Welcome to EuroCG 2018

The 34th European Workshop on Computational Geometry (EuroCG ’18), is held at Freie Universität Berlin, Berlin, Germany, on March 21–23, 2018. EuroCG is an annual workshop that combines a strong scientific tradition with a friendly and informal atmosphere. The workshop is a forum where researchers can meet, discuss their work, present their results, and establish scientific collaborations, in order to promote research in the field of Computational Geometry, within Europe and beyond.

We received 78 submissions, which underwent a limited refereeing process by the program committee in order to ensure some minimal standards and to check for plausibility. We selected 75 submissions for presentation at the workshop. One submission was later withdrawn. This booklet of abstracts contains short abstracts for all lectures, including the three invited lectures by Nina Amenta, Prosenjit Bose, and Raúl Rojas. A book of extended 6-page abstracts is available at the EuroCG ’18 web site, conference.imp.fu-berlin.de/eurocg18.

Many thanks to all authors, speakers, and invited speakers for their participation, and to the members of the program committee and all external reviewers for their insightful comments. We gratefully thank the supporters of EuroCG ’18 for making this event possible and helping to keep the registration fees low: Freie Universität Berlin, keylight GmbH, and the German Research Foundation (DFG grant MU 3501/4-1). Special thanks to all members of the organizing committee and members of the administration at Freie Universität Berlin, for their work that made EuroCG ’18 possible.

March 2018

Matias Korman and Wolfgang Mulzer

EuroCG ’18 chairs

Program Committee

Mikkel Abrahamsen, University of Copenhagen
Helmut Alt, Freie Universität Berlin
Luís Barba, ETH Zürich
Kevin Buchin, TU Eindhoven
Maike Buchin, TU Dortmund
Erin Wolf Chambers, Saint Louis University
Claudia Dieckmann, Freie Universität Berlin
Esther Ezra, Georgia Tech
Panos Giannopoulos, Middlesex University London
Elena Khramtcova, Université libre de Bruxelles (ULB)
Christian Knauer, Universität Bayreuth
Matias Korman, Tohoku University (co-chair)
Irina Kostitsyna, TU Eindhoven
Maarten Löffler, Universiteit Utrecht
Wolfgang Mulzer, Freie Universität Berlin (co-chair)
Eunjin Oh, POSTECH
Evanthia Papadopoulou, Università della Svizzera italiana
André van Renssen, National Institute of Informatics
Marcel Roeloffzen, National Institute of Informatics
Günter Rote, Freie Universität Berlin
Vera Sacristán, Universitat Politècnica de Catalunya
Maria Saumell, The Czech Academy of Sciences
Lena Schlöpf, FernUniversität in Hagen
Christiane Schmidt, Linköping University
André Schulz, FernUniversität in Hagen
Fabian Stehn, Universität Bayreuth
Monique Teillaud, INRIA Nancy - Grand Est
Birgit Vogtenhuber, TU Graz
Carola Wenk, Tulane University

Organizing Committee

Helmut Alt
Bahareh Banyassady
Jonas Cleve
Claudia Dieckmann
Heike Eckart
Frank Hoffmann
Boris Klemz
Katharina Klost
Tamara Knoll
Klaus Kriegel
Wolfgang Mulzer (chair)
Günter Rote
Nadja Scharf
Max Willert

Supported by

Freie Universität Berlin

DFG Deutsche Forschungsgemeinschaft

>keylight/
Session 1. Invited Talk, Wed 9:00–10:00, main hall

<table>
<thead>
<tr>
<th>Wed 9:00–10:00</th>
<th>Rigid and Deformation</th>
<th>Nina Amenta, University of California at Davis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, main hall, #A</td>
<td></td>
<td>Download a triangle-mesh model of a 3D bunny, cut a stick for every edge, and attach them together with a flexible joint at each vertex to re-create the model’s one-skeleton. Would it stand up or collapse? Bet on “stand up” — Herman Gluck proved in 1975 that almost all such triangulated one-skeletons are rigid. There are a few examples of non-rigid polyhedra; that is, there is a motion under which the edge lengths remain fixed but the dihedral angles change. What if, instead of fixing the edge lengths, we fixed the dihedrals? Are there motions which fix the dihedrals but allow the lengths to change? We show an analog of Gluck’s theorem, that almost all polyhedra are “dihedral-rigid”. Who cares? Well, deformation is the opposite of rigidity. What can rigidity — and the examples of non-rigidity — tell us about how we can parameterize, measure and control the deformations of a mesh? Parameterizing deformations by edge length turns out to be a bad idea, but we demonstrate that there is reason to be much more hopeful about parameterizing meshes by their dihedrals. This is work with Carlos Rojas.</td>
</tr>
</tbody>
</table>

Session 2A, Wed 11:05–12:35, main hall

<table>
<thead>
<tr>
<th>Wed 11:05–11:20</th>
<th>Agglomerative Clustering of Growing Squares</th>
<th>Thom Castermans, Bettina Speckmann, Frank Staals, Kevin Verbeek</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A, main hall, #8</td>
<td></td>
<td>We study an agglomerative clustering problem motivated by interactive glyphs in geo-visualization. Consider a set of disjoint square glyphs on an interactive map. When the user zooms out, the glyphs grow in size relative to the map, possibly with different speeds. When two glyphs intersect, we wish to replace them by a new glyph that captures the information of the intersecting glyphs. We present a fully dynamic kinetic data structure that maintains a set of (n) disjoint growing squares, allowing us to solve this problem in (O(n \alpha(n) \log^7 n)) time. This presentation has a high potential for nice animations. Join us to see if we deliver!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wed 11:22–11:37</th>
<th>Combinatorial and Asymptotical Results on the Neighborhood Grid Data Structure</th>
<th>Martin Skrodzki, Ulrich Reitebuch, Konrad Polthier</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A, main hall, #30</td>
<td></td>
<td>In 2009, Joselli, Passos, Zamith, Clua, Montenegro, and Feijó introduced the Neighborhood Grid data structure for fast computation of neighborhood estimates in point clouds. Even though the data structure has been used in several applications and shown to be practically relevant, it is theoretically not yet well understood. The purpose of this paper is to present a polynomial-time algorithm to build the data structure. Furthermore, current investigations on the optimality of the given algorithm are presented.</td>
</tr>
</tbody>
</table>

Notes:
A Framework for Algorithm Stability and its Application to Kinetic Euclidean MSTs

Wouter Meulemans, Bettina Speckmann, Kevin Verbeek, Jules Wulms

We say that an algorithm is *stable* if small changes in the input result in small changes in the output. This kind of algorithm stability is particularly relevant when analyzing and visualizing time-varying data. Stability in general plays an important role in a wide variety of areas, such as numerical analysis, machine learning, and topology, but is poorly understood in the context of (combinatorial) algorithms.

In this talk we present a framework for analyzing the stability of algorithms. We focus in particular on the tradeoff between the stability of an algorithm and the quality of the solution it computes. Our framework allows for three types of stability analysis with increasing degrees of complexity: event stability, topological stability, and Lipschitz stability. We demonstrate the use of topological stability by applying it to kinetic Euclidean minimum spanning trees.

Balanced Dynamic Loading and Unloading

Sándor Fekete, Sven von Höveling, Joseph Mitchell, Christian Rieck, Christian Scheffer, Arne Schmidt, James Zuber

We consider the problem of loading and unloading a container ship with the restriction of maintaining balanced configurations at all times, i.e., we want to minimize the maximal motion of the center of gravity during the entire process. In particular, we consider the one-dimensional case and distinguish between *unloading*, where the positions of the items are fixed, and the *loading* variant where we have to compute the optimal order as well as the positions.

In other words: After the talk you might be able to answer your kid’s question on how to place/remove containers onto/from its toy ship so that the ship will not capsize in the bathtub.

Approximate Stabbing Queries with Sub-logarithmic Local Replacement

Ivor Hoog v.d., Maarten Löffler

In this work we present the key ingredients to construct a linear-size data structure that stores a set of spheres or axis-parallel hypercubes in \(\mathbb{R}^d \) and supports what we define as \(2^m \)-approximate stabbing queries in logarithmic time and local replacement in sub-logarithmic time, if the regions not overlap “too much”. This work uses known techniques such as quadtrees and marked-ancestor trees and introduces a new concept: *key facets* in a \(d \)-dimensional quadtree. We show the intuition behind how this new concept can help us perform fast (approximate) stabbing queries with sub-logarithmic local replacement if the dimension \(d \) and the approximation variable \(m \) are constant.
We show that the problem of guarding an x-monotone terrain T from an altitude line A and the problem of guarding a uni-monotone polygon are equivalent. For uni-monotone polygons we show that there exists an optimal guard set such that all guards are located on its single horizontal segment that constitutes the upper chain, \mathcal{H}. We present a polynomial time algorithm for both problems—a simple sweep—and show that the cardinality of a minimum guard set and the cardinality of a maximum witness set coincide. Thus, uni-monotone polygons are perfect. Hence, we establish the first non-trivial class of perfect polygons under “normal” vision.

The two guards problem asks whether two guards can walk along the boundary of a simple n-sided polygon from a source vertex to target vertex, one guard in clockwise and one in counterclockwise direction, while maintaining visibility within the polygon.

We study the related question of how far the guards can reach from the source vertex s if the polygon is not walkable. There can be $\Theta(n)$ such maximal walks, and we show how to find all of them in $O(n \log n)$ time.

Beacons can be imagined as magnets which, when enabled, force all objects in a polytope to try to move in the beacons direction. It is a (non-symmetric) extension of classic visibility and was first introduced for polygons in two dimensions. Beacon-based routing means to enable multiple beacons successively (only one at a time) such that an object is moved from a start to designated end point. The goal is to minimize the number of beacons needed to route any given start point to any given end point.

