
Proceedings of the

2nd International Workshop on Quantification

QUANTIFY 2015

Co-located with the

25th International Conference on Automated Deduction (CADE)

August 3, 2015

Berlin, Germany

Hubie Chen, Florian Lonsing, Martina Seidl

Preface

Quantifiers play an important role in language extensions of many logics. The use of quantifiers

often allows for a more succinct encoding as it would be possible without quantifiers. However,

the introduction of quantifiers a↵ects the complexity of the extended formalism in general. In

consequence, theoretical results established for the quantifier-free formalism may not directly be

transferred to the quantified case. Further, techniques successfully implemented in reasoning

tools for quantifier-free formulas cannot directly be lifted to a quantified version.

The Workshop on Quantification (QUANTIFY 2015) brings together researchers who inves-

tigate the impact of quantification from a theoretical as well as from a practical point of view.

Quantification is a topic in di↵erent research areas, e.g., in SAT in terms of QBF, in CSP in terms

of QCSP, in SMT, etc. After the first successful edition of QUANTIFY at the Vienna Summer

of Logic as FLoC Workshop in 2014, this second edition is hosted by the 25th International

Conference on Automated Deduction (CADE), Berlin, Germany.

QUANTIFY 2015 features an invited talk on “Proof Complexity of Quantified Boolean For-

mulas” by Olaf Beyersdor↵ and six contributed submissions which were reviewed and discussed

by QUANTIFY’s program committee. We would like to thank all the members of the PC for

helping us with setting up the program. These informal proceedings archive and document these

six contributions1.

July 2015, Hubie Chen, Florian Lonsing, Martina Seidl

1
The copyright remains with the authors.

2

Organization

Program Chairs

• Hubie (Hubert) Chen, Universidad del Pais Vasco and Ikerbasque

• Florian Lonsing, Vienna University of Technology, Austria

• Martina Seidl, University of Linz, Austria

Program Committee

• Olaf Beyersdor↵, University of Leeds

• Nikolaj Bjorner, Microsoft Research

• Jasmin Blanchette, TU Munich

• Mikolas Janota, INESC-ID Lisboa

• Laura Kovacs, Chalmers University of Technology

• Francesco Scarcello, DIMES, University of Calabria

• Christoph Wintersteiger, Microsoft Research

3

Contents

1 A Survey on DQBF: Formulas, Applications, Solving Approaches

Gergely Kovasznai 7

2 Old Challenges and New Solutions: a Comprehensive Assessment of State-of-the-Art

QBF Solvers

Paolo Marin, Massimo Narizzano, Luca Pulina, Armando Tacchella and Enrico Giunchiglia

11

3 Encodings of Reactive Synthesis

Peter Faymonville, Bernd Finkbeiner, Markus N. Rabe and Leander Tentrup 19

4 Model Finding for Recursive Functions in SMT

Andrew Reynolds, Jasmin Christian Blanchette and Cesare Tinelli 23

5 Congruence Closure with Free Variables

Haniel Barbosa and Pascal Fontaine 27

6 Quantifiers, Computation, and Cognition

Jakub Szymanik 37

5

1 A Survey on DQBF: Formulas,

Applications, Solving Approaches

Gergely Kovasznai A Survey on DQBF: Formulas, Applications, Solving Approaches

7

A Survey on DQBF: Formulas, Applications,
Solving Approaches

Gergely Kovásznai

IoT Research Center,
Eszterhazy Karoly University of Applied Sciences,

Eger, Hungary
kovasznai.gergely@ekf.hu

1 Introduction

Dependency Quantified Boolean Formulas (DQBF) are obtained by adding
Henkin quantifiers to Boolean formulas and have seen growing interest in the
last years. In contrast to QBF, the dependencies of a variable in DQBF are ex-
plicitly specified instead of being implicitly defined by the order of the quantifier
prefix. This enables us to also use partial variable orders as part of a formula
instead of only allowing total ones. As a result, problem descriptions in DQBF
can possibly be exponentially more succinct. While QBF is PSpace-complete,
DQBF was shown to be NExpTime-complete [14].

2 Applications

Many practical problems are known to be NExpTime-complete. This includes,
e.g., partial information non-cooperative games [13] or certain bit-vector log-
ics [12, 15] used in the context of Satisfiability Modulo Theories (SMT). More
recently, also applications in the area of partial equivalence checking (PEC) prob-
lems [7, 8] have been discussed and DQBF has been shown to o↵er a natural
encoding for PEC problems. For running experiments, one can access publicly
available PEC problem instances and their DQBF encodings [3, 6, 9].

3 Solving Approaches

The first known direct solving approach forDQBF is an adaptation of QDPLL [5],
which did not end up being very e�cient.

Expansion-based techniques forDQBF were also investigated [1, 2] and yielded
in a (not publicly available) expansion-based solver in [8] that uses an underlying
SAT solver.

In [4], a refutational approach is proposed that is based on QBF abstraction,
thus an uderlying QBF solver is used. This approach is incomplete since it only
allows refutation of unsatisfiable formulas.

1 A Survey on DQBF: Formulas, Applications, Solving Approaches

8

Based on the fact that E↵ectively Propositional Logic (EPR) is another logic
which is NExpTime-complete, we investigated how to adapt an instantiation-
based EPR solving approach, the Inst-Gen calculus [10, 11] to DQBF. We pub-
lished those results and proposed a new instantiation-based DQBF solver, iDQ
in [6]. As the experiments showed, iDQ turned out to be an e�cient solver.

In [9], an elimination-based solving strategy is proposed and is implemented
in theDQBF solver calledHQS. Besides the powerful elimination strategy,HQS
utilizes several optimizations, such as pure and unit literal detection, yields to
an even more e�cient DQBF solver than iDQ.

Apart from the solving technique we use, preprocessing techniques can speed
up the solving significantly. Therefore it is worth to investigate if well-known
SAT and QBF preprocessing techniques can be adapted to DQBF.

References

1. V. Balabanov, H. K. Chiang, and J. R. Jiang. Henkin quantifiers and boolean
formulae. In Proc. SAT’12, 2012.

2. V. Balabanov, H. K. Chiang, and J. R. Jiang. Henkin quantifiers and boolean
formulae: A certification perspective of DQBF. Theoretical Computer Science,
2013.

3. B. Finkbeiner and L. Tentrup. Fast DQBF refutation. In Proc. SAT 2014, pages
243–251, 2014.

4. B. Finkbeiner and L. Tentrup. Fast DQBF refutation. In Proc. SAT’14, 2014.
5. A. Fröhlich, G. Kovásznai, and A. Biere. A DPLL algorithm for solving DQBF.

In Proc. POS’12, 2012.
6. A. Fröhlich, G. Kovásznai, A. Biere, and H. Veith. iDQ: Instantiation-based DQBF

solving. In Proc. POS 2014, a↵. to SAT 2014, pages 103–116, 2014.
7. K. Gitina, S. Reimer, M. Sauer, R. Wimmer, C. Scholl, and B. Becker. Equivalence

checking for partial implementations revisited. In Proc. MBMV’13, pages 61–70,
2013.

8. K. Gitina, S. Reimer, M. Sauer, R. Wimmer, C. Scholl, and B. Becker. Equiva-
lence checking of partial designs using dependency quantified boolean formulae. In
Proc. ICCD’13, pages 396–403, 2013.

9. K. Gitina, R. Wimmer, S. Reimer, M. Sauer, C. Scholl, and B. Becker. Solving
DQBF through quantifier elimination. In Proc. DATE 2015, pages 1617–1622.
EDA Consortium, 2015.

10. K. Korovin. Instantiation-based automated reasoning: From theory to practice. In
Proc. CADE’09, pages 163–166, 2009.

11. K. Korovin. Inst-Gen - a modular approach to instantiation-based automated
reasoning. In Programming Logics, pages 239–270, 2013.

12. G. Kovásznai, A. Fröhlich, and A. Biere. On the complexity of fixed-size bit-vector
logics with binary encoded bit-width. In Proc. SMT’12, 2012.

13. G. Peterson, J. Reif, and S. Azhar. Lower bounds for multiplayer noncooperative
games of incomplete information, 2001.

14. G. L. Peterson and J. H. Reif. Multiple-person alternation. In Proc. FOCS’79,
pages 348–363, 1979.

15. C. M. Wintersteiger, Y. Hamadi, and L. de Moura. E�ciently solving quantified
bit-vector formulas. In Proc. FMCAD’10, 2010.

