges of P that support C are all relevant for C, and they form a convex
polygon. All other edges relevant for C' must cross a motorcycle edge during the shrinking
process to have a part of C' in their face in S(P). Therefore, they must form convex angles
with the adjacent edges in the polygon formed by all relevant edges; the arcs of reflex vertices
are shorter than their corresponding motorcycle edges. |

» Corollary 3.3. Let e be an edge of Ro that is not an edge of R1, and such that its face
fr(e) in the straight skeleton of R = R1 U Ry has a nonempty intersection with Ry. Then e
forms convex angles when inserted into R1.

Proof. For each motorcycle cell C C Ry with fr(e) NC # 0, we know from Theorem 3.2
that e is in convex position with C’s motorcycle cell polygon, that is, e cuts off a single
convex vertex from this polygon. Therefore e forms convex angles with its adjacent edges
in Rq. <

The straight skeleton behaves nicely when inserting an edge in convex position. During
the shrinking process, the new edge is always ahead of the parts of the adjacent edges that
were cut off. All other edges remain unchanged. Thus the skeleton faces of old edges can
shrink but never expand.

For the merge of S(R1) and S(R2) we need to find the edges from one region that
can influence the skeleton of the other region within S(R). The following lemma gives a
necessary condition for such edges.

» Lemma 3.4. Only edges of Ro whose faces in S(R2) are bounded by the common motor-
cycle edge m can change S(R1) within S(R), the merged skeleton.

Proof. Let e be an edge of Ry whose face fr(e) in S(R) has a nonempty intersection with R .
Then fr(e) must be intersected by m, since e is on the opposite side of m. Edges of Ry with
faces that have nonempty intersection with Ry in S(R) are in convex position with respect
to Ra, by Theorem 3.3. Consequently, e’s face in S(R2) can only shrink; more precisely,
fr(e) N Ry C fr,(e). But this implies that fr,(e) is bounded by m. <

The following related lemma is stated without proof, due to lack of space.

» Lemma 3.5. Let E be the (cyclically ordered) set of edges of Ra whose faces in S(Ra)
are bounded by m, excluding the edge adjacent to m’s reflex vertex r in Rs. Then E forms
a convex chain, and its edges form convexr angles when inserted into R.

4 Divide-and-conquer

We are now ready to describe our divide-and-conquer algorithm. In the divide part, we
use the motorcycle graph M(P) to recursively divide P along motorcycle edges. Since we
assumed M(P) to have no cycles, there exists a motorcycle edge m that hits the boundary
of P. This divides P into two polygons, P, and P,. This dividing step can be repeated,
using motorcycle edges my and my that split P, and P> into two parts, respectively, and is
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iterated until all motorcycle edges have been used and the final polygons are the motorcycle
cells of M(P). The division process can be represented in a tree, which inherits the future
merge plan and is therefore called the merge tree.

In the conquer part of our algorithm, the results from the previous section are put to
use. Suppose S(R1) and S(Rs2) have already been computed, and need to be merged into
S(R). For S(Ry), all edges with faces bounded by m are computed. By Lemma 3.5, these
edges form a convex chain F; that forms convex angles when inserted into Ro. Inserting F;
into S(R2) results in S(Ro U E1). The same is done with the roles of Ry and Ry exchanged,
to obtain S(R1 U E»). Note that both skeletons coincide along m, and only need to be glued
together along m to obtain S(R).

Still missing is the part of the algorithm that updates a straight skeleton during the
insertion of a convex chain E. We adapt the approach from Chew [4] that computes the
medial axis of a convex polygon (which equals its straight skeleton). We insert the edges
of E in random order, with each update taking time proportional to the number of arcs of
the inserted edge’s face as its boundary is traced out.

