
Lost in translation
how easy problems become hard due to bad encodings

Vampire Workshop 2015

Leonardo de Moura
Microsoft Research

I wanted to give the following talk

http://leanprover.github.io/

Automated Reasoning Tools
as a service

Software/Hardware
Verification

Tools

Test-case
generators

Static Analyzers

…

SMT Solvers

SAT Solvers

ATP

The “dream”

SMT Solvers

SAT Solvers

ATP

Automated reasoning tools as black boxes

Example 1:
SAT solvers and Tseitin encoding

• Most SAT solvers expect the input formula to be in
CNF

• In practice, it is not feasible to convert formulas into
CNF using equivalences such as

Example 1:
SAT solvers and Tseitin encoding

Example 1:
SAT solvers and Tseitin encoding

• Tseitin encoding is easy to implement.

• However, there are several important improvements.

• Example: detect common sub- formulas.

• SAT preprocessors (such as SatELite) “fix” naive
CNF encodings before invoking the actual SAT solver

• Good: preprocessors are reused by different
research groups

Example 2:
Finite model finding & symmetry breaking

• Given a first-order logic formula F, find a finite model M for it

• Procedures: reduce to SAT (or SMT), reduce to EPR

• MACE-style reduction

• Fix domain D = {1, …, n}

• Create propositional variables for each predicate P and argument vector (d1, …, dk)
where k is the rarity of P and di in D

• Similarly, one proposition pf,v,r application for each function f argument vector v = (d1,
…, dk) and “result” r in D

• Convert F into CNF, instantiate, and add

• function definition constraint: (not pf,v,r) or (not pf,v,r’)

• totality constraints: (pf,v,1 or … or pf,v,n)

Example 2:
Finite model finding & symmetry breaking

• The encoding into SMT is simpler. Example: we can use the
theory of uninterpreted functions and avoid function
definition and totality constraints.

• Symmetry reduction is a very important optimization (in both
cases).

• The MACE-style encoding implies that for each model, all
of its isomorphic valuations (obtained by permuting the
domain elements) are also models.

• Idea: add symmetry breaking constraints that force that
the model we are looking for has a certain canonical form.

Example 2:
Finite model finding & symmetry breaking

• Suppose the problem encoder did not include the symmetry
breaking problems.

• Now, to achieve good performance the solver developer must try to
infer the symmetries (a much harder problem). See

“SyMT: finding symmetries in SMT formulas”, by Carlos Areces,
David Deharbe, Pascal Fontaine and Ezequiel Orbe

• SMT-LIB has as huge set of finite model finding (QF_UF) problems
where symmetry breaking constraints have not been added.

• Consequently, many SMT solvers (e.g., CVC4, veriT, Yices, Z3) do
implement SyMT-like procedures to be able to solve these
problems efficiently.

Example 3: Sledgehammer

• Sledgehammer is a very successful tool available in the Isabelle
Proof assistant

• It converts HOL into FOL and invokes many ATPs (Vampire) and
SMT solvers (Z3)

• A lot is lost in the translation.

• Sledgehammer may fail in very simple queries because they are
higher-order, but it will succeed once the user has, for example,
manually unfolded some definitions.

• We need provers/solvers that can understand HOL and perform
proofs by induction. Even if it is just thin layer.

Example 4:
Nonlinear arithmetic solvers

• Nonlinear (real polynomial) arithmetic is decidable

• Expensive decision procedure

• Most efficient complete solvers are based on
Cylindrical Algebraic Decomposition (CAD)

• Perform computations with real algebraic numbers

Example 4:
Nonlinear arithmetic solvers

• Real algebraic numbers

Example 4:
Nonlinear arithmetic solvers

• Bad application: object placement in 3D virtual world (constraints of the form distance(a,
b) < n)

• Precision is not important: algebraic numbers are an overkill for this kind of
application

• Avoiding real-algebraic numbers

• replace p = 0 with -δ < p < δ (for a small δ)

• replace p ≦ 0 with p < δ

• The resulting problem is satisfiable iff it has a rational model. This trick only works if
the solver takes the property into account.

• Remark: we should not apply this transformation to linear equalities since they can be
easily eliminated using variable substitution

• Example, given x+y+2=0, replace x with -y-2 “everywhere” and delete equation.