9

2 Old Challenges and New Solutions: a

Comprehensive Assessment of

State-of-the-Art QBF Solvers

Paolo Marin, Massimo Narizzano, Luca Pulina, Armando Tacchella and Enrico Giunchiglia

Old Challenges and New Solutions: a Comprehensive Assessment of State-of-the-Art QBF

Solvers

11

Old Challenges and New Solutions: a
Comprehensive Assessment of State-of-the-Art

QBF Solvers

P. Marin2, M. Narizzano1, L. Pulina3, A. Tacchella1, and E. Giunchiglia1

1 DIBRIS, Università di Genova, Via Opera Pia, 13 – 16145 Genova – Italy
{giunchiglia,narizzano,tacchella}@unige.it

2 Lehrstuhl für Rechnerarchitektur, Georges-Köhler-Allee 051 – 79110 Freiburg i.B. –
Germany marin@informatik.uni-freiburg.de

3 POLCOMING, Università di Sassari, Viale Mancini n. 5 – 07100 Sassari – Italy
lpulina@uniss.it

Since the first QBF Evaluation (QBFEVAL’03) [1], whose aim was to as-
sess the relatively young state of the art in the QBF reasoning field, almost
every year an evaluation event was organized. The purpose of that was to mea-
sure the progress in QBF reasoning techniques and encourage the submission of
new problems which could be encoded in QBF. A report of the last QBFEVAL
event in the series was published in [2]. After more than a decade of new solvers
being developed and new challenging problems being proposed, we believe that
QBFEVAL and, more recently, QBF Gallery [3] events o↵er a series of snapshots
about QBF solving and related aspects, but somehow fail to provide a long-term
picture about what has been achieved, which of the techniques proposed are
still worth considering, and which problems are still relevant for current QBF
solvers. In this work we gather numerous results which enable us to assess the
contributions of complete o↵-the-shelf QBF solving tools to the state-of-the-art
considering the whole course of QBFEVAL and QBF Gallery evaluations and
competitions, and exposing the result in a historical perspective. We are then
able to suggest potential research directions for solving older and actual chal-
lenging problems. In the following, we list the solvers and describe the problems
we used in our experiments, then we present the results, and conclude with some
final remarks.

To accomplish our task we considered some legacy solvers (s-legacy in the
following), i.e., tools that were proposed in the literature, but are not considered
in more recents comparative events and new solvers (s-new in the following), i.e.,
all the other tools that we consider and which are not legacy. In particular, out
of 8 solvers considered, the legacy ones are AIGSolve [4], the only AIG-based
QBF solver; aqme [5], a multi-engine tool whose back-end solvers were released
in 2006; quantor [6], QuBE [7], and sKizzo [8], which implement key QBF
solving techniques like resolution and expansion, DLL-search, and skolemization,
respectively; lastly, StruQS [9], which dynamically combines very di↵erent so-
lution techniques. These tools are chosen among winners of at least one category
in the past QBFEVAL events, conditioned to their maintenance ending before
2010. The set of new solvers is assembled by including the winners of the last
QBF Gallery 2014: depqbf [10], ghostq [11, 12] and rareqs [11]. We did not

2 Old Challenges and New Solutions: a Comprehensive Assessment of State-of-the-Art QBF Solvers

12

consider hiqqer [13] because we could not find a version available for download.
We define the “state-of-the-art” (sota) solver abstraction, i.e., the ideal system
that always fares the best time among the systems in our portfolio. Likewise
sota-legacy and sota-new abstract from legacy and new solvers, to score the
global performace of solvers in s-legacy vs. those in s-new. As for problems,
we consider three pools assembled for previous evaluations. In particular, we
consider from [13] (i) QBF Gallery 2014 Track 1 (276 instances) and (ii) Track
2 (735 instances), and (iii) challenging formulas which are those classified as
“Hard” (unsolved) and “Medium-Hard” (solved by one tool only) in the QBFE-
VAL evaluations from 2004 to 2010. These are then split by year. Overall, the
testset is purposefully biased towards recently submitted instances, in order to
(try to) assess legacy solvers on problems that are probably “unseen” to them,
i.e., for which their developers did not have a chance to optimize the solver. On
the other hand, group (iii) lets us assess whether the progress advertised by
more recent evaluations is due to novel solving techniques, or to the fact that
some hard problems were no longer evaluated. The tools were fed with the QBF
formulas in their original format, i.e., we made no external preprocessing. Yet,
some tools apply preprocessing techniques before the complete solving phase.

Considering the pool QBF Gallery Track 1, only 6 solvers out of 9 were
able to solve at least 25% of the test set. By ranking the solvers according to
the number of problems solved, the first is AIGSolve, which can solve about
42% of the test set, followed by QuBE and aqme, closely followed by ghostq.
Taking the above cited abstractions, sota was able to cope with about 73%
of qbfg-t1. Its main contributors are AIGSolve, depqbf, and rareqs.We
also report that sota-legacy solves about 31% more problems than sota-
new. Considering the pool QBF Gallery 2014 Track 2, which was partitioned
into 6 families, AIGSolve, rareqs, and quantorshow 3 times into the top-
three ranking, aqme, depqbf, ghostq, and StruQS twice, and QuBE once.
rareqs and StruQS can uniquely solve 16 problems, AIGSolve 12. Each of
the remaining solvers less than 4. Lastly, we consider the challenging formulas
from the past (6) QBFEVAL events: AIGSolve is always in the top-three and
can solve uniquely 114 formulas, ghostq and QuBE get the best rankings 5
times and can uniquely solve resp. 114 and 47 instances. Notice that rareqs
appears only once, but can solve uniquely 71 formulas. Overall, 2 out of 3 systems
are always s-legacy, only in 2006 and 2010 the best solver is ghostq. sota is
able to solve 83% of the 2006 dataset, in other cases no more than 75%. With
the notable exception of 2010, sota-legacy outperforms sota-new for each
year. More details of this analysis are listed in the Appendix.

In the paper we have shown the results of a massive evaluation of QBF solvers
and benchmarks from an historical perspective, and what emerges is that new
systems are the main contributors of a SOTA solvers, yet comparing the sota-
legacy and sota-new abstractions we have also shown that legacy systems
still outperform the new ones in many problem categories. Therefore, we believe
that it would be interesting to fuse legacy techniques into new systems in order
to really push forward the state of the art in the QBF arena.

2

13

References

1. Berre, D.L., Simon, L., Tacchella, A.: Challenges in the QBF arena: the SAT’03
evaluation of QBF solvers. In: Sixth International Conference on Theory and
Applications of Satisfiability Testing (SAT 2003). Volume 2919 of Lecture Notes
in Computer Science., Springer Verlag (2003) 468–485

2. Peschiera, C., Pulina, L., Tacchella, A., Bubeck, U., Kullmann, O., Lynce, I.: The
seventh qbf solvers evaluation (qbfeval10). In: Theory and Applications of Satisfi-
ability Testing–SAT 2010, Springer Berlin Heidelberg (2010) 237–250

3. F. Lonsing, M. Seidl, A.V.G.: QBF gallery 2013 (2013) http://www.kr.tuwien.

ac.at/events/qbfgallery2013/.
4. Pigorsch, F., Scholl, C.: An aig-based qbf-solver using sat for preprocessing. In:

Design Automation Conference (DAC), 2010 47th ACM/IEEE, IEEE (2010) 170–
175

5. Pulina, L., Tacchella, A.: A self-adaptive multi-engine solver for quantified Boolean
formulas. Constraints 14(1) (2009) 80–116

6. Biere, A.: Resolve and Expand. In: Seventh Intl. Conference on Theory and
Applications of Satisfiability Testing (SAT’04). Volume 3542 of LNCS., Springer
Verlag (2005) 59–70

7. Giunchiglia, E., Marin, P., Narizzano, M.: Qube7.0. JSAT 7(2-3) (2010) 83–88
8. Benedetti, M.: Evaluating QBFs via Symbolic Skolemization. In: Eleventh Interna-

tional Conference on Logic for Programming, Artificial Intelligence and Reasoning
(LPAR 2004). Volume 3452 of Lecture Notes in Computer Science., Springer Verlag
(2004)

9. Pulina, L., Tacchella, A.: A structural approach to reasoning with quantified
Boolean formulas. In: 21st International Joint Conference on Artificial Intelligence
(IJCAI 2009). (2009) 596–602

10. Lonsing, F., Biere, A.: Depqbf: A dependency-aware QBF solver. JSAT 7(2-3)
(2010) 71–76

11. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving qbf with counterex-
ample guided refinement. In: Theory and Applications of Satisfiability Testing–
SAT 2012, Springer Berlin Heidelberg (2012) 114–128

12. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal qbf solver
with game-state learning. In: Theory and Applications of Satisfiability Testing–
SAT 2010. Springer (2010) 128–142

13. Jordan, C., Seidl, M.: The QBF Gallery 2014 (2014)

3

2 Old Challenges and New Solutions: a Comprehensive Assessment of State-of-the-Art QBF Solvers

14

Appendix

This Appendix shows the detailed results of our empirical analysis. We ran all
the experiments on a cluster of Intel Xeon E31245 PCs at 3.30 GHz equipped
with 64 bit Ubuntu 12.04. Each solver was limited to 600s of CPU time and 4GB
of memory.