In the talk we introduce you to the model in two dimensions and then show you the first result for routing in three dimensions.

Let P be a simple polygon and let r (Romeo’s initial location) and j (Juliet’s initial location) be two to points inside P (or on its boundary).

We consider the problem of computing locations $r’$ and $s’$ such that Romeo standing at $r’$ and Juliet standing at $j’$ can see each other inside P.

We study this problem for two objectives: minimizing the sum of the path-lengths from r to $r’$ and j to $j’$ (min-sum) or minimizing the length of the longer of the two paths (min-max).

We show that both variants of the problem can be solved in linear time.
Guarding Monotone Polygons with Vertex Half-Guards is NP-Hard
Matt Gibson, Erik Krohn, Matthew Rayford

We consider a variant of the art gallery problem where all guards are limited to seeing to the right inside a monotone polygon. We show that the problem is NP-hard if guards are restricted to be at the vertices of the polygon.

The cats in the images will help us motivate the problem. We will also watch a short video that answers a centuries old question of who wins in a battle between a butterfly and cat.

Session 3A, Wed 13:30–15:00, main hall

Data Gathering in Faulty Sensor Networks Using a Mule
Stav Ashur

Given a set S of wireless sensors in the plane with unit transmission range, we would like to create a data gathering tree $T \subseteq UDG(S)$ (where $UDG(S)$ denotes the Unit Disc Graph on S) in order to efficiently collect the sensed data.

To deal with sensor-failure scenarios that result in significant data loss, we place a special wireless device, a data mule, in one of the network’s nodes. When a sensor failure occurs, the mule can collect the data from the disconnected sub-tree by performing an appropriate TSP tour in the plane.

We present a constant-approximation algorithm for this problem, which is faster than the previous algorithm of Yedidsion, Banik, Carmi, Katz, and Segal (2017) by an order of magnitude.

Computing Optimal Shortcuts for Networks
Delia Garijo, Alberto Márquez, Natalia Rodríguez, Rodrigo I. Silveira

We study augmenting a plane Euclidean network with a segment or shortcut to minimize the largest distance between any two points along the edges of the resulting network. Questions of this type have received considerable attention recently, mostly for discrete variants of the problem. We study a fully continuous setting, where all points on the network and the inserted segment must be taken into account. In this setting, two major variants of the problem arise, depending on how the shortcut is inserted into the network: the highway model in which the crossings between the shortcut and the network edges do not form new network vertices, and the more general planar model where every crossing creates a new vertex.

We present the first results on optimal shortcuts in the planar model for general networks, and several improved results for paths. We also highlight important differences between the highway and planar models, the latter resulting in considerably harder problems.

Protecting a Highway from Fire
Rolf Klein, David Kübel, Elmar Langetepe, Barbara Schwarzwald

Suppose a fire spreads at speed 1 along a highway given by a horizontal line in the L_1 plane. A fighter is tasked to protect the highway by building barriers along or perpendicular to the highway with a building speed v. The fighter can move without delay or additional costs between different construction sites. Just building walls along the highway in both directions is a naive strategy that requires speed $v > 2$ and a small constant head start. We show that $v > 1.5$ is necessary and present a strategy that requires only $v > \frac{2+\sqrt{5}}{\sqrt{5}} = 1.8944 \ldots$.
Shape Recognition by a Finite Automaton Robot

Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn, Dorian Rudolph, Christian Scheideler

We investigate the problem of recognizing the ratio of the sides of a parallelogram by a finite-state automaton robot with pebbles operating on a triangular grid. Our goal is to determine the computational power of a single finite automaton robot in this setting with and without the help of pebbles. As a first simple example, we demonstrate that a robot without pebbles can determine whether a given shape is a parallelogram whose sides have a ratio of h to $ah + b$ for constant integers a and b. On the other side, a robot cannot detect whether the ratio is h to $f(h)$, where $f(x) = \omega(x)$ is a superlinear function. However, as we will show in this talk, having a single pebble enables the robot to decide whether the sides ratio is h to $p(h)$ for a given polynomial $p(\cdot)$ of constant degree. Finally, we briefly discuss how to decide more complex functions, such as exponential functions, using multiple pebbles.

Beam It Up, Scotty: Angular Freeze-Tag with Directional Antennas

Sándor P. Fekete, Dominik Krupke

We consider distributing mission data among the members of a satellite swarm. In this process, spacecraft cannot be reached all at once by a single broadcast, because transmission requires the use of highly focused directional antennas. As a consequence, a spacecraft can transmit data to another satellite only if its antenna is aiming right at the recipient; this may require adjusting the orientation of the transmitter, incurring a time cost proportional to the required angle of rotation. The task is to minimize the total distribution time. This makes the problem similar in nature to the Freeze-Tag Problem of waking up a set of sleeping robots, but with angular cost at vertices, instead of distance cost along the edges of a graph. We prove that approximating the minimum length of a schedule for this Angular Free-Tag Problem within a factor of less than 5/3 is NP-complete, and provide a 9-approximation for the 2-dimensional case that works even in online settings with incomplete information. Furthermore, we develop an exact method based on Mixed Integer Programming that works in arbitrary dimensions and can compute provably optimal solutions for benchmark instances with about a dozen satellites.

Solving Large-Scale Minimum-Weight Triangulation Instances to Provable Optimality

Andreas Haas

We present practical implementations of well-known techniques for the problem of finding a minimum-weight triangulation (MWT) of a planar point set. We show that these techniques can be refined and extended to solve large MWT instances of various types. As a result, we are able to solve MWT instances with up to 30,000,000 uniformly distributed points in less than 4 minutes. Moreover, we can compute optimal solutions for a vast array of other benchmark instances that are not uniformly distributed, including normally distributed instances (up to 30,000,000 points), all point sets in the TSPLIB (up to 85,900 points), and VLSI instances with up to 744,710 points. This demonstrates that from a practical point of view, MWT instances can be handled quite well, despite their theoretical difficulty.

Notes:
We resolve the complexity of two types of puzzles in the game The Witness, namely the Black and White Squares and the Multicolor Squares puzzles. In these puzzles a grid with colored squares is given, along with two vertices s and t on the outer boundary. The goal is to find a simple path from s to t that partitions the grid into pieces, where each piece contains cells of only a single color. We show that in a restricted setting these types of puzzles can be solved in polynomial running time, but that in general they are NP-complete.

Given a set $D = \{d_1, ..., d_n\}$ of imprecise points modeled as disks, the minimum diameter problem is to locate a set $P = \{p_1, ..., p_n\}$ of fixed points, where $p_i \in d_i$, such that the furthest distance between any pair of points in P is as small as possible. This introduces a tight lower bound on the size of the diameter of any instance P. In this paper, we present a fully polynomial time approximation scheme (FPTAS) for this problem that runs in $O(n^3 \epsilon^{-2})$ time, where the input is a set of disjoint disks.

A polyomino is a set of connected squares on a grid. The area of a polyomino is the number of cells it contains, and the perimeter of a polyomino is the set of cells adjacent to some polyomino cell. In this work we address the class of polyominoes with minimal perimeter for their area. First, we establish a connection between the geometric structure of a polyomino border (which we define to be the outer layer of polyomino cells) and its perimeter. Second, we define the operation of "inflating" a polyomino, which is adding the polyomino perimeter cells to itself. We use our first result to show that inflating a minimal perimeter polyomino results in a minimal-perimeter polyomino as well (inflation is one-to-one). Then, we show that if some of the polyominoes of a certain area are created by an inflation of a minimal-perimeter polyomino, then all the minimal perimeter polyominoes of the same size are also created by an inflation of another minimal-perimeter polyomino (inflation is onto). This leads to our main result, which states that the inflation operation induce a bijection between (infinitely many) sets of minimal perimeter polyominoes of certain areas.

We study support graphs, a notion for drawing hypergraphs commonly used in the context of set visualization. A support graph is a graph spanning the same vertices (elements) as its hypergraph, in which each hyperedge (set) induces a connected subgraph. We present results on existence and hardness of finding a support graph of a hypergraph with fixed vertex locations. The support graph must minimize total edge length. We focus on these constraints: (i) enforcing planarity using a straight-line embedding; and (ii) requiring the support graph to be acyclic. Spoiler alert: it’s hard; we have an ILP.
Maximizing Ink in Symmetric Partial Edge Drawings of k-plane Graphs
Michael Höller, Fabian Klute, Soeren Nickel, Martin Nöllenburg, Birgit Schreiber

We study symmetric partial edge drawings (SPEDs) for non-planar graphs, in which edges are drawn only partially as pairs of opposing stubs of equal length on the respective end-vertices. It is known that maximizing the ink (or the total stub length) when transforming a straight-line drawing with crossings into a SPED is tractable for 2-plane input drawings, but generally NP-hard. We show that the problem remains NP-hard even for 3-plane input drawings. We also present efficient algorithms for ink maximization of k-plane input drawings whose edge intersection graph forms a collection of trees or cacti.

The Partition Spanning Forest Problem
Philipp Kindermann, Boris Klemz, Ignaz Rutter, Patrick Schneider, André Schulz

Given a set of colored points in the plane, we ask if there exists a crossing-free straight-line drawing of a spanning forest, such that every tree in the forest contains exactly the points of one color class. We show that the problem is NP-complete, even if every color class contains at most five points, but it is solvable in $O(n^2)$ time when each color class contains at most three points. If we require that the spanning forest is a linear forest, then the problem becomes NP-complete even if every color class contains at most four points.