Example 4:
Nonlinear arithmetic solvers

• Bad application: object placement in 3D virtual world (constraints of the form distance(a,
b) < n)

• Precision is not important: algebraic numbers are an overkill for this kind of
application

• Avoiding real-algebraic numbers

• replace p = 0 with -δ < p < δ (for a small δ)

• replace p ≦ 0 with p < δ

• The resulting problem is satisfiable iff it has a rational model. This trick only works if
the solver takes the property into account.

• Remark: we should not apply this transformation to linear equalities since they can be
easily eliminated using variable substitution

• Example, given x+y+2=0, replace x with -y-2 “everywhere” and delete equation.

Example 4:
Nonlinear arithmetic solvers

• Bad idea: convert nonlinear real arithmetic into nonlinear integer
arithmetic (using fixed point encoding).

• Replace x with 10ky where y is a fresh integer variable and k is
the number of decimal places

• This approximation also avoids algebraic numbers.

• The resulting problem is in an undecidable fragment (Hilbert’s
10th problem).

• This encoding was used by a Z3 user.

• Lesson: users must have a rough idea on how the solver works.

Example 5:
Proof checking in dependent type theory

• Proof assistants based on dependent type theory (e.g., Agda, Coq and Lean) have
a builtin notion of reduction.

• Beta-reduction (λx, f x x) (g a) → f (g a) (g a)

• Eta-reduction (λx, f x) → f

• Iota-reduction

nat.primrec c f 0 → c

nat.primrec c f (succ n) → f n (nat.primrec c f n)

• In these systems, we say that t and s are definitionally equal if there is an r such
that t →r ←s

• Zero-step proofs: we can use reflexivity to prove that definitionally equal terms are
equal. Example: (refl 4) is a proof for 2+2 = 4 since 2+2 is convertible to 4.

Example 5:
Proof checking in dependent type theory

• A naive definitional equality checker for t and s will simply compute the normal
forms for t and s and check whether they are syntactically equal or not.

• In practice, the naive checker will fail in examples such as

fact (99+1) and fact 100.

• Most proof assistants use the following heuristics for checking whether (f s) is
definitionally equal to (f t).

• If s and t are definitionally equal, then return yes.

• Otherwise, unfold f and try again.

• (refl (fact 100)) is a compact proof for fact (99+1) = fact 100, but it is only
feasible to check it if the type/proof checker implements an optimization like
the one above.

Flexible solvers and provers
We need more flexible tools.

Customized solutions should be easy to build.

Reuse preprocessors and problem encoders.

Solvers should not be big monolithic black boxes, but a
collection of tools and procedures.

Open source tools is a must have.

Efforts such as TPTP and SMT-Lib are fundamental

The strategy challenge

To build theoretical and practical tools allowing users
to exert strategic control over core heuristic aspects

of high performance prover and solvers.

What is a strategy?

Theorem proving as an exercise of combinatorial search.

Strategies are adaptations of general search mechanisms which
reduce the search space by tailoring its exploration to a particular
class of formulas.

Different strategies for different domains

From timeout to 0.05secs

Hardware fixpoint checks

Ranking function synthesis

Why is Z3 fast in these benchmarks?

Z3 is using a custom strategy that combines:

• rewriting, SAT, model based quantifier instantiation

Combining Strategies
Main inspiration: LCF-approach

Combining Strategies
Main inspiration: LCF-approach

Combining Strategies
Main inspiration: LCF-approach

Combining Strategies
Main inspiration: LCF-approach

Combining Strategies
Main inspiration: LCF-approach

Tactical: combinators

SMT Tactic

SMT Tactic

SMT Tactic

SMT Tactic

Trivial goals

SMT Tactic: example

SMT Tactic: example

SMT Tactic: example

SMT Tactic

SMT Tacticals

SMT Tacticals

SMT Tacticals

Features/Measures

Probing structural features of formulas

Features/Measures: Yices 1.0 strategy

Features/Measures: Yices 1.0 strategy

Features/Measures

Tacticals: syntax sugar

Abstraction/Refinement

Abstraction/Refinement

Abstraction/Refinement

Abstraction/Refinement

Abstraction/Refinement

Abstraction/Refinement

Design engines as tacticals

Conclusions

• Flexible solver/prover architectures

• “Good encodings” are solver/prover dependent

• Transparency (open source) is essential

• Separation of concerns: problem encoders x
solvers

• “Orchestrating smaller/simpler procedures”