Solver Total True False Unique

Time # Time # Time # Time

AIGSolve 116 5333.01 56 2177.45 60 3155.56 22 1458.26

QuBE 106 8764.73 53 3997.78 53 4766.95 8 1195.58

aqme 97 3287.20 39 1098.00 58 2189.20 – –

ghostq 91 4814.73 48 2912.38 43 1902.17 4 158.97

depqbf 88 2388.32 39 1163.15 49 1225.17 5 454.77

rareqs 79 2588.64 32 1593.25 47 995.39 6 787.33

sKizzo 51 948.81 18 556.76 33 392.06 – –

quantor 50 1498.37 28 911.72 22 586.65 2 161.67

StruQS 43 6092.64 31 4052.98 12 2039.66 1 16.53

Table 1. Performance of the involved solvers on qbfg-t1. The table consists of nine
columns that for each solver reports its name (column “Solver”), the total number of
instances solved and the cumulative time to solve them (columns “#” and “Time”,
group “Total”), the number of instances found satisfiable and the time to solve them
(columns “#” and “Time”, group “True”), the number of instances found unsatisfiable
and the time to solve them (columns “#” and “Time”, group “False”), and, finally,
the number of instances uniquely solved and the time to solve them (columns “#”
and “Time”, group “Unique”); a “–” (dash) means that the solver did not solve any
instance. Finally, the table is sorted in descending order, according to the number of
instances solved, and, in case of a tie, in ascending order according to the cumulative
time taken to solve them.

4

15

Family Solver Total True False Unique

Time # Time # Time # Time

AIGSolve 83 1003.23 40 165.20 43 838.03 – –

rareqs 83 1420.61 34 165.41 49 1255.19 6 1094.71

quantor 82 923.25 53 217.92 29 705.33 – –

aqme 80 674.38 53 345.02 27 329.36 – –

bomb depqbf 67 2410.16 40 1693.36 27 716.79 – –

(132) sKizzo 57 609.41 31 2.39 26 607.03 – –

ghostq 56 532.47 29 42.66 27 489.81 – –

QuBE 47 1168.86 23 470.47 24 698.39 – –

StruQS 36 1051.46 19 813.58 17 237.88 – –

rareqs 75 1559.65 29 466.77 46 1092.88 15 1148.51

depqbf 49 1553.73 22 1086.35 27 467.38 – –

ghostq 42 1791.86 11 499.21 27 467.38 – –

QuBE 39 1273.95 19 277.87 20 996.09 – –

complexity aqme 33 528.28 15 188.76 18 339.52 – –

(104) quantor 26 170.44 11 11.29 15 159.14 – –

StruQS 21 1855.53 13 1677.81 8 177.72 – –

AIGSolve 15 70.26 7 12.24 8 58.02 – –

sKizzo 9 316.60 4 315.82 5 0.78 – –

quantor 104 525.30 18 54.81 86 470.48 – –

aqme 104 1121.43 18 86.11 86 1035.32 – –

AIGSolve 87 1220.22 17 417.12 70 803.10 – –

rareqs 57 1870.73 18 54.89 39 1815.85 – –

dungeon depqbf 44 535.22 18 300.44 26 234.77 – –

(107) QuBE 34 1429.60 7 212.89 27 1216.71 – –

ghostq 7 385.11 4 4.62 3 380.49 – –

sKizzo 2 0.99 – – 2 0.99 – –

StruQS 1 21.96 1 21.96 – – – –

StruQS 88 7826.42 1 372.74 87 7453.68 12 3033.19

QuBE 76 1346.11 – – 76 1346.11 2 328.75

ghostq 51 2649.30 2 239.56 49 2409.74 1 224.22

aqme 50 265.14 – – 50 265.14 – –

hardness rareqs 14 1431.05 – – 14 1431.05 – –

(114) AIGSolve 12 2038.84 – – 12 2038.84 – –

depqbf 8 617.99 – – 8 617.99 – –

quantor – – – – – – – –

sKizzo – – – – – – – –

AIGSolve 147 2371.36 38 114.02 109 2257.34 10 861.70

rareqs 137 1093.01 38 125.66 99 967.35 – –

quantor 131 6750.13 37 122.68 94 6627.44 – –

aqme 123 9263.25 37 464.97 86 8798.28 – –

planning sKizzo 74 71.57 34 24.02 40 47.55 – –

(147) depqbf 57 5134.24 29 1876.90 28 3257.34 – –

QuBE 14 1270.35 12 743.61 2 526.74 – –

ghostq 11 2155.26 8 1420.71 3 734.55 – –

StruQS 4 1229.67 4 1229.67 – – – –

aqme 71 2675.64 64 2339.68 7 335.95 1 3.00

StruQS 65 1770.09 63 1488.09 2 282.00 4 236.18

depqbf 57 692.38 46 672.96 11 19.42 2 359.15

AIGSolve 51 4194.44 46 4163.65 5 30.79 2 11.88

testing QuBE 41 765.08 31 734.85 10 30.23 1 1.24

(131) rareqs 34 428.00 22 317.04 12 110.95 1 0.53

ghostq 32 269.13 29 66.10 3 203.03 – –

quantor 26 121.15 25 110.52 1 10.63 – –

sKizzo 1 0.02 1 0.02 – – – –

Table 2. Performances of QBF solvers on qbfg-t2: The table is split in six horizontal
parts, one for each family. The first column contains families names, as well as its total
amount of instances. The rest of the table is organized as Table 1.

5

2 Old Challenges and New Solutions: a Comprehensive Assessment of State-of-the-Art QBF Solvers

16

Year Solver Total True False Unique

Time # Time # Time # Time

AIGSolve 62 2658.96 46 1781.89 16 877.07 15 1401.38

ghostq 51 541.62 36 370.74 15 170.88 18 194.05

QuBE 28 4783.92 23 3566.83 5 1217.09 6 626.75

2004 sKizzo 23 749.18 16 691.76 7 57.42 – –

(167) StruQS 14 1081.04 9 885.70 5 195.34 – –

quantor 13 916.32 11 905.49 2 10.83 – –

depqbf 2 192.64 – – 2 192.64 – –

rareqs 1 0.24 – – 1 0.24 1 0.24

AIGSolve 43 3386.36 32 2119.95 11 1266.41 18 1861.10

ghostq 27 217.17 17 46.44 10 170.43 13 190.25

QuBE 19 2653.56 16 2365.20 3 288.37 4 359.28

2005 rareqs 8 5.57 – – 8 5.57 3 0.54

(168) StruQS 8 921.27 6 687.03 2 234.24 – –

sKizzo 7 595.39 7 595.39 – – – –

quantor 5 144.64 4 137.29 1 7.34 – –

depqbf 1 243.79 – – 1 243.79 – –

ghostq 80 1577.10 80 1577.10 – – 5 15.33

AIGSolve 71 608.62 63 432.35 8 176.27 6 40.29

QuBE 61 1108.04 57 506.54 4 601.49 1 190.78

2006 StruQS 37 373.31 36 298.82 1 74.48 – –

(103) rareqs 4 277.89 1 102.27 3 175.62 – –

depqbf 1 22.85 – – 1 22.85 – –

quantor – – – – – – – –

sKizzo – – – – – – – –

QuBE 88 7239.68 13 2729.53 75 4510.16 13 643.41

rareqs 83 2706.28 10 1905.49 73 800.79 31 1741.36

AIGSolve 61 765.34 36 547.74 25 217.61 34 445.93

2007 depqbf 50 2902.71 6 378.32 44 2524.39 5 264.06

(281) ghostq 49 1699.99 41 360.23 8 1339.76 19 275.34

quantor 14 1302.44 11 1225.27 3 77.17 6 517.17

StruQS 11 2051.88 11 2051.88 – – – –

sKizzo 5 953.55 1 50.44 4 903.11 – –

AIGSolve 335 13128.70 237 8439.00 98 4689.70 135 8250.56

ghostq 304 8299.71 257 5325.55 47 2974.16 49 1493.92

QuBE 198 19753.10 71 13501.39 127 6251.71 21 2320.72

2008 rareqs 126 4220.58 16 2744.06 110 1476.52 36 2255.13

(961) depqbf 96 4626.18 7 495.77 89 4130.41 4 261.53

sKizzo 57 3599.21 26 1664.18 31 1935.02 1 275.69

StruQS 50 5458.74 47 4844.87 3 613.87 – –

quantor 19 1646.95 18 1621.94 1 25.02 15 1166.44

ghostq 29 591.60 25 281.30 4 309.76 10 342.94

AIGSolve 22 282.18 20 262.94 2 19.24 5 208.02

sKizzo 8 564.39 8 564.39 – – – –

2010 QuBE 4 210.40 1 19.08 3 191.32 2 50.80

(96) rareqs 2 17.41 – – 2 17.41 1 0.50

depqbf 1 22.85 – – 1 22.85 – –

quantor – – – – – – – –

StruQS – – – – – – – –

Table 3. Performances of QBF solvers on challenging instances: The table is split in six
horizontal parts, one for each family. The first column contains the QBFEVAL-related
year families names, as well as its total amount of instances. The rest of the table is
organized as Table 1.