Convexity-Increasing Morphs of Planar Graphs
Linda Kleist, Boris Klemz, Anna Lubiw, Lena Schlipf, Frank Staals, Darren Strash

A morph between two straight-line planar drawings Γ_1, Γ_2 of the same plane graph G is a continuous deformation that transforms Γ_1 into Γ_2 while preserving straight-line planarity at all times.

We want to find a morph from a given drawing Γ of G to some drawing of G in which all faces are convex. Further, we want the morph to be convexity-increasing, meaning that inner angles never change from convex to reflex. In the example, vertices are moved along vertical lines to convexify the red angles without changing the convexity-status of the remaining angles.

For the case of 3-connected planar graphs, we give an efficient algorithm that constructs such a morph as a composition of a linear number of steps which move vertices along horizontal or vertical lines.

Efficient Algorithms for Ortho-Radial Graph Drawing
Benjamin Niedermann, Ignaz Rutter, Matthias Wolf

An ortho-radial drawing is an embedding of a graph into an ortho-radial grid, whose gridlines are concentric circles around the origin and straight-line spokes emanating from the origin but excluding the origin itself. Recently, Barth et al. showed that such drawings can be described combinatorially by so-called valid ortho-radial representations, which only specify angles at vertices and bends on the edges. Their result is existential, but does not provide an efficient procedure for drawing valid ortho-radial representations. In this talk we present an efficient algorithm for testing whether a given ortho-radial representation is valid. Based on this result we show how to draw a valid ortho-radial representation in quadratic time.

Notes:
Automatic map drawing is one of the important problems in geometric information systems (GIS). Metro maps are schematic representations of geographic metro networks in GIS. It is difficult to draw complex metro networks with many stations and metro lines manually. Therefore, several methods for metro map drawings have been proposed. However, the Tokyo subway is one of the most complex networks in the world, and it is difficult to obtain its easy to read metro map using existing layout methods. In this paper, we present a new method that can generate complex metro maps like the Tokyo metro map. Our method consists of two phases. The first phase generates rough metro maps. It decomposes the metro networks into smaller subgraphs, and generates rough metro maps partially. In the second phase, we use a local search technique to improve the aesthetic quality of the rough metro maps. The experimental results including the Tokyo metro map are shown.

For a given graph, we want to find crossing-free straight-line drawings of low visual complexity. A measure for the visual complexity of a drawing that has been considered before is the minimum number of lines needed to cover all vertices. In 3D, this number, the 3D weak line cover number, is denoted by $\pi_1^3(G)$ for a given graph G. In 2D, for any planar graph G, the 2D weak line cover number is denoted by $\pi_1^2(G)$.

We inductively construct an infinite family of polyhedral graphs with maximum degree 6, treewidth 3, and unbounded π_1^2-value. We also determine the π_1^2- and π_3^2-values of the Platonic graphs.

The figures here depict π_1^2-optimal drawings of (the 1-skeletons of) the dodecahedron (left) and the icosahedron (right). The two graphs are drawn such that their vertices lie on two and three lines, respectively.

We give a compact encoding for abstract order types that allows efficient query of the orientation of any triple: the encoding uses $O(n^2)$ bits and an orientation query takes $O(\log n)$ time in the word-RAM model. We shorten the encoding to $O(n^2(\log \log n)^2/\log n)$ bits for realizable order types, giving the first subquadratic encoding for those order types with fast orientation queries.

A set of points in \mathbb{R}^d is called almost-equidistant if for any three points from the set, some two are at unit distance. Let $f(d)$ denote the largest size of an almost-equidistant set in \mathbb{R}^d.

It is known that $f(2) = 7$, $f(3) = 10$, and that the extremal sets are unique. We investigate almost-equidistant sets in higher dimensions. For every dimension $d \geq 3$, we have an example of an almost-equidistant set of $2d + 4$ points in the d-space and we prove the asymptotic upper bound $f(d) \leq O(d^{3/2})$.

Session 4B, Wed 15:20–16:50, room 005
Minimal Geometric Graph Representations of Order Types
Oswin Aichholzer, Martin Balko, Michael Hoffmann, Jan Kynčl, Wolfgang Mulzer, Irene Parada, Alexander Pilz, Manfred Scheucher, Pavel Valtr, Birgit Vogtenhuber, Emo Welzl

We consider the problem of characterizing small geometric graphs whose structure uniquely determines the order type of its vertex set. We describe a set of edges that prevent the order type from changing by continuous movement and identify properties of the resulting graphs.

A Note on Planar Monohedral Tilings
Oswin Aichholzer, Michael Kerber, István Talata, and Birgit Vogtenhuber

In this talk we present planar monohedral tilings, that is, tilings of \mathbb{R}^2 with congruent tiles. Such a tiling has the flag property if every triple of pairwise intersecting tiles intersects in a common point. We show that for convex tiles, there exist only three classes of tilings that are not flag, and they all consist of triangular tiles. Hence any tiling using convex tiles with $n \geq 4$ vertices is flag. We also show that an analogous statement for the case of non-convex tiles is not true by presenting a family of counterexamples.

Computing Crossing-Free Configurations with Minimum Bottleneck
Sándor P. Fekete, Phillip Keldenich

We consider problems of finding non-crossing bottleneck structures for a given planar point set: For a given a set of vertices V, the problem MINIMUM BOTTLENECK POLYGON (MBP) is to find a simple polygon P with vertex set V whose longest edge is as short as possible; the problem MINIMUM BOTTLENECK SIMPLE MATCHING (MBSM) is to find a crossing-free matching of V whose longest edge is as short as possible. Both problems are known to be NP-complete and neither admits a PTAS. We develop exact methods that can solve benchmark instances (newly generated and from the classic TSPLIB library) with up to 1,500 points for MBP and up to 20,000 points for MBSM to provable optimality. In the talk, we will highlight challenges that arise when solving these instances, including the question of how to deal with $\Omega(n^4)$ potential crossings.

A Note on Flips in Diagonal Rectangulations
Jean Cardinal, Vera Sacristán, Rodrigo I. Silveira

Rectangulations are partitions of a square into axis-aligned rectangles. A number of results deal with local changes involving a single edge of a rectangulation, referred to as flips, edge rotations, or edge pivoting. Such operations induce a flip graph on equivalence classes of rectangulations. We consider a family of flip operations on the equivalence classes of diagonal rectangulations, and their interpretation as transpositions in the associated Baxter permutations, avoiding the vincular patterns $\{3142, 2413\}$.

Notes:
Session 5. Invited Talk, Thu 9:00–10:00, main hall

<table>
<thead>
<tr>
<th>Thu 9:00–10:00</th>
<th>Online Competitive Routing on Delaunay Triangulations and their Variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>5, main hall, #B</td>
<td>Jit Bose, Carleton University, Ottawa</td>
</tr>
</tbody>
</table>

A fundamental problem in computer science is that of finding a path in a graph. When the whole graph is available, standard path-finding algorithms can be applied such as Depth-First Search or Dijkstra’s Algorithm. However, the problem of finding a path is more challenging in an online setting when at every step of the computation, only local information is available to the routing algorithm (such as the neighbourhood of the current vertex in the path). The difficulty is in deciding which edge to follow next in a path with only this local information. It is even more challenging to find a path with constant spanning ratio.

We will highlight different techniques for finding a short path in various types of Delaunay graphs in the online setting. We will highlight some of the difficulties involved with routing, review some of the currently best-known routing algorithms and mention a few open problems.

Session 6A, Thu 10:50–12:20, main hall

<table>
<thead>
<tr>
<th>Thu 10:50–11:05</th>
<th>Optimal Algorithms for Compact Linear Layouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>6A, main hall, #10</td>
<td>Wouter Meulemans, Willem Sonke, Bettina Speckmann, Eric Verbeek, Kevin Verbeek</td>
</tr>
</tbody>
</table>

Linear layouts are a simple and natural way to draw a graph: all vertices are placed on a single line and edges are drawn as arcs between the vertices. Despite its simplicity, a linear layout can be a very meaningful visualization if there is a particular order defined on the vertices. Common examples of such ordered—and often also directed—graphs are event sequences and processes: public transport systems tracking passenger check-in and check-out, banks checking online transactions, or hospitals recording the paths of patients through their system, to name a few. A main drawback of linear layouts are the usually (very) large aspect ratios of the resulting drawings, which prevent users from obtaining a good overview of the whole graph.

In this talk we present a novel and versatile algorithm to optimally fold a linear layout of a graph such that it can be drawn effectively in a specified aspect ratio, while still clearly communicating the linearity of the layout.

<table>
<thead>
<tr>
<th>Thu 11:07–11:22</th>
<th>Drawing Connected Planar Clustered Graphs on Disk Arrangements</th>
</tr>
</thead>
<tbody>
<tr>
<td>6A, main hall, #14</td>
<td>Tamara Mchedlidze, Marcel Radermacher, Ignaz Rutter and Nina Zimbel</td>
</tr>
</tbody>
</table>

Let $G = (V,E)$ be a planar graph and let \mathcal{C} be a partition of V whose clusters, i.e., the graphs induced by the vertex sets in \mathcal{C}, are connected. Let D_G be an arrangement of disks with a bijection between the disks and the clusters. Akitaya et al. give an algorithm to test whether (G,\mathcal{C}) can be embedded onto D_G with the additional constraint that edges are routed through an additional set of pipes between the disks. Based on such an embedding, we prove that every clustered graph with connected clusters and every disk-arrangement with non-overlapping disks has a planar straight-line drawing where every vertex is embedded in the disk corresponding to its cluster. This result can be seen as an extension of the result by Alam et al. who solely consider biconnected clusters.

