An s-workspace algorithm is an algorithm that has read-only access to the values of the input and only uses $O(s)$ additional words of space. We give a randomized s-workspace algorithm for triangulating a simple polygon P of n vertices, for any s in the range between $s = \Omega(\log n)$ and $s = O(n)$. The algorithm runs in $O(n^2/s)$ expected time.

We extend the approach to compute other similar structures such as the shortest-path map or the shortest-path tree from a point $p \in P$, or a partition of P using only diagonals of the polygon so that the resulting sub-polygons have $\Theta(s)$ vertices each.

We consider the following two problems:

(a) Floodlight illumination: We are given n infinite wedges (sectors, spotlights) that can cover the whole plane when placed at the origin. They are to be assigned to n given locations (in arbitrary order, but without rotation) such that they still cover the whole plane.

(b) Convex partition: We are given a convex m-gon P and a finite set of points S from the interior of P, and m positive integers s_i with $s_1 + \cdots + s_m = |S|$.

We want to partition P into m convex parts. The i-th part should contain the i-th edge of P and n_i points of S.

We will show that these two seemingly quite different problems can be solved in a uniform way by a reduction to a minimum-weight bipartite matching problem.