6

17

2004 2005 2006 2007 2008 2010

sota 88 65 85 207 601 37

sota-new 53 34 75 148 393 30

sota-legacy 69 49 77 150 492 26

Table 4. Performance of state-of-the-art solvers on challenging formulas. The table
is organized as follows. The first column reports considered sota(s), while the remain-
ing columns denote the pool of challenging formulas. In cells is shown the total amount
of solved instances by the related sota. In bold we denote the best performance be-
tween sota-new and sota-legacy.

7

2 Old Challenges and New Solutions: a Comprehensive Assessment of State-of-the-Art QBF Solvers

18

3 Encodings of Reactive Synthesis

Peter Faymonville, Bernd Finkbeiner, Markus N. Rabe and Leander Tentrup Encodings of

Reactive Synthesis

19

Encodings of Reactive Synthesis

Peter Faymonville1, Bernd Finkbeiner1, Markus N. Rabe2, and
Leander Tentrup1

1 Saarland University
2 University of California, Berkeley

Abstract. In this talk, we present and compare several encodings of the
bounded synthesis problem for linear-time temporal logic (LTL). The
bounded synthesis problem for natural bound n is to decide whether
there exists a strategy (generated by a transition system with n states)
that satisfies an LTL specification—and in the positive case to construct
such a strategy. We give an overview of previously studied encodings
that use SMT, antichains, and BDDs, as well as new encodings using
(quantified) propositional logics. Furthermore, we evaluate the constraint
based approaches (SMT, SAT, QBF, etc.) with respect to solving time
and implementation quality using certifying theory solvers.

1 Extended Abstract

Synthesis is the task of creating correct-by-construction implementations from
formal specifications, thus avoiding the need for manual implementations. In
recent years, synthesis has gained a lot of attention and modern synthesis tools
emerged [1–4]. Last year, this development culminated in the first competition
of synthesis tools [7].

In this talk, we consider the bounded synthesis [6] problem, that is the prob-
lem of synthesizing a strategy of size n, such that the strategy satisfies the LTL
specification '. For an LTL formula ', we assume a partitioning into variables
O that are controllable by the strategy and variables I that are given by the
environment. A strategy f : (2I)⇤ ! 2O maps sequences of valuations from the
environment to a valuation of the controllable variables. We represent strategies
as finite-state transition systems and identify the size of a strategy with the size
of the transition system.

Given such a specification ', we build a universal co-Büchi automaton U'.
A transition system is accepted by U' if each run in the unique run graph on
U' has only finitely many visits to the rejecting states of U'. The acceptance
of a finite-state transition systems on U' can be characterized by the existence
of an annotation on the product of transition system and automaton [6]. This
annotation maps a pair (s, q), where s is a state in the transition system and q is a
state in the automaton, to the number of maximal visits to rejecting states on all
runs that lead to (s, q). In the original formulation [5], the labeling and transition
functions of the transition system as well as the correct annotation were encoded

3 Encodings of Reactive Synthesis

20

as SMT constraints. The SMT encoding uses uninterpreted functions and a
theory that supports ordering constraints (like the theory of integers).

We show how to modify the encoding to use only uninterpreted functions
and propositional constraints. Based on this modification, we give a reduction
to the satisfiability problem for quantified Boolean formulas (QBF) and propo-
sitional satisfiability (SAT). Let S = {s

1

, . . . , sn} be the number of states in
the transition system. The quantifiers in the QBF encoding make the transition
function symbolic in the inputs, i.e., a part of the quantification header has the
form 8i. 9ts,s0 for all s, s0 2 S, meaning that there is a transition from state s to
s0 in the transition system, if the Skolem function fts,s0 evaluates to true for the
given environment input i.

We investigated experimentally which encoding is best given the current state
of solver technology. With regard to the SMT encoding, we compare di↵erent
theories to encode the ordering constraints and di↵erent levels of quantifications.
For the propositional encoding, we compare the QBF encoding, which uses quan-
tification for input-symbolic transition functions, with the variant that unrolls
the quantification to a pure SAT encoding.

Modern solvers have the ability to construct models from satisfiable queries,
e.g., Skolem functions in the case of QBF. As the existence of a transition system
is encoded in the bounded synthesis query, we can easily construct an implemen-
tation using certifying solvers. We compare the quality of these implementations
with respect to the di↵erent encodings, ranging from models generated by an
SMT solver, Skolem functions extracted from QBF proofs, and assignments given
by a SAT solver.

References

1. Bloem, R., Egly, U., Klampfl, P., Könighofer, R., Lonsing, F.: SAT-based methods
for circuit synthesis. In: Proceedings of FMCAD. pp. 31–34 (2014)

2. Bloem, R., Gamauf, H., Ho↵erek, G., Könighofer, B., Könighofer, R.: Synthesizing
robust systems with RATSY. In: Proceedings of SYNT. pp. 47–53 (2012)

3. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.: Acacia+, a tool for LTL
synthesis. In: Proceedings of CAV. pp. 652–657 (2012)

4. Ehlers, R.: Symbolic bounded synthesis. Formal Methods in System Design 40(2),
232–262 (2012)

5. Finkbeiner, B., Schewe, S.: SMT-based synthesis of distributed systems. In: Pro-
ceedings of AFM (2007)

6. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5-6), 519–539 (2013)
7. Jacobs, S., Bloem, R., Brenguier, R., Ehlers, R., Hell, T., Könighofer, R., Pérez,

G.A., Raskin, J., Ryzhyk, L., Sankur, O., Seidl, M., Tentrup, L., Walker, A.: The first
reactive synthesis competition (SYNTCOMP 2014). CoRR abs/1506.08726 (2015),
http://arxiv.org/abs/1506.08726

21

4 Model Finding for Recursive Functions in

SMT

Andrew Reynolds, Jasmin Christian Blanchette and Cesare Tinelli Model Finding for Recursive

Functions in SMT

23

Model Finding for Recursive Functions in SMT⇤

Andrew Reynolds1, Jasmin Christian Blanchette2,3, and Cesare Tinelli4

1 École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
2 Inria Nancy & LORIA, Villers-lès-Nancy, France

3 Max-Planck-Institut für Informatik, Saarbrücken, Germany
4 Department of Computer Science, University of Iowa, USA

Many solvers based on SMT (satisfiability modulo theories) can reason about quantified
formulas using incomplete instantiation-based methods [3,7]. These methods work well in the
context of proving (i..e, showing unsatisfiability), but they are of little help for finding models
(i.e., showing satisfiability). Often, a single universal quantifier in one of the axioms of a
problem is enough to prevent the discovery of models.

In the past few years, techniques have been developed to find models for quantified for-
mulas in SMT. Ge and de Moura [4] introduced a complete instantiation-based procedure for
formulas in the essentially uninterpreted fragment. This fragment is limited to universally
quantified formulas where all variables occur as direct subterms of uninterpreted functions—
e.g., 8x. f(x)⇡ g(x)+5. Other syntactic criteria extend this fragment slightly, including cases
when variables occur as arguments of arithmetic predicates. Subsequently, Reynolds et al. [8,9]
introduced techniques for finding finite models for quantified formulas over uninterpreted types
and types having a fixed finite interpretation. These techniques can find a model for a formula
such as 8x, y : ⌧. x ⇡ y _ ¬ f(x)⇡ f(y), where ⌧ is an uninterpreted type.

Unfortunately, none of these fragments can accommodate the vast majority of quantified
formulas that correspond to recursive function definitions: The essentially uninterpreted frag-
ment does not allow the argument of a recursive function to be used inside a complex term on
the right-hand side, whereas the finite model finding techniques are not applicable for functions
over infinite domains such as the integers or algebraic datatypes. A simple example where both
approaches fail is 8x : Int. ite

�
x 0, p(x)⇡ 1, p(x)⇡ 2⇤p(x�1)

�
. This state of affairs is un-

satisfactory, given the frequency of recursive definitions in practice and the impending addition
of a dedicated command for introducing them, define-fun-rec, to the SMT-LIB standard [1].

We present a method for translating formulas involving recursive function definitions into
formulas where finite model finding techniques can be applied. The recursive functions must
meet a semantic criterion to be admissible. This criterion is met by well-founded (terminating)
recursive function definitions.