Suppose an edge e in convex position is inserted into a region polygon and its skeleton
needs to be updated. The expected number of arcs defined by e and other (already inserted)
edges from F is still constant (here Chew’s analysis still applies), but the expected number of
arcs defined by e and edges from the original polygon (so-called mized arcs) is not constant.
Let [ be the size of the original polygon, k the size of F/, and n = [+k. Suppose that i—1 edges
have already been inserted and the skeleton of the resulting polygon computed. Inserting the
it" edge may cause the construction of new mixed arcs. The maximal number of mixed arcs
after the insertion is [+i—1, and since the insertion order is randomized, the expected number
of mixed arcs supported by the new edge is (I +¢ — 1)/i. Summing over all insertions gives
the expected total number of mixed arcs when E is inserted: Zle(l +i—1)/i = O(nlogn).

As a consegence, the expected running time for all merges on a single level of the merge
tree is O(nlogn). The running time of the complete algorithm depends on the depth of the
merge tree and we get the following theorem:

» Theorem 4.1. Let d be the height of the merge tree. Then the straight skeleton of P can
be computed in O(d nlogn) expected time.

5 General motorcycle graphs and runtime considerations

Now we lift the restriction that the motorcycle graph must be free of cycles. A motorcycle
graph cycle is created by a cycle of dominating motorcycles bounding an inner region (see
Figure 4). Merges cannot be performed as above, since no two regions share a complete
motorcycle edge. However, it is possible to first compute the skeleton of the inner cell, and
use the known merge procedure for the skeletons of the outer regions.

Let C be an inner motorcycle cell, bounded by the cycle of dominating motorcycle edges
my,...,mg. Let R; denote the region bounded by m; and m;+1 (indices modulo k).

Now consider an edge e of R;, such that its face fp(e) in S(P) has a nonempty inter-
section with C. Then the face of e in S(R;) must be bounded by m;41, giving a necessary
condition for an edge to have a face in S(P) intersecting with C. It can be shown that all
such edges form a convex polygon, enabling the computation of S(C) in linear time.

Having computed S(C), it is now possible to detect the edges that sweep over C' during
the shrinking process, and thus need to be included in the skeletons of the outer regions
adjacent to C'. Merging all these edges into the skeletons of the appropriate regions R; can
be done in overall O(llogl) expected time, with I being the number of edges involved.
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Figure 7 All ears are merged into C. Figure 8 The merge tree degenerates to a path.

Finally, the updated skeletons of the outer regions are combined. First, these skeletons
can be restricted to their region (remember that the skeleton of C' does not change). Then
they can be merged using the original merge procedure along a common motorcycle edge.
Balanced binary merges can be used to get an overall expected running time of O(n log? n).

Whereas motorcycle graphs with cycles can be integrated into the divide step with-
out causing the running time to increase, the dependency on the height of the merge tree
(Theorem 4.1) can cause an expected running time of O(n%logn). There are two kinds
of motorcycle graph structures producing merge trees with linear height. The first one re-
sults from a ‘central’ motorcycle cell C' with linearly many adjacent cells that need to be
merged with C as they have no common motorcycle edge with another cell (see Figure 7
for an example). The second kind occurs when for linearly many motorcycles my, ..., mg,
the motorcycle m; crashes into the trace of m;;1, and my hits the polygon boundary as in
Figure 8. For both structures, there are efficient solutions once they have been identified in
the motorcycle graph. However, detecting these structures efficiently is an open problem.

6 Conclusions

We have presented a simple and easy-to-implement divide-and-conquer algorithm that de-
rives the straight skeleton of a polygon from its motorcycle graph. The running time depends
on the structure of the motorcycle graph, and is expected O(n log? n) if the motorcycle graph
is reasonably ‘balanced’, competing with the best known algorithm [3]. Still, it seems to be
a long way till such a running time may be achieved for constructing the straight skeleton
from scratch, as precomputing the motorcycle graph is believed to be the hardest part.

—— References

1 Oswin Aichholzer, Franz Aurenhammer, David Alberts, and Bernd Gértner. A novel type of
skeleton for polygons. In J.UCS The Journal of Universal Computer Science, pages 752—-761.
Springer, 1996.

2 Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. Voronoi diagrams and Delaunay trian-
gulations. World Scientific Publishing Co., Inc., 2013.