Notes:
Augmenting a Tree to a k-arbor-connected Graph with Pagenumber k

Toru Hasunuma

We consider an augmentation problem for a tree to increase fault-tolerance while preserving its good property on book-embeddings. A k-arbor-connected graph is a graph which has k spanning trees such that for any two vertices, the k paths between them in the k spanning trees are pairwise edge-disjoint and internally vertex-disjoint. We show that any tree with n vertices can be augmented in $O(nk)$ time to a minimum k-arbor-connected graph with pagenumber k for any k at most the radius of the tree. Besides, we extend our minimum augmentation for trees to cacti and unicyclic graphs.

1-Bend RAC Drawings of NIC-Planar Graphs in Quadratic Area

Steven Chaplick, Fabian Lipp, Alexander Wolff, Johannes Zink

A drawing of a graph is called 1-planar if every edge is crossed at most once. A 1-planar drawing is called independent-crossing planar (IC-planar) if no two pairs of crossing edges share a vertex. A 1-planar drawing is called near-independent-crossing planar (NIC-planar) if any two pairs of crossing edges share at most one vertex. The 1-planar, NIC-planar, and IC-planar graphs are the graphs that admit a 1-planar, NIC-planar, and IC-planar drawing, respectively. The NIC-planar graphs are a subset of the 1-planar graphs and a superset of the IC-planar graphs, which are important beyond-planar graph classes.

We constructively show that every n-vertex NIC-plane graph admits a NIC-planar drawing with only right-angle crossings (RAC) and at most one bend per edge on a grid of size $O(n) \times O(n)$. Given a NIC-plane graph, our construction takes linear time.

We also give an overview of the relationships between several classes of 1-planar graphs and k-bend RAC graphs (see the containment diagram above; our results are highlighted in red).

NP-Completeness of Max-Cut for Segment Intersection Graphs

Oswin Aichholzer, Wolfgang Mulzer, Patrick Schnider, Birgit Vogtenhuber

We consider the problem of finding a maximum cut in a graph $G = (V,E)$, that is, a partition $V_1 \cup V_2$ of V such that the number of edges between V_1 and V_2 is maximum. It is well known that the decision problem whether G has a cut of at least a given size is in general NP-complete. We show that this problem remains hard when restricting the input to segment intersection graphs. These are graphs whose vertices can be drawn as straight-line segments, where two vertices share an edge if and only if the corresponding segments intersect.

We obtain our result by a reduction from a variant of PLANAR MAX-2-SAT that we introduce and also show to be NP-complete.

Session 6B, Thu 10:50–12:20, room 005

A New Lower Bound on the Maximum Number of Plane Graphs using Production Matrices

Clemens Huemer, Alexander Pilz, Rodrigo I. Silveira

We use the concept of production matrices to show that there exist sets of n points in the plane that admit $\Omega(41.77^n)$ crossing-free geometric graphs. This improves the previously best known bound of $\Omega(41.18^n)$ by Aichholzer et al. (2007).

Notes:
Time-Space Trade-Offs for Euclidean Minimum Spanning Trees

Bahareh Banyassady, Luis Barba, Wolfgang Mulzer

First, I introduce the **Limited-Workspace Model** and I define the *Euclidean minimum spanning tree* of a set of points, called EMST. Then, I present an algorithm which provides a time-space trade-off to compute the EMST of a planar set of \(n \) points in the limited-workspace model. The algorithm uses \(O(s) \) words of workspace and runs in \(O(n^3 \log s/s^2) \) time. In the algorithm, I refer to the *relative neighborhood graph*, called RNG, and Kruskal’s MST algorithm on RNG. The exciting part is defining a compact representation of planar graphs, called an *\(s \)-net*, which allows us to manipulate RNG’s component structure incrementally during the execution of the algorithm and maintain its compact representation using \(O(s) \) words of workspace. The \(s \)-net structure could possibly be used by other algorithms for planar graphs in the limited-workspace model.

Bottleneck Bichromatic Non-crossing Matchings using Orbits

Marko Savić, Miloš Stojaković

Problem: BBNCM

Given a set of \(n \) red and \(n \) blue points in convex position in the plane, we are interested in matching red points with blue points by straight line segments so that the segments do not cross. We want to find such a matching that minimizes the length of the longest segment.

Tools developed: Orbits

Orbits form a partition of the point set such that two differently colored points can be matched iff they belong to the same orbit. Lots of nice properties! (E.g. orbits make a total order.)

Results: Speedy algorithms

\(O(n^2) \)-time algorithm for points in convex position (previously best-know: \(O(n^3) \)).

\(O(n) \)-time algorithm for points on a circle (previously best-known: \(O(n \log n) \)).

A Combinatorial Measure of Closeness in Point Sets

Alexander Pilz, Patrick Schnider

We introduce *stripe closeness* and *stripe remoteness*, two combinatorial measures that capture how close together or far apart a set of query points lies within another set of points. The idea behind these concepts is that we look at all possible projections of the point set to a line and count the number of points that lie between the query points. For two points in a point set, the notion of stripe closeness can be seen as a combinatorial distance measure. We give bounds on the stripe closeness of two closest points. Further, we analyze stripe remoteness for triples in point sets and show that there are always three points that have high stripe remoteness.
A rollercoaster is a sequence of real numbers for which every maximal contiguous subsequence, that is increasing or decreasing, has length at least three. By translating this sequence to a set of points in the plane, a rollercoaster can be defined as a polygonal path for which every maximal sub-path, with positive- or negative-slope edges, has at least three points. Given a sequence of distinct real numbers, the rollercoaster problem asks for a maximum-length (not necessarily contiguous) subsequence that is a rollercoaster. It was conjectured that every sequence of \(n \) distinct real numbers contains a rollercoaster of length at least \(\lceil n/2 \rceil \) for \(n > 7 \), while the best known lower bound is \(\Omega(n/\log n) \). In this paper we prove this conjecture. Our proof is constructive and implies a linear-time algorithm for computing a rollercoaster of this length. We also show how to compute a maximum-length rollercoaster in an arbitrary array with \(n \) elements in \(O(n \log n) \)-time; a maximum-length rollercoaster in a permutation of \(\{1, \ldots, n\} \) can be computed in \(O(n \log \log n) \) time.

Session 7A, Thu 13:20–14:50, main hall

Thu 13:20–13:35
7A, main hall, #17

The Topology of Skeletons and Offsets

Stefan Huber

Two skeleton structures (Voronoi diagram, straight skeleton) of polygons with holes and their topology are considered. We start with their homotopy equivalence to the underlying shape. Then we continue to the evolution of offset curves each skeletons induces and investigate the (persistent) topology of these processes. The duality of skeletons and the evolution of offsets leads to a simple and efficient persistence algorithm.

Thu 13:37–13:52
7A, main hall, #42

On Merging Straight Skeletons

Franz Aurenhammer, Michael Steinkogler

Since the introduction of the straight skeleton of simple polygons about two decades ago, the search for efficient algorithms to compute the straight skeleton has produced a variety of algorithms. We present a new approach that applies the divide-and-conquer paradigm based on the motorcycle graph (a structure that encodes information about the behaviour of the polygon’s reflex vertices during the shrinking process that defines the straight skeleton). The resulting algorithm uses simple building blocks and has a running time of \(O(dn \log n) \), where \(d \) is the decomposition depth of the motorcycle graph.

Thu 13:54–14:09
7A, main hall, #4

Coxeter Triangulations have Good Quality

Aruni Choudhary, Siargey Kachanovich, Mathijs Wintraecken

Coxeter triangulations are triangulations of Euclidean space based on a single simplex. By this we mean that given an individual simplex we can recover the entire triangulation of Euclidean space \(\mathbb{R}^d \) by inductively reflecting through the faces of the simplex. In this paper we establish that the quality of the simplices in all Coxeter triangulations is \(O(1/\sqrt{d}) \) of the quality of regular simplex. We further investigate the Delaunay property for these triangulations. Moreover, we consider an extension of the Delaunay property, namely protection, which is a measure of non-degeneracy of a Delaunay triangulation. In particular, one family of Coxeter triangulations achieves the protection \(O(1/d^2) \). We conjecture that both bounds are optimal for triangulations in Euclidean space.
Integer and Mixed Integer Tverberg Numbers

Jesús A. De Loera, Thomas Hogan, Frédéric Meunier, Nabil Mustafa

Tverberg’s theorem says that sufficiently many points in Euclidean space can always be partitioned with intersecting convex hulls. We consider a variation where the coordinates of the points are required to be integer. We will show that for integer m at least three, any $4m – 3$ lattice points in the plane can be partitioned into m subsets so that the convex hulls of each subset intersect at a lattice point.

We will also mention some results for this problem in higher dimensions, as well as a “mixed-integer” version.

On the Topology of Walkable Environments

Benjamin Burton, Arne Hillebrand, Maarten Löffler, Saul Schleimer, Dylan Thurston, Stephan Tillmann, Wouter van Toll

Motivated by motion planning applications, we study 2-dimensional surfaces embedded in 3-dimensional space with the property that their vertical projection is an immersion. We provide bounds on the complexity of a triangulation of such a surface, given that the projection of the boundary is a polygon with m segments. We then show how these bounds lead to efficient algorithm to compute such a triangulation. Finally, we relate our result to concrete motion planning setting and review related open questions.

Group Diagrams for Representing Trajectories

Maike Buchin, Bernhard Kilgus

The amount of available movement data such as GPS data collected by mobile devices has increased massively during the last years. One of the challenges associated with the large amount of available data is to compactly represent it.