We define a translation for a class of formulas involving admissible recursive function
definitions. The main insight is that a recursive definition 8x : ⌧. f(x) ⇡ t can be translated to
8a : ↵⌧. f(�f(a)) ⇡ t[�(a)/x], where ↵⌧ is an uninterpreted abstract type and �f converts the
abstract type to the concrete type. The translation preserves satisfiability and unsatisfiability,
and makes finite model finding possible for problems in this class.

⇤This research is partially supported by the Inria technological development action “Contre-exemples Utilisables
par Isabelle et Coq” (CUIC).

1

4 Model Finding for Recursive Functions in SMT

24

Model Finding for Recursive Functions in SMT A. Reynolds, J. C. Blanchette, C. Tinelli

Our empirical evaluation on benchmarks from the IsaPlanner proof planner [5] and the
Leon verifier [2] provides evidence that this translation improves the effectiveness of the SMT
solvers CVC4 and Z3 for finding counterexamples to verification conditions. The approach is
implemented as a preprocessor in CVC4 .

In future work, it would be interesting to evaluate the approach against other counterex-
ample generators, notably Leon and Nitpick, and enrich the benchmark suite with problems
exercising CVC4’s support for coalgebraic datatypes [6]. We also plan to integrate CVC4 as
a counterexample generator in proof assistants. Finally, future work could also include iden-
tifying further sufficient conditions for admissibility, thereby enlarging the applicability of the
translation scheme presented here.

This abstract is based on a regular submission to the SMT 2015 workshop, which itself is
based on a longer technical report. Both are available online.1

References
[1] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB standard—Version 2.5. http://smt-lib.

org/language.shtml, to appear.
[2] R. Blanc, V. Kuncak, E. Kneuss, and P. Suter. An overview of the Leon verification system—

Verification by translation to recursive functions. In Scala ’13. ACM, 2013.
[3] L. de Moura and N. Bjørner. Efficient E-matching for SMT solvers. In F. Pfenning, editor, CADE-

21, volume 4603 of LNCS, pages 183–198. Springer, 2007.
[4] Y. Ge and L. de Moura. Complete instantiation for quantified formulas in satisfiability modulo

theories. In CAV ’09, volume 5643 of LNCS, pages 306–320. Springer, 2009.
[5] M. Johansson, L. Dixon, and A. Bundy. Case-analysis for rippling and inductive proof. In ITP

2010, pages 291–306, 2010.
[6] A. Reynolds and J. C. Blanchette. A decision procedure for (co)datatypes in SMT solvers. In

A. Felty and A. Middeldorp, editors, CADE-25, LNCS. Springer, 2015.
[7] A. Reynolds, C. Tinelli, and L. de Moura. Finding conflicting instances of quantified formulas in

SMT. In FMCAD 2014, pages 195–202. IEEE, 2014.
[8] A. Reynolds, C. Tinelli, A. Goel, and S. Krstić. Finite model finding in SMT. In N. Sharygina and

H. Veith, editors, CAV 2013, volume 8044 of LNCS, pages 640–655. Springer, 2013.
[9] A. Reynolds, C. Tinelli, A. Goel, S. Krstić, M. Deters, and C. Barrett. Quantifier instantiation

techniques for finite model finding in SMT. In M. P. Bonacina, editor, CADE-24, volume 7898 of
LNCS, pages 377–391. Springer, 2013.

1http://lara.epfl.ch/~reynolds/SMT2015-recfun/

2

25

5 Congruence Closure with Free Variables

Haniel Barbosa and Pascal Fontaine Congruence Closure with Free Variables

27

Congruence Closure with Free Variables
(Work in Progress)

Haniel Barbosa and Pascal Fontaine

LORIA–INRIA, Nancy, France
{Haniel.Barbosa, Pascal.Fontaine}@inria.fr

Abstract. This paper presents preliminary work on the definition of a
general framework for handling quantified formulas in SMT solving. Its
focus is on the derivation of instances conflicting with a ground context,
redefining the approach introduced in [11]. An enhanced version of the
classical congruence closure algorithm, able to handle free variables, is
presented.

1 Introduction

SMT solvers (see [3] for a general presentation of SMT) are extremely e�cient
at handling large ground formulas with interpreted symbols, but they still strug-
gle to manage quantified formulas. Quantified first-order logic is best handled
with resolution-based theorem proving [10]. Although there are first attempts to
unify SMT and resolution [8], the main approach used in SMT is still instan-
tiation: quantified formulas are freed from quantifiers and are refuted with the
help of decision procedures for ground formulas. Even though such techniques as
E -matching [6] and model based quantifier instantiation (MBQI) [7] have been
used successfully in state-of-the-art solvers, there are still far more instances pro-
duced than would actually be needed. Reynolds et al. [11] present an alternative
approach: instances are generated such that they are conflicting, by construc-
tion, with the ground context produced by the solver. This provides a strong
advantage due to its finer instantiation guideline: less instances are needed to
prove a formula unsatisfiable, as their experimentation data indicates.

Since their method is restricted to problems in pure first-order logic with
equality, it has strong reminiscence of the (non-simultaneous) rigid E -unification
problem. Unifying two expressions with free variables modulo a set of equations
is equivalent, as shown in [12], to finding instances conflicting with a ground con-
text. In this preliminary work we try to exploit this relation while revisiting the
technique: defining an enhanced version of the classic congruence closure proce-
dure capable of handling free variables unification accordingly. We aim for a bet-
ter integration of ground conflicting instance generation and E -matching tech-
niques within core SMT algorithms (namely the congruence closure decision
procedure), with MBQI being used as last resort.

5 Congruence Closure with Free Variables

28

2 Notations and basic definitions

We recall here some usual notions of first-order logic. For simplicity, we work in
mono-sorted (in contrast to many-sorted) languages. A first-order language is a
tuple L = hX ,P,Fi where X , P and F are enumerable sets of variable, predicate
and function symbols, respectively. Every function and predicate symbol has an
arity. Nullary functions and predicates are called constants and propositions,
respectively. Formulas and terms are generated by

t ::= x | f(t, . . . , t) ' ::= t ⇡ t | p(t, . . . , t) | ¬' | ' _ ' | 8x
1

. . . xn.'

in which x, x
1

, . . . , xn 2 X , p 2 P and f 2 F . The symbol ⇡ stands for equality.
We will mostly work in predicate-free languages. The usual conventions for dise-
quality, existential quantification and connectives are assumed. In particular we
use ^ for conjunction. The terms in a formula ' are denoted by T

'. Atoms are
formulas of the form t ⇡ t and p(t, . . . , t). A literal is an atom or its negation.
A subformula appears positively (resp. negatively) in ' i↵ it is under an even
(resp. odd) number of negations. A subformula 8x

1

. . . xn. of ' is weakly (resp.
strongly) quantified i↵ it appears positively (resp. negatively) in '. A formula is
in Skolem form i↵ it has no strong quantifiers.

Whenever convenient, an enumeration of symbols s
1

, . . . , sn will be repre-
sented as s. Analogously, an enumeration of binary operations s

1

op t
1

, . . . , sn op
tn is represented as s op t.

Terms and formulas without variables are denoted ground. Free and bound
variables are defined in the usual way. A substitution is a function from vari-
ables to terms such that � = {x 7! t} maps each variable xi 2 x into the
term ti 2 t and every other variable not in x to itself. '� (resp. t�) denotes
the recursive application of � in the structure of the formula (resp. term) in
a capture-avoiding way, while not substituting bound variables. The domain
of � is the set dom(�) = {x | x 2 X and x� 6= x}, while the range of � is
ran(�) = {x� | x 2 dom(�)}. � is a ground substitution i↵ every term in ran(�)
is ground. The composition of two substitutions �

1

and �
2

is defined such that
�
1

� �
2

= {x 7! (x�
2

)�
1

| x 2 X}. It is commutative for ground substitution,
that is, everywhere in this text. A formula

1

is an instance of a formula
2

i↵
there is a substitution � such that

1

=
2

�.
An interpretation is represented as a tuple M = hD, I,Vi, in which D is

a non-empty domain; I is a function mapping each function symbol f to a
function fI : D

1

⇥ · · · ⇥ Dn ! D and each predicate symbol p to a predicate
pI : D

1

⇥ · · ·⇥Dn ! {>,?}; V is a valuation assigning an element of D to every
variable. M assigns a value in D to every term t, denoted JtKM, and a truth value
(>,?) to every formula ', denoted J'KM, through the usual recursive definition.
M satisfies ', written M |= ', i↵ J'KM = >, in which case M is a model of '.
' is satisfiable i↵ it has a model. It is unsatisfiable otherwise. A set of formulas
� entails a set of formulas �, written � |= �, i↵ all interpretations satisfying
every ' 2 � also satisfy every 2 �.