3 Siu-Wing Cheng, Liam Mencel, and Antoine Vigneron. A faster algorithm for computing
straight skeletons. In European Symposium on Algorithms, pages 272—-283. Springer, 2014.

4 L. Paul Chew. Building voronoi diagrams for convex polygons in linear expected time. Tech-
nical report, 1990.

5 David Eppstein and Jeff Erickson. Raising roofs, crashing cycles, and playing pool: Ap-
plications of a data structure for finding pairwise interactions. Discrete & Computational
Geometry, 22(4):569-592, 1999.

6 Antoine Vigneron and Lie Yan. A faster algorithm for computing motorcycle graphs. Discrete
& Computational Geometry, 52(3):492-514, 2014.



The k-Fréchet distance of polygonal curves

Maike Buchin! and Leonie Ryvkin?

1  Faculty of Computer Science, TU Dortmund, maike.buchin@tu-dortmund.de

2 Department of Mathematics, Ruhr University Bochum, leonie.ryvkin@rub.de

—— Abstract

We introduce a new distance measure for comparing polygonal chains: the k-Fréchet distance.
As the name implies it is closely related to the well-studied Fréchet distance but allows to find
similarities between curves that resemble each other only piecewise. As we will explain it pro-
vides a nice transition between (weak) Fréchet distance and Hausdorff distance. We prove NP-
completeness for the k-Fréchet distance of polygonal curves in different variants and furthermore
APX-completeness for the optimization version of our problem, discuss algorithmic approaches
and present open questions.

1 Introduction

During the past decades several methods for comparing geometrical shapes have been studied
in a variety of applications, for example analysing geographic data, such as trajectories, or
comparing chemical structures, e.g. protein chains or human DNA.

The Fréchet distance has been well-studied in the past decades since it has proven to
be very helpful in applications such as the above mentioned geographic data analysis or
computer aided design. The Hausdorff distance, another similarity measure, has also proven
to be useful in applications and can be computed more efficiently than the Fréchet distance.
However, it provides us with less information by taking only the overall shape of curves into
consideration, not how they are traversed.

We introduce the k-Fréchet distance as a distance measure in between Hausdorff and
(weak) Fréchet distance. The k-Fréchet distance allows to compare shapes consisting of
several parts by cutting a curve into a number of subcurves where the subcurves resemble
each other in terms of the (weak) Fréchet distance. Therefore it allows to find similarities
between objects of rearranged pieces such as chemical structures or handwritten characters
and symbols.

Characterizing these distance measures in the free space shows that the k-Fréchet distance
bridges between the (weak) Fréchet distance and Hausdorff distance (see below for details):
the weak Fréchet distance can be characterized by one component in the free space projecting
surjectively onto both parameter spaces, and the Hausdorff distance can be characterized
by all components of the free space projecting surjectively onto both parameters. For the
k-Fréchet distance we ask that k components of the free space project surjectively onto both
parameter spaces.

This paper is organized as follows: first we recall some necessary definitions and formally
define the k-Fréchet distance. In Section 3 we prove NP- and APX-completeness of the
k-Fréchet problem. In Section 4 we present an approximation algorithm of factor 2 as well
as an exact algorithm which runs in polynomial time for fixed k. We conclude the paper
with open questions.
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2 Definitions

Recall the Fréchet distance [1], a well-known measure for curves, which is defined as follows:
For curves P,Q: [0,1] — [0, 1] the Fréchet distance is given by

6p(P,Q) = inf max [|P(t) — Qo ()],
o tel0,1]

where the reparametrisations o: [0,1] — [0, 1] range over all orientation-preserving homeomor-
phisms. A variant is the weak Fréchet distance d,,r, where both curves are reparameterised
by o and 7, respectively, which range over all continuous surjective functions.

A well-known characterisation which is key to efficient algorithms for computing both
weak and (strong) Fréchet distance [1] uses the free space diagram. First we recall the
free space F.:

F.(P,Q) = {(t1,t2) € [0,1]*: || P(t) — Q(t2)]| < &}

The free space diagram puts this information into a (n x m)-grid, where n and m are the
number of segments in P and @, respectively.