We propose the group diagram as a representation for multiple trajectories representing one or several moving groups. Given a distance threshold, a similarity measure and a minimality criterion a minimal group diagram is a minimal representation of the groups maintaining the spatio-temporal structure of the groups’ movement. We give hardness results and approximation algorithms for computing several variants of the group diagram with Fréchet distance and equal-time distance as similarity measure.

The k-Fréchet Distance of Polygonal Curves

Maike Buchin, Leonie Ryvkin

We introduce a new distance measure for comparing polygonal chains: the k-Fréchet distance. It is closely related to the Fréchet distance but allows to compare polygonal chains piecewise, i.e., we cut the input curves a number of times and match the resulting subcurves using the weak Fréchet distance.

To give an intuition we use the well-known man and dog analogy: this time Mr. Spock has to walk the Alfa 177 canine. Their leash is too short, but asking Scotty to beam either him or the canine a number of times will enable them to traverse their respective paths. Unfortunately, Scotty’s task is hard: Reducing from Minimum Common String Partition we prove NP-Completeness of deciding the k-Fréchet-distance as well as APX-Completeness for the optimization variant. On the positive side, we present algorithmic approaches, in particular a 2-approximation algorithm.
Progressive Simplification of Polygonal Curves

Kevin Buchin, Maximilian Konzack, Wim Reddingius

Simplifying polygonal curves at different levels of detail is an important problem with many applications. Existing geometric optimization algorithms are only capable of minimizing the complexity of a simplified curve for a single level of detail. We present an $O(n^3m)$-time algorithm that takes a polygonal curve of n vertices and produces a set of consistent simplifications for m scales while minimizing the cumulative simplification complexity. This algorithm is compatible with distance measures such as Hausdorff, Fréchet and area-based distances, and enables simplification for continuous scaling in $O(n^5)$ time.

Probabilistic Embeddings of the Fréchet Distance

Anne Driemel, Amer Krivošija

The Fréchet distance is a popular distance measure for curves which naturally lends itself to fundamental computational tasks, such as clustering, nearest-neighbor searching, and spherical range searching in the corresponding metric space. However, its inherent complexity poses considerable computational challenges in practice. To address this problem we study distortion of the probabilistic embedding that results from projecting the curves to a randomly chosen line. Such an embedding could be used in combination with, e.g. locality-sensitive hashing. We show that in the worst case and under reasonable assumptions, the discrete Fréchet distance between two polygonal curves in \mathbb{R}^2 or \mathbb{R}^3 of complexity t degrades by a factor linear in t with constant probability. We show upper and lower bounds on the distortion.

On Optimal Polyline Simplification using the Hausdorff and Fréchet Distance

Marc van Kreveld, Maarten Löffler, Lionov Wiratma

We consider the polyline simplification problem using the pure form of the Hausdorff and Fréchet distance: for a given $\varepsilon > 0$, choose a minimum size subsequence of the vertices of the input such that the Hausdorff or Fréchet distance between the input and output polylines is at most ε.

We present examples of input polylines such that their output simplifications from the well-known Douglas-Peucker and Imai-Iri simplification algorithms are not optimal. Even if both algorithms use a considerably larger ε, they may still need many more vertices than an optimal simplification.

We prove that computing an optimal simplification under the undirected Hausdorff distance is NP-hard. Then, we give a polynomial time algorithm to compute an optimal simplification under the Fréchet distance.

Notes:
Session 8. Invited Talk, Fri 9:00–10:00, main hall

Geometric Issues in Self-Driving Cars
Raúl Rojas, Freie Universität Berlin

I will give an overview of a new iteration of the architecture of the autonomous cars which have been developed at the Dahlem Center for Machine Learning and Robotics, Freie Universität Berlin. I will explain how we mix reactive with deliberative control. I will explain how we have experimented with geometry-based localization and the ideas we have for localization and driving under tough weather conditions. In one project we are investigating swarm behavior in traffic. At the end, I will present some ideas about the evolution of the commercial introduction of autonomous vehicles in the near future.

Session 9A, Fri 10:50–12:20, main hall

L(2,1)-labeling of disk intersection graphs
Konstanty Junosza-Szaniawski, Joanna Sokół

We consider the problem of $L(2,1)$-labeling of intersection graphs of disks. An $L(2,1)$-labeling is a mapping $f : V(G) \rightarrow \{0, 1, 2, \ldots\}$ in which labels assigned to adjacent vertices differ by at least 2, and labels assigned to vertices at distance 2 are different. The span of f is the difference between the maximum and the minimum label used, and the span $\lambda(G)$ of a graph G is the minimum span of an $L(2,1)$-labeling of G. We show that if G is an intersection graph of disks, then $\lambda(G) \leq \frac{3}{2} \Delta(G)^2 + 25 \Delta(G) + 22$, where $\Delta(G)$ denotes the maximum degree in graph G. Notice that the bound does not depend on the sizes of the disks.

Stabbing Pairwise Intersecting Disks by Five Points
Sariel Har-Peled, Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, Micha Sharir, Max Willert

Once upon a time (in 1959) in a place far far away (Oberwolfach) there was a man who proved that every set of n pairwise intersecting disks can be stabbed by at most 4 points, i.e., each disk contains at least one of the 4 stabbing points. The name of this man was ...

His proof is fairly involved, and there seems to be no obvious way to turn it into an efficient algorithm. We present fast algorithms to find a stabbing point set of size 5. Moreover, we give a simple construction with 13 pairwise intersecting disks that cannot be stabbed by three points.

Finding the Girth in Disk Graphs and a Directed Triangle in Transmission Graphs
Haim Kaplan, Katharina Klost, Wolfgang Mulzer, Liam Roditty

In this talk we consider the complexity of problems related to cycles in disk intersection and transmission graphs. Given a set $S \subset \mathbb{R}^2$ of n sites, each with an associated radius. The disk intersection graph of S has a vertex for each site and an edge between sites s,t with $|st| \leq r_s + r_t$. The transmission graph of S has a directed edge $s \rightarrow t$, if $|st| \leq r_s$. We show that the weighted girth of a disk graph can be computed in $O(n \log n)$ time, we can decide whether a transmission graph given by the sites contains a directed triangle.
Session 9A, Friday, March 23, 10:50–12:13

<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fri 11:41–11:56</td>
<td>9A</td>
<td>QPTAS and Sub-exponential Algorithm for Maximum Clique on Disk Graphs</td>
<td>Édouard Bonnet, Panos Giannopoulos, Eun Jung Kim, Paweł Rzążewski, Florian Sikora</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A disk graph is the intersection graph of closed disks in the plane. We show the structural result that a disjoint union of cycles is the complement of a disk graph if and only if at most one of those cycles is of odd length. From that, we derive the first QPTAS and sub-exponential algorithm running in time (2^{O(n^{2/3})}) for Maximum Clique on disk graphs. In contrast, the problem is unlikely to have such algorithms on intersection graphs of filled ellipses or filled triangles.</td>
<td></td>
</tr>
</tbody>
</table>

Session 9A, Friday, March 23, 11:58–12:13

<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9A</td>
<td>Geometric Clustering in Normed Planes</td>
<td>Pedro Martín, Diego Yáñez</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Given two finite sets of points (A) and (B) in a normed plane, we prove that there are two linearly separable sets (A') and (B') such that (\text{diam}(A') \leq \text{diam}(A)), (\text{diam}(B') \leq \text{diam}(B)), and (A' \cup B' = A \cup B). This extends a result for the Euclidean distance to symmetric convex distance functions. As a consequence, some Euclidean (k)-clustering algorithms are adapted to normed planes, for instance, those that minimize the maximum, the sum, or the sum of squares of the (k) cluster diameters. The result is useful in order to solve the 2-clustering problem when two different bounds are imposed to the diameters. The well-known Euclidean approach to this problem does not work for every normed plane. We point out that the Hershberger-Suri’s data structure for managing ball hulls can be used in this context.</td>
<td></td>
</tr>
</tbody>
</table>

Session 9B, Fri 10:50–12:20, room 005

Session 9B, Fri 10:50–11:05

<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9B</td>
<td>Non-Monochromatic and Conflict-Free Colorings in Tree Spaces</td>
<td>Boris Aronov, Mark de Berg, Aleksandar Markovic, Gerhard Woeginger</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A non-monochromatic coloring (NM-coloring) of a set (S) of intervals in (\mathbb{R}^1) is a coloring such that for any point (p \in \mathbb{R}^1), if the set (S_p) of intervals containing (p) contains at least two intervals, then it contains two intervals of different color. A conflict-free coloring (CF-coloring) of (S) is defined similarly, except that (S_p) should now contain an interval with a unique color. It is well known that any set of (n) intervals in (\mathbb{R}^1) admits a NM-coloring with two colors and a CF-coloring with three colors. We investigate generalizations of this result to colorings of objects in more complex 1-dimensional spaces, namely so-called tree spaces.</td>
<td></td>
</tr>
</tbody>
</table>

Session 9B, Fri 11:07–11:22

<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Presentation Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9B</td>
<td>Arrangements of Pseudocircles: On Circularizability</td>
<td>Stefan Felsner, Manfred Scheucher</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An arrangement of pseudocircles is a collection of simple closed curves on the sphere or in the plane such that every pair is either disjoint or intersects in exactly two crossing points. An arrangement is circularizable if there is a combinatorially equivalent arrangement of circles. Kang and Müller showed that every arrangement of at most 4 pseudocircles is circularizable. Linhart and Ortner found an arrangement of 5 pseudocircles which is not circularizable. We show that there are exactly four non-circularizable arrangements of 5 pseudocircles and exactly three non-circularizable digon-free arrangements of 6 pairwise intersecting pseudocircles.</td>
<td></td>
</tr>
</tbody>
</table>

Sequences of Spanning Trees for L_∞-Delaunay Triangulations

Prosenjit Bose, Pilar Cano, Rodrigo I. Silveira

In the L_∞-Delaunay triangulation of a point set S in the plane, two points are adjacent if there exists an empty axis-aligned square that contains them on its boundary. Now, consider an arbitrary crossing-free spanning tree T_0 of S. Using a constrained L_∞-Delaunay triangulation, we define a sequence of crossing-free spanning trees T_0, T_1, \ldots of S such that the tree T_{i+1} is a minimum spanning tree in the constrained L_∞-Delaunay triangulation of T_i, for $i \geq 0$.