An interpretation M propositionally (resp. groundly) satisfies ', written
M p|= ' (resp. M g|= '), i↵ it is a model of its propositional (resp. ground)

29

abstraction, which is a propositional (resp. ground) formula where every non-
propositional atom (resp. quantified subformula) is mapped into a fresh propo-
sitional symbol. These notions carry out accordingly to other definitions.

3 Congruence Closure with Free Variables

Modern SMT solvers handle quantified formulas using instantiation. That is,
while checking the satisfiability of a formula ' in a theory T , the ground ab-
straction of the formula is given to the ground SMT solver, which provides a
groundly T -satisfiable set of literals. These abstracted literals correspond to
(concrete) ground literals L and quantified1 formulas Q, with L [Q |= '. If
L [Q is T -satisfiable, then so is '. This satisfiability check could be done by a
model finder. As in [11] we focus here on the problem of finding instances from Q
that groundly refute L. Repeatedly adding such instances conjunctively to the
original formula, combined with MBQI [7], provides a practical and powerful
procedure to deal with unsatisfiable formulas in SMT. We believe that better in-
tegrating ground conflicting instance generation [11] and MBQI within the core
SMT algorithm will generate new heuristics and ideas for a layered approach to
quantifier handling.

It is assumed, for simplicity, that L contains only equality literals and that
each formula in Q is of the form 8x. , where is quantifier-free and consists
of a single clause of non-ground equality literals. We further assume that T
is the empty theory, that is, we work in pure first-order logic with equality.
Since any unsatisfiable formula in pure first-order logic is also unsatisfiable in
any theory, the techniques here can also be seen as an incomplete algorithm for
SMT, whatever the background theories.

Problem description Given some formula 8x. 2 Q, if there exists a substitution
� such that L |= ¬ �, then, by Lemma 1, there is a ground substitution �0 such
that ran(�0) ✓ T

L. Such a substitution refutes L and is called ground conflicting.
As shown in [12], computing a ground conflicting substitution is equivalent

to solving a non-simultaneous rigid E -unification problem. Therefore it becomes
the problem of finding a conjunctive set ⌃ of equalities x ⇡ t (x 2 FV() and
t 2 T

L) such that L |= ¬ ^⌃, each variable occurring at most once in ⌃. Since
this is a ground problem, classical SMT solving tools, i.e., Congruence Closure
(see e.g. [9]) can be adapted to solve it: unification of free variables must be
handled, associating variables in FV() to ground terms already occurring in L.

Lemma 1. Consider a ground formula ' and a formula with free variables. If
there exists a substitution � such that ' |= �, then there is a ground substitution
�0 such that ' |= �0 and ran(�0) ✓ T

'.

1 Assuming ' is Skolemized, we can safely assume Q only contains weakly quantified
formulas.

5 Congruence Closure with Free Variables

30

Proof. Let M be model of ' such that its domain elements are the interpretation
of terms in T

'. Since ' |= �, M is a also a model of �. Therefore, for each
variable x 2 dom(�) there is a term t 2 T

' such that Jx�KM = JtKM. Thus,
a substitution �0 = {x 7! t | x 2 dom(�), t 2 T

', Jx�KM = JtKM} fulfills the
desired condition.

Algorithm CCFV

The CCFV procedure shown in Figure 1 derives, if any, a ground substitution
� such that L ^ � is unsatisfiable. It computes a sequence of substitutions
�
0

, . . . ,�k such that, for ¬ = l
1

^ · · · ^ lk,

�
0

= ?; �i�1

✓ �i and L |= li�i

which guarantees that L |= ¬ �k.

Example 1. Consider a set of literals L = {f(c) ⇡ a, f(a) ⇡ b, f(a) 6⇡ f(b)} and
a quantified formula 8x

1

, x
2

. (f(x
1

) 6⇡ a _ f(x
2

) ⇡ b). Successively evaluating
¬ = (f(x

1

) ⇡ a^f(x
2

) 6⇡ b) yields �
1

= {x
1

7! c} such that L |= (f(x
1

) ⇡ a)�
1

and �
2

= {x
1

7! c, x
2

7! b} such that L |= (f(x
2

) 6⇡ b)�
2

. Therefore � = �
2

is a
ground conflicting substitution, since L ^ � is groundly unsatisfiable.

Preliminaries C and D are initially, respectively, the set of equalities and of
disequalities in L.

Given a term s 2 T

L[{ }, [s] denotes the congruence class of s in the parti-
tion of TL[{ } induced by C, i.e., [s] = {t | t 2 T

L[{ }, C |= s ⇡ t}. Operations
on substitutions are performed modulo the current partition, so that, e.g., ✓ ✓C �
i↵, for every x 2 dom(✓), C |= x� ⇡ x✓, rather than requiring x� = x✓.

�
x

denotes the set of unfeasible substitutions, i.e., � 2C �x

i↵ there is no �
such that � ✓C � and L |= ¬ �. It is initially empty.

sel denotes a function mapping variables to themselves or ground terms,
such that sel(x) = x i↵ [x] contains no ground terms, otherwise sel(x) is some
ground term t 2 [x].

Algorithm The current instantiation in C is obtained depending on the congru-
ence classes of x containing ground terms or not. Thus {x 7! sel(x) | x 2 x}
denotes the current instantiation in C.

For each l 2 ¬ , the procedureHandle checks its consistency w.r.t. C [D. If
they are incompatible then the current instantiation is unfeasible, which triggers
its addition to �

x

and backtracking. Otherwise it tries to extend the current
instantiation to some �, not in �

x

, for which L |= l�. If it fails to do so, then
again the current instantiation is unfeasible. If every literal in ¬ is asserted
successfully, the current instantiation represents a conflicting substitution and
is outputed by CCFV. On the other hand, if ? is added to �

x

, there is no �
such that L |= ¬ �. So the procedure terminates without producing a ground
conflicting substitution.

31

proc CCFV(L,)
1 C {s ⇡ t | s ⇡ t 2 L}; D {s 6⇡ t | s 6⇡ t 2 L}; �

x

 ? // Init

2 foreach l 2 ¬ do

3 if not(Handle(C,D,�

x

, l)) then
4 �

x

 �

x

[{{x 7! sel(x) | x 2 x}}
5 if ? 2 �

x

then return ? // No � s.t. L |= ¬ �
6 Reset(C,D,¬) // Backtracking

7 return {x 7! sel(x) | x 2 x} // L |= ¬ �

proc Handle(C,D,�

x

, l)
8 match l :

9 u ⇡ v :
10 if C [D |= u 6⇡ v then return ? // Checks consistency

11 C C [{u ⇡ v} // Updates C [D

12 u 6⇡ v :
13 if C |= u ⇡ v then return ?
14 D D [{u 6⇡ v}

15 � {x 7! sel(x) | x 2 X} // Current instantiation

16 ⇤ (Unify � l) \C �x

// L |= l�, for every � 2 ⇤
17 if ⇤ 6= ? then

18 let � 2 ⇤ in

19 C C [
S

x2dom(�){x ⇡ x�}

20 return >
21 return ?

Fig. 1: Congruence Closure with Free Variables.

Backtracking is handled by the procedure Reset, which simply resets C and
D to their initial states, while the literals in ¬ are marked to be reevaluated
by the loop. This is a näıve approach, for simplicity. Smarter backtracks are
achievable through careful analysis of the dependencies for the inconsistency
found.

The function Unify in Figure 2 takes a set of literals L, a substitution ✓ and
a literal l✓ as input, computing the set of substitutions � such that ✓ ✓C � and
L |= l�. It is invoked with the current instantiation and the literal being asserted.
If the resulting set is empty, a failure is reported, showing the unfeasibility of the
current instantiation. Otherwise one of its elements is chosen and the current
instantiation is updated accordingly.

Computing feasible instantiations Adapting the recursive descent E-unification
algorithm in [1], the function Unify computes the set of (C,D)-unifiers of given
equality literals u ⇡ v and u 6⇡ v, respectively, extending an initial substitution �.
The resulting unifiers solve the E -unification problem for L and the given literal.
In the presentation, u and f(u) represent non-ground terms, v and f(v) terms

5 Congruence Closure with Free Variables

32

that may or may not be ground and t and f(t) ground terms, with subscripts
or not.

The merging of two ground substitutions �
1

and � is defined by

�
1

� �
2

=

⇢
�
1

� �
2

if x 2 (dom(�
1

) \ dom(�
2

)) only if C |= x�
1

⇡ x�
2

? otherwise

The merging of two sets of ground substitutions is the result of pairwisely merg-
ing their members. If either set is empty, so is their merging.

Example 2. Given substitutions �
1

= {x 7! a} and �
2

= {x 7! b}, their merging
is the empty set unless C |= a ⇡ b.