The Fréchet distance of two curves is at most a given value ¢ if there exists a monotone
path through the free space connecting the bottom left to the top right corner. For the
weak Fréchet distance to equal at most € such a path need not be monotone. The Hausdorff
distance dy can be characterised as the free space projecting surjectively onto both parameter
spaces.

We define the k-Fréchet distance oz as in between Hausdorfl and weak Fréchet distance
using only a constant number k of components in the free space to project onto both
parameter spaces:

kp (P, Q) = inf max [|[P(o(t)) — Q(7(1))l],
0,7 t€[0,1]

where now o, 7: [0,1] — [0, 1] range over all surjective functions which are piecewise defined,
allowing at most k£ — 1 jump discontinouities, such that the images of the continuous parts
partition the curve. That is, we cut the curves P and @ into at most k pieces or subcurves
such that two resembling subcurves have small weak Fréchet distance. For the decision version
of the problem, we ask whether the weak Fréchet distance between pieces can be bounded a
given value € (note that k is a fixed upper bound of cuts here). Naturally, for a fixed distance
¢, we would like to cut the curves into as few subcurves as possible (optimization version).

We will also consider the variant where we use (strong) Fréchet distance instead of weak
Fréchet distance for the subcurves, that is the reparameterizations o, 7 have to be piecewise
homeomorphisms. However, as the weak Fréchet distance (arguably) results in the more
natural definition for the k-Fréchet distance we use it as the standard variant.

By definition k-Fréchet distance lies in between Hausdorff and (weak) Fréchet distance

0 (P,Q) < 0kr(P,Q) < r(P,Q).

Also, the k-Fréchet distance decreases as k increases, and for k = 1 it equals weak Fréchet
distance, whereas for k > n? it equals Hausdorff distance.

3 NP-Completeness

» Theorem 3.1. Deciding wether dp (P, Q) < € for fized € and k is NP-complete. Finding
the minimum number of cuts (or components) k is NP-complete as well.
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Proof. First note that we can easily verify a given solution to our problem: we compute the
free space diagram of P and ) and identify the free space components resembling mappings
of the respective subcurves. Next we need to check whether the union of these components
projects surjectively onto both parameter spaces. This can be done in polynomial time,
therefore we have k-Fréchet € NP.

To show NP-hardness of our problem we reduce from the Minimum Common String
Partition (MCSP)-Problem. Let us first recall the MCSP-Problem [7]: Given two strings
A and B we want to partition them into substrings such that A = A1A5... A, and B =
B1B;...DB, where for all i =1,...,n holds that A, = B; for some j € {1,...,n}.

There are several variants of MCSP, such as k-MCSP where each letter occurs at most
k times in each string (which was proven to be an NP-hard optimization problem in [5])
or MCSP¢ where there are at most ¢ elements in the alphabet of the strings (an NP-hard
problem even for the decision version, presented in [4]). Both 2-MCSP and MCSP? have
been proven to be NP-hard (therefore MCSP is NP-hard as well), the first variant is even
APX-hard ( [5], [7])-

Now, for an instance of MCSP we construct curves P and @ as follows: first we subdivide
the unit interval into ¢ intervals of equal size, where ¢ denotes the number of different letters
in both strings (which is bounded since we consider finite strings). We then identify every
letter of the alphabet ¥ with a number in {1,...,¢}. Next we transform string A into a
curve P and string B into curve Q: for every letter [ in a string we form a polygonal chain
consisting of five segments: the first connecting (3, 0) to (3, 1) vertically, a second connecting
(2,1) to (0,1) horizontally, followed by (0, %) to (1,%), back to (3, %) and finally back to
(0,%). The result is a T-shape, as shown in Figure 1.

3
[

1
(E: O)
Figure 1 A T-shaped curve fragment resembling the letter [ in a string

Since beginning and ending of each T-shaped curve fragment is the same, the fragments
can be concatenated. In this manner we produce curves consisting of as many T-shapes as
there are letters in the strings, both curves lying on top of each other. We can choose ¢ to
be any number smaller than 1/¢, e.g. 1/2c.