We show that this sequence converges to a minimum spanning tree of S in the L_∞ metric. This extends a result for the L_2-Delaunay Triangulation to the L_∞ metric using a different approach.

3D-Disk-Packing

Helmut Alt, Otfried Cheong, Ji-won Park, Nadja Scharf

In our talk, we consider the problem of finding a minimum volume axis-parallel cuboid container into which a given set of three dimensional unit size disks can be packed under translations. The problem is neither known to be NP-hard nor to be in NP. The audience will learn about an approximation algorithm and the idea why this algorithm computes a constant factor approximation. On the way, one will see how this problem is related to finding the shortest Hamiltonian path in a graph and as a byproduct why it is impossible to pack all unit disks simultaneously into a finite size convex container under translation. This is exciting since in two dimensions, it is possible to pack all line segments into a finite size convex container, i.e. a circle. To the best of the authors’ knowledge, the given approximation algorithm is the first algorithm with proven performance bound to pack three-dimensional objects under translations other than axis-parallel boxes.

Lower Bounds for Coloring of the Plane

Konstanty Junosza-Szaniawski, Krzysztof Wesek

One of the most challenging questions in discrete geometry is the Hadwiger-Nelson problem: how many colors are needed to color the Euclidean plane so that points at distance 1 receive distinct colors? In other words, what is the chromatic number of the unit distance graph of the plane? The question is widely open for over 60 years as the answer is only known to be between 4 and 7. However, it appears that if we consider a modified problem with a wider distance condition, it is possible to make further progress or even give the exact answer.

For $b > 1$, let $G_{[1,b]}$ be the graph with the set of vertices \mathbb{R}^2 and adjacency between points at distance in the interval $[1, b]$. We obtain new lower bounds on $\chi(G_{[1,b]})$ for certain values of b. Combined with known upper bounds, this result gives two intervals of values of b for which we exactly determine $\chi(G_{[1,b]})$ to be 7 and 9, respectively. The first interval contains and substantially enlarges the only known set of values of b with determined $\chi(G_{[1,b]})$, coming from the work of Exoo (2004).

Notes:
Session 10A, Fri 13:20–14:50, main hall

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Title</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fri 13:20–13:35</td>
<td>Reconstructing a Convex Polygon from its (\omega)-Cloud</td>
<td>Prosenjit Bose, Jean-Lou De Carufel, Elena Khramtcova, Sander Verdonschot</td>
</tr>
<tr>
<td>10A, main hall, #44</td>
<td>Consider probing a convex polygon (P) with rotating calipers, and try to reconstruct (P) from the resulting diameter function. You will not always be able to do so! Imagine now using another probing tool, an (\omega)-wedge, that consists of two rays emanating from a single point (the apex) and separated by an angle (\omega < \pi). Instead of the diameter function you will get the (\omega)-cloud of (P), which is the curve traced by the apex of the (\omega)-wedge as it rotates around (P) while maintaining tangency to (P) in both rays. We investigate reconstructing a polygon (P) from its (\omega)-cloud. We show that if (\omega) is known, the (\omega)-cloud alone uniquely determines (P), and we give a linear-time reconstruction algorithm. Furthermore, even if we only know that (\omega < \pi/2), we can still reconstruct (P), albeit in cubic time in the number of vertices. This reduces to quadratic time if in addition we are given the location of one of the vertices of (P).</td>
<td></td>
</tr>
</tbody>
</table>

| **10A**, main hall, #39 | We study several problems concerning convex polygons whose vertices lie in a Cartesian product (for short, grid) of two sets of \(n \) real numbers. First, we prove that all such grids contain a convex polygon with \(\Omega(\log n) \) vertices and that this bound is tight up to constant factors. We also present polynomial-time algorithms for computing the largest convex chain and cap that contains no two points of the same \(x \)- or \(y \)-coordinate. These algorithms give a constant approximation ratio for a largest convex polygon under this restriction. Try to find such a largest polygon for the middle grid. |

| Fri 13:54–14:09 | **Mitered Offsets and Skeleton for Circular Arc Polygons** | Bastian Weiß, Bert Jüttler, Franz Aurenhammer |
| **10A**, main hall, #52 | We generalize the offsetting process that defines straight skeletons of polygons to circular arc polygons. The offsets and the associated skeleton are obtained by applying an evolution process to the boundary and tracing the paths of vertices. These paths define the associated patch decomposition. While the skeleton is a forest, the patches of the decomposition possess a radial monotonicity property. Analyzing the events that occur during the evolution process is non-trivial. This leads us to an event-driven algorithm for offset and skeleton computation. Several examples (both manually created ones and approximations of planar free-form shapes by arc polygons) are presented and used to analyze the performance of our algorithm. |

Notes:
Given a set O of k orientations in the plane, two points inside a simple polygon P *see each other* if there is an O-staircase contained in P that connects them. The O-kernel of P is the subset of points which O-see all the other points in P. This work initiates the study of the computation and maintenance of the O-Kernel of a polygon P as we rotate the set O by an angle θ, denoted O-Kernel$_\theta(P)$. In particular, we design efficient algorithms for (i) computing and maintaining $\{0^\circ\}$-Kernel$_\theta(P)$ while θ varies in $[-\pi/2, \pi/2)$, obtaining the angular intervals where the $\{0^\circ\}$-Kernel$_\theta(P)$ is not empty and (ii) for orthogonal polygons P, computing the orientation $\theta \in [0, \pi/2)$ such that the area and/or the perimeter of the $\{0^\circ, 90^\circ\}$-Kernel$_\theta(P)$ are maximum or minimum.

We propose a generalization of the concept visibility kernel which finds use in art gallery problems. For a point p in a simple polygon P and a subset X of P, we refer the set of points visible by every point in X that is seen by p as the generalized visibility kernel of p with respect to X. We present an $O((n + m \log m)$ time algorithm for computing the generalized visibility kernel, where n, m are the complexities of P and X respectively. As essential components of our approach, we also propose two efficient algorithms for computing the relative convex hull and the complete visibility polygon of a set of points. Our algorithm consists of four steps:

1. We use the linear-time algorithm by Joe and Simpson to compute the visibility polygon, $\mathcal{V}(p)$.
2. We present an angular plane sweep algorithm to find $\mathcal{V}(p) \cap X$.
3. We calculate the relative convex hull of $\mathcal{V}(p) \cap X$.
4. We compute the complete visibility polygon of $\mathcal{V}(p) \cap X$ relying on the relative convex hull computed in Step 3.

We study the computation of the diameter and radius under the rectilinear link distance within a rectilinear polygonal domain of n vertices and h holes. We use a *graph of oriented distances* to encode the distance between pairs of points of the domain. This helps us transform the problem so that we can search through the candidates more efficiently. Our algorithm computes both the diameter and the radius in $O(\min(n^\omega, n^2 + nh \log h + \chi^2))$ time, where $\omega < 2.373$ denotes the matrix multiplication exponent and $\chi \in \Omega(n) \cap O(n^2)$ is the number of edges of the graph of oriented distances. We also provide a faster algorithm for computing the diameter that runs in $O(n^2 \log n)$ time.

Generalized Kernels of Polygons under Rotation

David Orden, Leonidas Palios, Carlos Seara, Paweł Żyliński

![Kernel for $\theta = 0$ (left), $\theta = \pi/8$ (middle), and $\theta = \pi/4$ (right).](image)

Generalized Visibility Kernel

Evüp Serdar Ayaz, Alper Üngör

![Generalized visibility kernel](image)

Rectilinear Link Diameter and Radius in a Rectilinear Polygonal Domain

Man-Kwun Chiu, Elena Khramtcova, Aleksandar Markovic, Yoshio Okamoto, Aurélien Ooms, André van Renssen, Marcel Roeloffzen

![Rectilinear domain](image)

Notes:
An FPTAS for an Elastic Shape Matching Problem with Cyclic Neighborhoods
Christian Knauer, Luise Sommer, Fabian Stehn

The elastic geometric shape matching (EGSM) problem class is a generalisation of the well-known geometric shape matching problem class: Given two geometric shapes, the ‘pattern’ P and the ‘model’ Q, find a single transformation from a given transformation class that, if applied to the pattern, minimizes the distance between the transformed pattern and the model with respect to a suitable distance measure.

In EGSM, the pattern is divided into subshapes that are transformed by a ‘transformation ensemble’ T, i.e., a set of transformations. The goal is to minimize the distance between the union of the transformed subpatterns and the model in object space as well as the distance between specific transformations of the ensemble. The ‘neighborhood graph’ encodes which translations should be similar.

We present an FPTAS for EGSM instances for point sequences $P = (p_0, \ldots, p_{n-1})$ under translations $T = (t_0, \ldots, t_{n-1})$ with fixed correspondence where the neighborhood graph G is a simple cycle.