(1) Unify L � t1 ⇡ t2 =

(
{�} if C |= t1 ⇡ t2

? otherwise

(2) Unify L � x ⇡ t = {{x 7! t} � �}

(3) Unify L � f(u) ⇡ t =
[

f(t)2 [t]
(Unify L � u1 ⇡ t1)� · · ·� (Unify L � u

n

⇡ t

n

)

(4) Unify L � u ⇡ v =
[

t2T

L

[
✓2Unify L ? v⇡t

Unify L �✓ u✓ ⇡ v✓

(5) Unify L � u 6⇡ t =
[

t1 6⇡t22D, t12 [t], t02 [t2]
Unify L � u ⇡ t

0

(6) Unify L � u 6⇡ v =
[

t2T

L

[
✓2Unify L ? u⇡t

Unify L �✓ u✓ 6⇡ v✓

Fig. 2. Unify function

Rules are applied through pattern matching on the given literal, following the
presented order. Cases (5) and (6) handle the unification with the disequalities
in D, which ultimately also rely on the partition induced by C. Cases (1-4) make
the computation of the feasible substitution by recursively going through the
terms in the equality, eventually matching modulo C. The crucial test occurs
in (1), when the substitution computed stands only if the equality over ground
terms holds in C. There is no need to check if x 2 dom(�) in (2), since every free
variable in the given literals is not in the domain of the given substitution.

Many optimizations may be devised to improve Unify, (if u is a function
term f(u), one does not need to go through every term in T

L, it is su�cient
to check any terms of the form f(t); and so on) but the above definition is
su�cient for generating every unifier solving the given E -unification problem, as
established in Lemma 2.

Lemma 2. Consider a set of equality literals L and a substitution ✓. Let C and
D be the sets of equalities and disequalities in L, respectively, the former inducing

33

a partition of T

L in congruence classes. Then, given literals u ⇡ v, u 6⇡ v,

Unify L ✓ u✓ ⇡ v✓ = {� | ✓ ✓ �,C |= u� ⇡ v�}
Unify L ✓ u✓ 6⇡ v✓ = {� | ✓ ✓ �,C [D |= u� 6⇡ v�}

Proof (sketch). Induction on the structure of the literals (rules 1-4 for C-unifiers;
5-6 for D-unifiers).

Example 3. Let CCFV be applied on the following input:

C = {a ⇡ f(c), b ⇡ f(a)} �
x

= ?
D = {f(a) 6⇡ f(b)} ¬ = f(x

1

) ⇡ a ^ f(x
2

) 6⇡ b.

For l = f(x
1

) ⇡ a, Handle(C,D,�
x

, l) adds l to C, since it is consistent with
C [D. The current instantiation is ?, so Unify L ? f(x

1

) ⇡ a is invoked. Ac-
cording to its definition,

Unify L ? f(x
1

) ⇡ a = Unify L ? f(x
1

) ⇡ f(c)
= Unify L ? x

1

⇡ c [Rule 3]
= {{x

1

7! c}} [Rule 2]

since f(c) is the only term in [a] unifiable with f(x
1

): for every other t 2 [a],
Unify L ? f(x

1

) ⇡ t = ?. Since {x
1

7! c} is not in �
x

, it is a feasible substi-
tution, triggering the addition of {x

1

⇡ c} to C and the successful termination
of this invocation of Handle.

For l = f(x
2

) 6⇡ b, Handle adds l to D (no inconsistency) and invokes
Unify L � f(x

2

) 6⇡ b, with � = {x
1

7! c} as the current instantiation. Thus,

Unify L � f(x
2

) 6⇡ b = Unify L � f(x
2

) ⇡ f(b) [Rule 5]
= Unify L � x

2

⇡ b [Rule 3]
= {{x

2

7! b} � �} [Rule 2]
= {{x

1

7! c, x
2

7! b}} [Composition]

since f(a) 6⇡ f(b), the sole disequality in D, is such that f(a) 2 [b] and f(b) is
unifiable with f(x

2

), deriving {x
2

7! b}� �. Since {x
1

7! c, x
2

7! b} is not in �
x

,
{x

2

⇡ b} is added to C.
With no more literals to process in ¬ , the current instantiation � = {x

1

7!
c, x

2

7! b} is outputed. It is a ground conflicting substitution for L ^ .

The correctness of CCFV is established in Theorem 1.

Theorem 1. Consider a ground formula L and a formula with free variables.
If there are ground conflicting substitutions for L and , then there exists a
ground substitution � such that � = CCFV(L,), ran(�) ✓ T

L and L |= ¬ �.

Proof (sketch). Relying on Lemma 2, the computation of ground conflicting
substitutions by CCFV can be proven through induction on the structure of .

5 Congruence Closure with Free Variables

34

4 Future work

Since completeness is frequently lost for theories more expressive than the empty
one, handling quantifiers is essentially an e↵ort of having e�cient but incomplete
techniques that, for some fragments, allow decision procedures, but often not.

We want to define a framework encompassing not only the derivation of
ground conflicting but of model conflicting instances, that is, instances refuting
a ground model extended into a candidate model for the original formula. This
would amount to extend CCFV to handle MBQI, an e↵ective approach for
quantifiers in SMT. Furthermore, it is essential to include theory reasoning in
these processes.

We are starting to integrate the CCFV algorithm within the SMT solver
veriT [5], in order to evaluate and improve our approach of ground conflicting
instance generation [11]. We believe CCFV is also strongly related to approaches
like bounded simultaneous rigid E -unification [2]. It is however not clear how to
reconcile both approaches since CCFV considers only one quantified formula at
a time.

While extending CCFV for deriving substitutions conflicting modulo theo-
ries, the foremost theory to consider will be LIA. We will investigate techniques
such as Hierarchic Theorem Proving [4], which obtains an e↵ective procedure
for handling quantified formulas with interpreted terms. To do so they combine
ground and resolution-based reasoning, besides a model refinement technique
with similarities to MBQI.

References

1. F. Baader and J. H. Siekmann. Unification theory. In Handbook of Logic in
Artificial Intelligence and Logic Programming, Volume2, Deduction Methodologies,
pages 41–126. 1994.

2. P. Backeman and P. Rümmer. Theorem proving with bounded rigid E-unification.
(To appear).

3. C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo theo-
ries. In A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors, Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
chapter 26, pages 825–885. IOS Press, Feb. 2009.

4. P. Baumgartner, J. Bax, and U. Waldmann. Finite Quantification in Hierarchic
Theorem Proving. In S. Demri, D. Kapur, and C. Weidenbach, editors, Automated
Reasoning, volume 8562 of Lecture Notes in Computer Science, pages 152–167.
Springer International Publishing, 2014.

5. T. Bouton, D. C. B. de Oliveira, D. Déharbe, and P. Fontaine. veriT: an open,
trustable and e�cient SMT-solver. In R. A. Schmidt, editor, Proc. Conference on
Automated Deduction (CADE-22), 2009.

6. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program
checking. Technical Report HPL-2003-148, HP Laboratories Palo Alto, 2003.

7. Y. Ge and L. de Moura. Complete instantiation for quantified formulas in satisfia-
biliby modulo theories. In A. Bouajjani and O. Maler, editors, CAV 2009, volume
5643 of LNCS, pages 306–320. Springer, 2009.

35

8. L. Moura and N. Bjørner. Engineering DPLL(T) + saturation. In IJCAR ’08: Pro-
ceedings of the 4th international joint conference on Automated Reasoning, pages
475–490, Berlin, Heidelberg, 2008. Springer-Verlag.

9. R. Nieuwenhuis and A. Oliveras. Fast congruence closure and extensions. Infor-
mation and Computation, 205(4):557 – 580, 2007. Special Issue: 16th International
Conference on Rewriting Techniques and Applications.

10. R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In J. A.
Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, volume I,
chapter 7, pages 371–443. Elsevier Science B.V., 2001.

11. A. Reynolds, C. Tinelli, and L. M. de Moura. Finding conflicting instances of quan-
tified formulas in SMT. In Formal Methods in Computer-Aided Design, FMCAD
2014, Lausanne, Switzerland, October 21-24, 2014, pages 195–202, 2014.

12. A. Tiwari, L. Bachmair, and H. Rueß. Rigid e-unification revisited. In
D. McAllester, editor, Automated Deduction CADE-17, volume 1831 of Lecture
Notes in Artificial Intelligence, pages 220–234, Pittsburgh, PA, jun 2000. Springer-
Verlag.