The T-shapes only differ by length of their vertical line segments, and each length
corresponds to a certain letter of the respective string. By choosing ¢ < 1/¢, T-shapes
resembling different letters cannot be matched. Hence our construction leads to the following
result for all pairs of subcurves:

VP;,Qj: P, = Qj < 6uwr(Pi, Q) <e.

In fact we even have 0, (P;, Q;) = 0 < €, since we place  on top of P and construct
identical concatenations of T-shaped subcurves for equal substrings. Because all letters start
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in (%, 0), we get that two substrings are equal iff the respective subcurves have weak Fréchet
distance less than e.

In the free space the following picture arises: we get components in the free space of P
and @ resembling equal substrings of A and B. Hence, the longer identical substrings, the
larger their resembling component in the free space. Therefore finding a minimum collection
of k components projecting surjectively onto the parameter spaces equals finding a minimum
number of blocks where each block of A equals a block in B. See Figure 2 for an example.

A= (1232) NS 4SS 45 74
%. % o elje OO0 O

'W_iﬂiTﬁTp CRi > < > < S

AN NN

B = (3221) i{> SIE 5 i'} éé

(R =< S ZasiS

Curves on top il>\ ﬁl) o O i,>\

of each other: 2| © | N /I%%__JI\\ : ! /I%%__é\l\i
RN R [ o [

R RN
b
ZAMINZA N

Figure 2 The curves and resulting free space diagram corresponding to strings A and B.

O

N
7/
N

P,Q|E 2 | O | O

Note that the antenna-like symbol in the bottom left corner consists of the actual curves
P and @ that resemble the input strings A and B. To make the curves more visible we
added illustrations P, Q above.

For the decision problem we need to identify a collection of components of size at most k,
which is a constant and part of the input in this case, that projects surjectively onto the
parameter spaces. As discussed this corresponds to the problem of finding a common string
partition consisting of at most k substrings per string. The latter has been proven to be
NP-hard [7] and the result transfers to our problem.

When we use (strong) Fréchet distance instead of weak Fréchet distance for the subcurves,
our reduction still works. In fact, even a simpler construction suffices for this variant:
we construct the curves as before but omit the horizontal line segments, i.e., we only get
(one-dimensional) "I"-shaped subcurves. Again, we get that two letters are equal iff the
corresponding subcurves have Fréchet distance 0. Observe that this simplified reduction does
not work for the weak Fréchet distance which allows to backtrack. Therefore we use the
T-shape for the weak Fréchet, which makes backtracking ineffective, in the sense that it is
impossible to map a subcurve of P representing a letter of A to a subcurve of @) representing
a letter of B with reversed orientation. <

» Remark. Our reduction from MCSP also works for the variants MCSP¢ and k-MCSP,
which translate to curves with at most ¢ different heights of T-shapes (so basically the same
curves as above) and curves with no more than k identical copies of T-shapes of each height.

» Theorem 3.2. The optimization version of the k-Fréchet-problem is APX-complete.
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Proof. The reduction above provides a one-to-one relationship between MCSP and k-Fréchet,
as any selection of components can be directly translated into common substrings. Therefore
a selection of components (say, of quality k + ¢ with ¢ being a constant and k the size of an
optimal solution) corresponds to a division of the input strings into the exact same number of
substrings, thus proving that our reduction is a strict AP-reduction. Since k-MCSP is APX-
hard (in the optimization version), so is the k-Fréchet-Problem. APX-completeness follows
from the existence of a 2-approximation algorithm which we present in the Section 4. <

» Lemma 3.3. For curves in one dimension, that is P,Q: [0,1] — R, k-Fréchet distance
equals Hausdorff and weak Fréchet distance, whereas strong k-Fréchet distance remains
NP-complete.

Proof. Equality of k-Fréchet distance, Hausdorff and weak Fréchet distance can be shown
using the Mountain Climbing Theorem, which states that it is possible for two climbers to
proceed from foot to top of a mountain while always remaining on equal height. Of course,
the climbers have to start at the same time but on different sides of the same mountain [2], [6].
For the strong Fréchet distance as underlying distance measure the simplified reduction
mentioned above (I-shapes) shows NP-hardness for one-dimensional curves. |

4 Algorithmic approaches

First, we observe that a brute force approach results in a runtime exponential in k, and then
present an efficient 2-approximation algorithm (regarding the size of the found selection of
components) using a greedy approach.