A Polynomial Algorithm for Balanced Clustering via Graph Partitioning
Luis Evaristo Caraballo, José-Miguel Díaz-Báñez, Nadine Kroher

We consider a graph partitioning problem using a novel and natural quality measure for clusters: given a cluster C of a graph G (C is a connected component of G) the quality measure of C is the ratio between the heaviest outgoing edge from C and the minimum edge in the maximum spanning tree of C. And, we consider the measure of a clustering Π as the measure of the worst cluster in Π. In this talk we present some interesting properties of the optimal solution that allow us to build a quadratic algorithm on the number of nodes of G.

Deletion in Abstract Voronoi Diagrams in Expected Linear Time
Kolja Junginger, Evanthia Papadopoulou

Updating an abstract Voronoi diagram in linear time, after deletion of one site, has been an open problem for a long time. Similarly for concrete Voronoi diagrams of generalized sites, other than points. In this abstract we present a simple, expected linear-time algorithm for this task. We introduce the concept of a Voronoi-like diagram, a relaxed version of a Voronoi construct, that has a structure similar to an abstract Voronoi diagram without however being one. Voronoi-like diagrams serve as intermediate structures, which are considerably simpler to compute, thus, making an expected linear-time construction possible.

Fair Voronoi Split-Screen for N-Player Games
Tobias Lenz

We introduce a special kind of subdivision called the Voronoi Split-Screen which evolves naturally from multiplayer games. At first glance the problem is closely related to Voronoi diagrams but much harder since all cells must have equal area. The talk is more lighthearted than the paper, omits most formulas, and illustrates different approaches with nice animations. Many possible and impossible variations and open problems might give you something to chew on during lunch.
<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fri 14:28–14:43</td>
<td>10B, room 005, #56</td>
<td>A New Algorithm for Finding Polygonal Voids in Delaunay Triangulations and its Parallelization</td>
<td>Nancy Hitschfeld, José Ojeda, Rodrigo Alonso</td>
</tr>
</tbody>
</table>

A known geometrical problem is to find low density zones (voids) in bidimensional planar point sets and to represent them as simple polygons. In this paper we formally characterize the properties of the subvoid candidates over a triangulation, present a linear algorithm to find subvoids taking as input a Delaunay triangulation, and show that this new solution can be naturally parallelized using gpu computing. We also show preliminary experimental results.

<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fri 14:45–15:00</td>
<td>10B, room 005, #72</td>
<td>On Primal-Dual Circle Representations</td>
<td>Stefan Felsner, Günter Rote</td>
</tr>
</tbody>
</table>

The Koebe-Andreev-Thurston Circle Packing Theorem tells us that every triangulated planar graph has a circle-contact representation. The theorem has been generalized in various ways. The arguably most prominent generalization assures the existence of a primal-dual circle representation for every 3-connected planar graph. The most commonly known proof is based on an iterative algorithm. In this talk we explain the algorithm and emphasize some details in the analysis which lead to a very compact proof.
Index of Talks

1-Bend RAC Drawings of NIC-Planar Graphs in Quadratic Area. Steven Chaplick, Fabian Lipp
Alexander Wolff, Johannes Zink ... 6A (Thu 11:41) #28
3D-Disk-Packing. Helmut Alt, Otfried Cheong, Ji-Won Park, Nadja Scharf 9B (Fri 11:41) #47

A Combinatorial Measure Of Closeness in Point Sets. Patrick Schnider, Alexander Pilz
... 6B (Thu 11:41) #5

A Framework for Algorithm Stability and its Application to Kinetic Euclidean MSTs. Wouter Meulemans,
Bettina Speckmann, Kevin Verbeek, Jules Walus .. 2A (Wed 11:39) #11

A Fully Polynomial Time Approximation Scheme for the Smallest Diameter of Imprecise Points.
Vahideh Keikha, Maarten Löffler ... 3B (Wed 14:04) #55

A New Algorithm for Finding Polygonal Voids in Delaunay Triangulations and its Parallelization.
Nancy Hitschfeld, José Ojeda, Rodrigo Alonso 10B (Fri 14:28) #56

A New Lower Bound on the Maximum Number of Plane Graphs using Production Matrices.
Clemens Huemer, Alexander Pilz, Rodrigo Silveira 6B (Thu 10:50) #9

A Note on Flips in Diagonal Rectangulations. Jean Cardinal, Vera Sacristan, Rodrigo Silveira
.. 4B (Wed 16:45) #46

A Note on Planar Monohedral Tilings. Oswin Aichholzer, Michael Kerber, Istvan Talata, Birgit Vogtenhuber
.. 4B (Wed 16:11) #31

A Polynomial Algorithm for Balanced Clustering via Graph Partitioning. Luis Evaristo Caraballo de La Cruz,
José Miguel Díaz Báñez, Nadine Kroher ... 10B (Fri 13:37) #58

Agglomerative Clustering of Growing Squares. Thom Castermans, Bettina Speckmann, Frank Staals,
Kevin Verbeek ... 2A (Wed 11:05) #8

Almost-Equidistant Sets. Martin Balko, Attila Pör, Manfred Scheucher, Konrad Swanepoel, Pavel Valtr
.. 4B (Wed 15:37) #19

Altitude Terrain Guarding and Guarding Uni-Monotone Polygons. Stephan Friedrichs, Valentin Polishchuk,
Christiane Schmidt .. 2B (Wed 11:05) #41

An FPTAS for an Elastic Shape Matching Problem with Cyclic Neighborhoods. Christian Knauer,
Luise Sommer, Fabian Stehn .. 10B (Fri 13:20) #6

Approximate Stabbing Queries with Sub-Logarithmic Local Replacement. Ivor Hoog v.d.,
Maarten Löffler ... 2A (Wed 12:13) #59

Arrangements of Pseudocircles: On Circularizability. Stefan Felsner, Manfred Scheucher
.. 9B (Fri 11:07) #15

Augmenting a Tree to a k-Arbor-Connected Graph with Pagenumber k. Toru Hasunuma
.. 6A (Thu 11:24) #27

Automatic Drawing for Tokyo Metro Map. Masahiro Onda, Masaki Moriguchi, Keiko Inmai
.. 4A (Wed 16:28) #62

Balanced Dynamic Loading and Unloading. Sándor Fekete, Sven von Höveling, Joseph Mitchell, Christian Rieck,
Christian Scheffer, Arne Schmidt, James Zuber 2A (Wed 11:56) #18

Beam It Up, Scotty: Angular Freeze-Tag with Directional Antennas. Sándor Fekete, Dominik Krupke
.. 3A (Wed 14:38) #22

Bottleneck Bichromatic Non-crossing Matchings using Orbits. Marko Savić, Miloš Stojaković
.. 6B (Thu 11:24) #70

Combinatorial and Asymptotical Results on the Neighborhood Grid Data Structure. Martin Skrodzki,
Ulrich Reitebuch, Konrad Polthier ... 2A (Wed 11:22) #30

Combinatorics of Beacon-Based Routing in Three Dimensions. Jonas Cleve, Wolfgang Mulzer
.. 2B (Wed 11:39) #48

Computing Crossing-Free Configurations with Minimum Bottleneck. Sándor Fekete, Phillip Keldenich
.. 4B (Wed 16:28) #23

Computing Optimal Shortcuts for Networks. Delia Garijo, Alberto Márquez, Natalia Rodríguez,
Rodrigo Silveira ... 3A (Wed 13:47) #45
Convexity-Increasing Morphs of Planar Graphs. Linda Kleist, Boris Klemz, Anna Lubiw, Lena Schlipf, Frank Staals, Darren Strash ... 4A (Wed 15:54) #65

Coxeter Triangulations have Good Quality. Siargey Kachanovich, Mathijs Wintraecken, Aruni Choudhary ... 7A (Thu 13:54) #4

Data Gathering in Faulty Sensor Networks Using a Mule. Stav Ashur 3A (Wed 13:30) #38

Deletion in Abstract Voronoi Diagrams in Expected Linear Time. Kolja Junginger, Evanthia Papadopoulou ... 10B (Fri 13:54) #37

Drawing Connected Planar Clustered Graphs on Disk Arrangements. Tamara Mchedlidze, Marcel Radermacher, Ignaz Rutter, Nina Zimbel 6A (Thu 11:07) #14

Efficient Algorithms for Ortho-Radial Graph Drawing. Benjamin Niedermann, Ignaz Rutter, Matthias Wolf ... 4A (Wed 16:11) #71

Fair Voronoi Split-Screen for N-Player Games. Tobias Lenz 10B (Fri 14:11) #34

Finding the Girth in Disk Graphs and a Directed Triangle in Transmission Graphs. Haim Kaplan, Katharina Klost, Wolfgang Mulzer, Liam Roditty 9A (Fri 11:24) #68

Generalized Kernels of Polygons under Rotation. David Orden, Leonidas Palios, Carlos Seara, Pawel Zylinski ... 10A (Fri 14:11) #74

Generalized Visibility Kernel. Eyüp Serdar Ayaz, Alper Üngör 10A (Fri 14:28) #75

Geometric Clustering in Normed Planes. Pedro Martín, Diego Yáñez 9A (Fri 11:58) #3

Geometric Issues in Self-Driving Cars. Raúl Rajas 8 (Fri 9:00) #C

Group Diagrams for Representing Trajectories. Maite Buchin, Bernhard Kibgus 7B (Thu 13:20) #7

Guarding Monotone Polygons with Vertex Half-Guards is NP-Hard. Matt Gibson, Erik Krohn, Matthew Rayford ... 2B (Wed 12:13) #12

Integer and Mixed Integer Tverberg Numbers. Jesus De Loera, Thomas Hogan, Frederic Meunier, Nabil Mustafa ... 7A (Thu 14:11) #36

L(2,1)-Labeling of Disk Intersection Graphs. Konstanty Junosza-Szaniawski, Joanna Sokół .. 9A (Fri 10:50) #57