5 Congruence Closure with Free Variables

36

6 Quantifiers, Computation, and Cognition

Jakub Szymanik Quantifiers, Computation, and Cognition

37

Quantifiers, Computation, and Cognition

Jakub Szymanik⇤

Institute of Logic Language and Computation, University of Amsterdam
J.K.Szymanik@uva.nl

Generalized quantifier theory studies the semantics of quantifier expressions,
like, ‘every’, ‘some’, ‘most’, ‘infinitely many’, ‘uncountably many’, etc. The clas-
sical version was developed in the 1980s, at the interface of linguistics, mathemat-
ics, and philosophy. In logic, generalized quantifiers are often defined as classes
of models closed on isomorphism (topic neutral). For instance, the quantifier
‘infinitely many’ may be defined as a class of all infinite models. Equivalently,
in linguistics generalized quantifiers are formally treated as relations between
subsets of the universe. For example, in the sentence ‘Most of the students are
smart’, quantifier ‘most’ is a binary relation between the set of students and the
set of smart people. The sentence is true if and only if the cardinality of the set
of smart students is greater than the cardinality of the set of students who are
not smart. Generalized quantifiers turned out to be one of the crucial notions in
the development of formal semantics but also logic, theoretical computer science
and philosophy [11]. In this talks we survey recent results combining classical
generalized quantifier themes and a computational complexity perspective, with
an outlook toward applications in cognitive science and linguistics [16].

We focus on the complexity of meaning of natural language quantifiers. The
general question we aim to answer is why the meanings of some sentences are
more difficult than the meanings of others. For instance, why we will probably
all agree that it is easier to evaluate sentence (1) than to evaluate sentence (2)
and why sentence (3) seems hard while sentence (4) sounds odd.

(1) Every book on the shelf is yellow.
(2) Most of the books on the shelf are yellow.
(3) Less than half of the members of parliament refer to each other.
(4) Some book by every author is referred to in some essay by every critic.

The tools of logic and computability theory are useful in making such differences
precise. The complexity analysis of the quantifier sentences in natural language
allows drawing and testing empirical predictions about cognitive difficulty of
language processing, and about specific cognitive resources (working memory,
executive functions, etc.) involved in it.

We will start by introducing the notion of monadic quantifiers—the most
important class of generalized quantifiers that captures the meanings of natural
language simple determiners. In particular, we will introduce so-called seman-
tic automata theory that associates each quantifier with a simple computational
device. We will also discuss some classical definability results connecting express-
ibility with semantic automata, e.g., all quantifiers definable in the first-order

⇤The research was supported by Veni Grant NWO-639-021-232.

6 Quantifiers, Computation, and Cognition

38

2 Jakub Szymanik

logic are recognizable by acyclic finite-automata [1, 9, 4]. In doing that we will use
fundamental notions of automata theory and draw some connections with psy-
chology, for instance, we will show that the distinction between finite-automata
and push-down automata quantifiers matters for psycholinguistics [8, 13, 14, 17,
20, 18].

Next we will survey current literature concerned with polyadic quantifica-
tion. We will explain how polyadic quantifiers result from semantically natural
operations applied to monadic quantifiers, like iteration, cumulation, or Ramsey-
ification. In addition to discussing definability issues, we will also demonstrate
how the semantic automata framework can be extended to iterations, showing
that if Q

1

and Q
2

are recognizable by finite-automata (push-down automata)
then also their iteration must be recognizable by finite-automata (push-down
automata) [12]. Furthermore, we will discuss computational complexity results
on more kinds of polyadic quantifiers—among others—proving a dichotomy re-
sult for Ramsey quantifiers [15, 2], namely, we show that the Ramseyification of
polynomial-time and constant-log-bounded monadic quantifiers result in polyno-
mial time computable Ramsey quantifiers while assuming the Exponential Time
Hypothesis. Moreover, we will discuss how such complexity results correlate with
linguistic distributions [19, 3].

In the final, most technical part, we will show how the standard generalized
quantifier theory, originally designed to deal with distributive quantification, can
be extended to cover collective quantifiers. We will discuss type-lifting strategies
constructing collective readings from distributive readings. We will also introduce
the notion of second-order generalized quantifier that is a natural mathematical
extension of Lindström quantifiers to the collective setting. We will introduce
the definability theory for second-order generalized quantifiers [5] and discuss
related computational complexity results [6]. In particular, we will show that
the question whether a second-order generalized quantifier Q

1

is definable in
terms of another quantifier Q

2

, the base logic being monadic second-order logic,
reduces to the question if a quantifier Q?

1

is definable in FO(Q?
2

, <,+,⇥) for
certain first-order quantifiers Q?

1

and Q?
2

. We use our characterization to show
new definability and non-definability results for second-order generalized quanti-
fiers [7]. We will conclude with a more general methodological discussions, using
definability and complexity results we will ask about the expressivity bounds of
everyday language [10].

References
1. Johan van Benthem. Essays in logical semantics. Reidel, 1986.
2. Ronald de Haan and Jakub Szymanik. A dichotomy result for Ramsey quanti-

fiers. In Proceedings of the 22nd Workshop on Logic, Language, Information and

Computation, 2015.
3. Nina Gierasimczuk and Jakub Szymanik. Branching quantification vs. two-way

quantification. The Journal of Semantics, 26(4):329–366, 2009.
4. Makoto Kanazawa. Monadic quantifiers recognized by deterministic pushdown

automata. In F. Roelofsen M. Aloni, M. Franke, editor, Proceedings of the 19th

Amsterdam Colloquium, pages 139–146, 2013.

39

Quantifiers, Computation, and Cognition 3

5. Juha Kontinen. Definability of second order generalized quantifiers. PhD thesis,
Helsinki University, 2004.

6. Juha Kontinen and Jakub Szymanik. A remark on collective quantification. Journal

of Logic, Language and Information, 17(2):131–140, 2008.
7. Juha Kontinen and Jakub Szymanik. A characterization of definability of second-

order generalized quantifiers with applications to non-definability. Journal of Com-

puter and System Sciences, 80(6):1152 – 1162, 2014.
8. Corey T. McMillan, Robin Clark, Peachie Moore, Christian Devita, and Murray

Grossman. Neural basis for generalized quantifier comprehension. Neuropsycholo-

gia, 43:1729–1737, 2005.
9. Marcin Mostowski. Computational semantics for monadic quantifiers. Journal of

Applied Non-Classical Logics, 8:107–121, 1998.
10. Marcin Mostowski and Jakub Szymanik. Semantic bounds for everyday language.

Semiotica, 188(1-4):363–372, 2012.
11. Stanley Peters and Dag Westerståhl. Quantifiers in Language and Logic. Clarendon

Press, Oxford, 2006.
12. Shane Steinert-Threlkeld and III Icard, ThomasF. Iterating semantic automata.

Linguistics and Philosophy, 36(2):151–173, 2013.
13. Jakub Szymanik. A comment on a neuroimaging study of natural language quan-

tifier comprehension. Neuropsychologia, 45:2158–2160, 2007.
14. Jakub Szymanik. Quantifiers in TIME and SPACE. Computational Complexity of

Generalized Quantifiers in Natural Language. PhD thesis, University of Amster-
dam, Amsterdam, 2009.

15. Jakub Szymanik. Computational complexity of polyadic lifts of generalized quan-
tifiers in natural language. Linguistics and Philosophy, 33(3):215–250, 2010.

16. Jakub Szymanik. Quantifiers and Cognition. Studies in Linguistics and Philosophy.
Springer, 2015.

17. Jakub Szymanik and Marcin Zajenkowski. Comprehension of simple quantifiers.
Empirical evaluation of a computational model. Cognitive Science: A Multidisci-

plinary Journal, 34(3):521–532, 2010.
18. Jakub Szymanik and Marcin Zajenkowski. Quantifiers and working memory. In

M. Aloni and K. Schulz, editors, Amsterdam Colloquium 2009, Lecture Notes In

Artificial Intelligence 6042, pages 456–464. Springer, 2010.
19. Camilo Thorne and Jakub Szymanik. Semantic complexity of quantifiers and their

distribution in corpora. In Proceedings of the International Conference on Com-

putational Semantics, 2015.
20. Marcin Zajenkowski, Rafał Styła, and Jakub Szymanik. A computational approach

to quantifiers as an explanation for some language impairments in schizophrenia.
Journal of Communication Disorders, 44(6):595 – 600, 2011.

6 Quantifiers, Computation, and Cognition

40

	A Survey on DQBF: Formulas, Applications, Solving Approaches Gergely Kovasznai
	Old Challenges and New Solutions: a Comprehensive Assessment of State-of-the-Art QBF Solvers Paolo Marin, Massimo Narizzano, Luca Pulina, Armando Tacchella and Enrico Giunchiglia
	Encodings of Reactive Synthesis Peter Faymonville, Bernd Finkbeiner, Markus N. Rabe and Leander Tentrup
	Model Finding for Recursive Functions in SMT Andrew Reynolds, Jasmin Christian Blanchette and Cesare Tinelli
	Congruence Closure with Free Variables Haniel Barbosa and Pascal Fontaine
	Quantifiers, Computation, and Cognition Jakub Szymanik