» Remark. The k-Fréchet distance can be computed in O(k - n?*) time.

The brute force approach simply checks for all selections of k components of the free
space whether their joint projections cover both parameter spaces. That means we have
to check at most (7;:) possible combinations of components, which results in a runtime of
O(k - n?*) for fixed k which is only feasible for very small k.

To approximately decide the k-Fréchet distance, we greedily choose a set of components
that cover both parameter spaces.

For this we compute the free space F;, project its components onto the two parameter
spaces and interpret the projections as intervals. We store the intervals in sorted lists. For
each parameter space we then use a scan to greedily select the smallest number of intervals
that cover it. The worst case that might result is the following: the intervals we select
correspond to different components in the free space for the two parameter spaces, so that
the union of our selections is of size s; + s where s; and so are the number of selected
components for the respective parameter spaces. A different selection of size s = max(s1, s2)
might cover both parameter spaces but is not detected by the greedy scan. So the size of
our selection indicates whether dpr < e: if it is smaller or equal to k the answer is positive,
ie. 0pr < g, and if it is larger than 2k the answer is definitely negative. For any number of
selected components in between k and 2k we cannot rule out that there might be a smaller
selection of at most k£ components that covers the parameter spaces.

Computing the free space takes quadratic time. Sorting the lists adds another logarithmic
factor while the scan takes linear time in the number of intervals. All in all we get a runtime
of O(n?logn).

» Theorem 4.1. The algorithm described above runs in O(n?logn) time and finds a selection
of components that covers both parameter spaces iff one exists. A found selection contains at
worst twice the minimum number of components needed.
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We conjecture that the approximation factor 2 is probably not tight, as we were not able
to construct an example where it is. Showing that it is or that a better approximation factor
holds remains open.

5 Conclusion and further work

We introduced a new distance measure, the k-Fréchet distance, which lies in between Haus-
dorff and (weak) Fréchet distance. We showed NP-hardness of deciding two variants of this
distance between polygonal curves. Finding the minimum number of subcurves is even APX-
hard. Furthermore, we presented a polynomial time algorithm that works for small fixed k as
well as an efficient 2-approximation algorithm. We close this section with some open questions.

Since the MCSP-Problem has been studied intensively, we hope to transfer more of
the interesting results to our k-Fréchet-Problem: It was shown in [3] that MCSP is fixed-
parameter tractable, therefore we plan to investigate whether our problem is as well. We
defined the k-Fréchet distance as subdivision of curves where we match subcurves in terms
of the weak Fréchet distance, but it would be interesting to just reparameterize the curves
allowing jump discontinuities. As a result it is possible to match a subcurve of one to several
subcurves of the other original curve. Our reduction does not work in that case and we
believe it is an even harder problem. Furthermore it would be interesting to see if there are
special cases for our problem to which we can find algorithms with polynomial runtimes since
the curves we construct are neither monotone, nor k-straight, x-bounded or c-packed. Finally
it remains open to improve the approximation factor achieved by our greedy approach.

Acknowledgments. We are grateful to Simon Pflips for proofreading and interesting, helpful
discussions.
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—— Abstract

An w-wedge is the set of all points contained between two rays emanating from a single point
(the apex) and separated by an angle w < w. Given a convex polygon P, we place the w-wedge
so that it contains P and its both rays are tangent to P. The w-cloud of P is the curve traced
by the apex of the w-wedge as it rotates around P while maintaining tangency in both rays.

We investigate reconstructing a polygon P from its w-cloud. Previous work on reconstructing
P from probes with the w-wedge required knowledge of the points of tangency between P and the
two rays of the w-wedge. Here we show that if w is known, the w-cloud alone uniquely determines
P, and we give a linear-time reconstruction algorithm. Furthermore, even if we only know that
w < /2, we can still reconstruct P, albeit in cubic time in the number of vertices. This reduces
to quadratic time if in addition we are given the location of one of the vertices of P.