Lower Bounds for Coloring of the Plane. Konstanty Junosza-Szaniawski, Krzysztof Węsek .. 9B (Fri 11:58) #69

Maximal Two-Guard Walks in a Polygon. Franz Aurenhammer, Michael Steinkogler 2B (Wed 11:22) #1

Maximizing Ink in Symmetric Partial Edge Drawings of k-plane Graphs. Michael Höller, Fabian Klute, Soeren Nickel, Martin Nüllenburg, Birgit Schreiber ... 4A (Wed 15:20) #50

Minimal Geometric Graph Representations of Order Types. Oswin Aichholzer, Martin Balko, Michael Hoffmann, Jan Kyncl, Wolfgang Mulzer, Irene Parada, Alexander Pilz, Manfred Scheucher, Pavel Valtr, Birgit Vogtenhuber, Emo Welzl ... 4B (Wed 15:54) #21

Mitered Offsets and Straight Skeletons for Circular Arc Polygons. Bastian Weik, Bert Jüttler, Franz Aurenhammer .. 10A (Fri 13:54) #52

Non-Monochromatic and Conflict-Free Colorings in Tree Spaces. Boris Aronov, Mark de Berg, Aleksandar Markovic, Gerhard J. Woeginger ... 9B (Fri 10:50) #33

NP-Completeness of Max-Cut for Segment Intersection Graphs. Oswin Aichholzer, Wolfgang Mulzer, Patrick Schnider, Birgit Vogtenhuber .. 6A (Thu 11:58) #32

On Convex Polygons in Cartesian Products. Jean-Lou De Carufel, Adrian Dumitrescu, Wouter Meulemans, Tim Ophelders, Claire Pennarun, Csaba Tóth, Sander Verdonschot ... 10A (Fri 13:37) #39

On Merging Straight Skeletons. Franz Aurenhammer, Michael Steinkogler 7A (Thu 13:37) #42

On Optimal Polyline Simplification using the Hausdorff and Fréchet Distance. Marc Van Kreveld, Maarten Löffler, Lionov Wiratma ... 7B (Thu 14:28) #25

On Primal-Dual Circle Representations. Stefan Felsner, Günter Rote ... 10B (Fri 14:45) #72

On the Topology of Walkable Environments. Benjamin Burton, Arne Hillebrand, Maarten Löffler, Saul Schleimer, Dylan Thurston, Stephan Tillmann, Wouter van Toll 7A (Thu 14:28) #66

On the Weak Line Cover Number. Oksana Firman, Alexander Ravsky, Alexander Wolff .. 3B (Wed 17:11) #73

Online Competitive Routing on Delaunay Triangulations and their Variants. Prosenjit Bose .. 5 (Thu 9:00) #B

Optimal Algorithms for Compact Linear Layouts. Wouter Meulemans, Willem Sonke, Bettina Speckmann, Eric Verbeek, Kevin Verbeek .. 6A (Thu 10:50) #10

Probabilistic Embeddings of the Fréchet Distance. Anne Driemel, Amer Krivosija 7B (Thu 14:11) #26

Progressive Simplification of Polygonal Curves. Kevin Buchin, Maximilian Konzack, Wim Reddingius 7B (Thu 13:54) #13

Properties of Minimal-Perimeter Polyominoes. Gill Barequet, Gil Ben-Shachar 3B (Wed 14:21) #24

Protecting a Highway from Fire. Rolf Klein, David Kübel, Elmar Langetepe, Barbara Schwarzwald .. 3A (Wed 14:04) #54

QPTAS and Subexponential Algorithm for Maximum Clique on Disk Graphs. Edouard Bonnet, Panos Giannopoulos, Eun Jung Kim, Pawel Rzążewski 9A (Fri 11:41) #61

Reconstructing a Convex Polygon from its \(\omega\)-Cloud. Prosenjit Bose, Jean-Lou De Carufel, Elena Khramtcova, Sander Verdonschot ... 10A (Fri 13:20) #44

Rectilinear Link Diameter and Radius in a Rectilinear Polygonal Domain. Man-Kwun Chiu, Elena Khramtcova, Aleksandar Markovic, Yoshiio Okamoto, Aurélien Ooms, André van Renssen, Marcel Roeloffzen ... 10A (Fri 14:45) #2

Rigidity and Deformation. Nina Amenta .. 1 (Wed 9:00) #A

Rollercoasters: Long Sequences without Short Runs. Therese Biedl, Ahmad Biniaz, Robert Cummings, Anna Lubiw, Florin Manea, Dirk Nowotka, Jeffrey Shallit .. 6B (Thu 11:58) #40

Sequences of Spanning Trees for \(L_{\infty}\)-Delaunay Triangulations. Pilar Cano, Prosenjit Bose, Rodrigo I. Silveira .. 9B (Fri 11:24) #49

Shape Recognition by a Finite Automaton Robot. Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn, Dorian Rudolph, Christian Scheideler ... 3A (Wed 14:21) #73

Short Plane Support Trees for Hypergraphs. Thom Castermans, Marinka van Garderen, Wouter Meulemans, Martin Möllenhoff, Xiaoru Yuan .. 3B (Wed 14:38) #35

Solving Large-Scale Minimum-Weight Triangulation Instances to Provable Optimality. Andreas Haas .. 3B (Wed 13:30) #20

Stabbing Pairwise Intersecting Disks by Five Points. Sariel Har-Peled, Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, Micha Sharir, Max Willert 9A (Fri 11:07) #29

Subquadratic Encodings for Point Configurations. Jean Cardinal, Timothy M. Chan, John Iacono, Stefan Langerman, Aurélien Ooms ... 4B (Wed 15:20) #60

The \(k\)-Fréchet Distance of Polygonal Curves. Maike Buchin, Leonie Ryvkin 7B (Thu 13:37) #43

The Hardness of Witness Puzzles. Irina Kostitsyna, Maarten Löffler, Max Sondag, Willem Sonke, Jules Walms ... 3B (Wed 13:47) #67

The Partition Spanning Forest Problem. Philipp Kindermann, Boris Klemz, Ignaz Rutter, Patrick Schneider, André Schulz .. 4A (Wed 15:37) #53

The Topology of Skeletons and Offsets. Stefan Huber ... 7A (Thu 13:20) #17

Index

Index of Authors and Speakers

Ahn, Hee-Kap .. 2B(W11:56) #16
Aichholzer, Oswin 4B(W15:54) #21, 4B(W16:11) #31, 6A(Th11:58) #32
Alonso, Rodrigo 10B(Fr14:28) #56
Alt, Helmut ... 9B(Fr11:41) #47
Amenta, Nina 1(W9:00) #A
Aronov, Boris 9B(Fr10:50) #33
Ashur, Stav .. 8A(Th13:30) #38
Aurenhammer, Franz 2B(W11:22) #1, 7A(Th13:37) #42, 10A(Fr13:54) #52
Ayaz, Eyüp Serdar 10A(Fr14:28) #75
Balko, Martin 4B(W15:37) #19, 4B(W15:54) #21
Banyassady, Bahareh 6B(Th11:07) #51
Barba, Luis 6B(Th11:07) #51
Barequet, Gill 3B(W14:21) #24
Ben-Shachar, Gil 3B(W14:21) #24
Berg, Mark de 9B(Fr10:50) #33
Biedl, Therese 6B(Th11:58) #40
Biniaiz, Ahmad 6B(Th11:58) #40
Bonnet, Édouard 9A(Fr11:41) #61
Bose, Prosenjit 5(Th9:00) #B, 9B(Fr11:24) #49, 10A(Fr13:20) #44
Buchin, Kevin 7B(Th13:54) #13
Buchin, Maiko 7B(Th13:54) #13
Burton, Benjamin 7A(Th14:28) #66
Cano, Pilar 9B(Fr11:24) #49
Caraballo, Luis Evaristo 10B(Fr13:37) #58
Cardinal, Jean 4B(W15:20) #60, 4B(W16:45) #46
Carufel, Jean-Lou De 10A(Fr13:20) #44, 10A(Fr13:37) #39
Castermans, Thom 2A(W11:05) #8, 3B(W14:38) #35
Chan, Timothy M. 4B(W15:20) #60
 Chaplick, Steven 6A(Th11:41) #28
 Cheong, Otfried 9B(Fr11:41) #47
 Chiu, Man-Kwun 10A(Fr14:45) #2
 Choudhary, Aruni 7A(Th13:54) #4
 Cleve, Jonas 2B(W11:39) #48
 Cummings, Robert 6B(Th11:58) #40
 Das, Shagnik 2A(W11:22) #30
 De Carufel, Jean-Lou 10A(Fr13:20) #44, 10A(Fr13:37) #39
 De Loera, Jesús A. 7A(Th14:11) #36
 Díaz-Báñez, José-Miguel 10B(Fr13:37) #58
 Driemel, Anne 7B(Th14:11) #26
 Dumitrescu, Adrian 10A(Fr13:37) #39
 Fekete, Sándor P. 2A(W11:56) #18, 3A(W14:38) #22, 4B(W16:28) #23
 Felsner, Stefan 9B(Fr11:07) #15, 10B(Fr14:45) #72
 Firman, Oksana 4A(W16:45) #63
 Friedrichs, Stephan 2B(W11:05) #41
 Garderen, Mereke van 3B(W14:38) #35
 Garijo, Delia 3A(W13:47) #45
 Giannopoulos, Panos 9A(Fr11:41) #61
 Gibson, Matt 2B(W12:13) #12
 Gnyr, Robert 3A(W14:21) #73
 Haas, Andreas 3B(W13:30) #20
 Har-Peled, Sariel 9A(Fr11:07) #29
...