1 Introduction

“Geometric probing considers problems of determining a geometric structure or some as-
pect of that structure from the results of a mathematical or physical measuring device, a
probe.” [6, Page 1] Many probing tools have been studied in the literature such as finger
probes, hyperplane (or line) probes, diameter probes [5], x-ray probes, histogram (or parallel
x-ray) probes, half-plane probes and composite probes to name a few. See the review of
Skiena [6] and for more recent results, see Bose et al. [1] and references therein.

Closely related to a geometric probing problem is a reconstruction problem: Can one
reconstruct an object given a set of probes? Surprisingly, for diameter probes this is not the
case [5]. An w-wedge, introduced by Bose et al. [1], is a probing device that is the (closed)
set of all points contained between two rays emanating from a single point called the apex of
the wedge. The angle w formed by the two rays is such that 0 < w < w. A probe of a convex
n-gon P is valid when P is inside the wedge and both rays of the wedge are tangent to P, see
Fig. 1la. A valid probe returns the coordinates of the apex and of the two points of contact
between the rays and the polygon. A convex m-gon can be reconstructed using between
2n — 3 and 2n + 5 such probes [1], depending on the value of w and the number of narrow
vertices (vertices whose internal angle is at most w) in P. As the w-wedge rotates around P,
the locus of the apex of the w-wedge describes a curve called an w-cloud (see Fig. 1c).

The w-cloud is a generalization of the diameter function of Rao and Goldberg [5]. A
diameter probe consists of two parallel calipers turning around a convex object P in the plane.
The diameter function returns the distance between the calipers as they turn around P. As
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This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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(a) (c)

Figure 1 A convex polygon P (shaded area), and: (a) A minimal w-wedge of P (tiling pattern);
(b) A narrow vertex u of P, wedges Wi (u) and W;.(u) (bounded by, resp., blue and green solid lines)
and their directions d;(u) and d,(r) (dashed lines); (¢) The w-cloud Q2 of P: the arcs (orange lines),
pivots (purple disk marks), and all the supporting circles (light-pink lines).

ar

two different convex polygons can have the same diameter function [5], recovering a convex
n-gon given only its diameter function is not always possible. An w-wedge can be seen as
two non-parallel calipers turning around P. Here we show that the w-cloud function is free
from the above drawback, and thus is a more advantageous than the diameter function.

In this paper, we analyze the structure of w-cloud, resulting in many interesting properties,
including the uniqueness of the polygon for a given w-cloud (see Sec. 2). Further, we show,
that if the value of w is known, P can be reconstructed from its w-cloud in O(n) time and
O(k) space, where k is the number of narrow vertices; the required space is constant for any
fixed value of w (see Sec. 3.1). If the value of w is not known, we can still recover P, as long
as w < 7/2. In this case, we give an O(n?) time and O(n?) space reconstruction algorithm.
The time complexity reduces to O(n?) if, in addition, we know a vertex of P and no three
vertices of P are on one supporting circle of an arc of the w-cloud (see Sec. 3.2). Due to space
constraints, many proofs are omitted; they can be found in the full version of this paper [2].

2 Properties of the w-cloud

In this section we introduce the necessary definitions and notation, and then we list the
properties of the w-cloud (Lemmas 2.2-2.6), which lead to the uniqueness of the polygon for
a given w-cloud (Thm. 2.8) and are the basis for our reconstruction algorithms (see Sec. 3).

Let P be an n-vertex convex polygon in R2. For any vertex v of P, let a(v) be the
internal angle of P at v. Let w be an angle with 0 < w < 7. Consider an w-wedge W; recall
that it is the set of points contained between two rays emanating from the same point ¢ (the
apex of W) such that the angle between the two rays is w. We call the ray ay (resp., a,) that
bounds W from the left (resp., right) as seen from ¢, the left (resp., right) arm of W. See
Fig. 1la. We say that an w-wedge W is minimal for P 