
EPTCS 185

Proceedings of the

Tenth International Workshop on

Logical Frameworks and Meta
Languages: Theory and Practice

Berlin, Germany, 1 August 2015

Edited by: Iliano Cervesato and Kaustuv Chaudhuri

Published: 27th July 2015
DOI: 10.4204/EPTCS.185
ISSN: 2075-2180
Open Publishing Association

Table of Contents

Preface . 1
Iliano Cervesato and Kaustuv Chaudhuri

Gluing together Proof Environments: Canonical extensions of LF Type Theories featuring Locks . . 3
Furio Honsell, Luigi Liquori, Petar Maksimović and Ivan Scagnetto

An Open Challenge Problem Repository for Systems Supporting Binders . 18
Amy Felty, Alberto Momigliano and Brigitte Pientka

A Case Study on Logical Relations using Contextual Types . 33
Andrew Cave and Brigitte Pientka

Proof-relevant pi-calculus . 46
Roly Perera and James Cheney

Equations for Hereditary Substitution in Leivant’s Predicative System F: A Case Study. 71
Cyprien Mangin and Matthieu Sozeau

Rewriting Modulo β in the λΠ-Calculus Modulo . 87
Ronan Saillard

Sequent Calculus and Equational Programming . 102
Nicolas Guenot and Daniel Gustafsson

I. Cervesato and K. Chaudhuri (Eds.): Tenth International Workshop
on Logical Frameworks and Meta-Languages: Theory and Practice
EPTCS 185, 2015, pp. 1–2, doi:10.4204/EPTCS.185.0

c© I. Cervesato and K. Chaudhuri
This work is licensed under the
Creative Commons Attribution License.

Preface

This volume constitutes the proceedings of LFMTP 2015, theTenth International Workshop on Log-
ical Frameworks and Meta-Languages: Theory and Practice, held on August 1st, 2015 in Berlin, Ger-
many. The workshop was a one-day satellite event of CADE-25,the 25th International Conference on
Automated Deduction.

The program committee selected seven papers for presentation at LFMTP 2015, and inclusion in this
volume. In addition, the program included invited talks by Frank Pfenning (Carnegie Mellon University),
Vivek Nigam (Federal University of Paraı́ba) and Marc Lasson (Inria).

Logical frameworks and meta-languages form a common substrate for representing, implementing,
and reasoning about a wide variety of deductive systems of interest in logic and computer science. Their
design and implementation and their use in reasoning tasks ranging from the correctness of software to
the properties of formal computational systems have been the focus of considerable research over the
last two decades. This workshop brought together designers, implementors, and practitioners to discuss
various aspects impinging on the structure and utility of logical frameworks, including the treatment of
variable binding, inductive and co-inductive reasoning techniques and the expressiveness and lucidity of
the reasoning process.

Many people helped make LFMTP 2015 a success. We wish to thankthe organizers of CADE-25
for their support. We are indebted to the program committee members and the external referees for their
careful and efficient work in the reviewing process. Finallywe are grateful to the authors, the invited
speakers and the attendees who made this workshop an enjoyable and fruitful event.

July, 2015 Iliano Cervesato
Kaustuv Chaudhuri

2 Preface

Program Committee of LINEARITY 2014

• Andreas Abel (Chalmers and Gothenburg University)

• David Baelde (LSV, ENS Cachan)

• Iliano Cervesato (Carnegie Mellon University — co-chair)

• Kaustuv Chaudhuri (Inria & LIX/́Ecole polytechnique — co-chair)

• Assia Mahboubi (Inria)

• Stefan Monnier (University of Montreal)

• Gopalan Nadathur (University of Minnesota)

• Giselle Reis (Inria)

• Claudio Sacerdoti Coen (University of Bologna)

• Carsten Schürmann (IT University of Copenhagen & Demtech)

Additional Reviewers

Andrew Gacek and Mary Southern.

I. Cervesato and K. Chaudhuri (Eds.): Tenth International Workshop
on Logical Frameworks and Meta-Languages: Theory and Practice
EPTCS 185, 2015, pp. 3–17, doi:10.4204/EPTCS.185.1

c© F. Honsell, L. Liquori, P. Maksimović, I. Scagnetto
This work is licensed under the
Creative Commons Attribution License.

Gluing together Proof Environments:
Canonical extensions of

LF Type Theories featuring Locks∗

Furio Honsell
Department of Mathematics and Computer Science

University of Udine, Italy

furio.honsell@uniud.it

Luigi Liquori
Inria Sophia Antipolis Méditerranée, France

luigi.liquori@inria.fr

Petar Maksimović
Inria Rennes Bretagne Atlantique, France

Mathematical Institute of the Serbian Academy
of Sciences and Arts, Serbia

petar.maksimovic@inria.fr

Ivan Scagnetto
Department of Mathematics and Computer Science

University of Udine, Italy

ivan.scagnetto@uniud.it

We present two extensions of theLF Constructive Type Theory featuring monadiclocks. A lock
is a monadic type construct that captures the effect of anexternal call to an oracle. Such calls
are the basic tool forgluing togetherdiverse Type Theories and proof development environments.
The oracle can be invoked either to check that a constraint holds or to provide a suitable witness.
The systems are presented in thecanonical styledeveloped by the CMU School. The first system,
CLLFP , is the canonical version of the systemLLFP , presented earlier by the authors. The second
system,CLLFP?, features the possibility of invoking the oracle to obtain awitness satisfying a given
constraint. We discuss encodings of Fitch-Prawitz Set theory, call-by-valueλ -calculi, and systems
of Light Linear Logic. Finally, we show how to use Fitch-Prawitz Set Theory to define a type system
that types precisely the strongly normalizing terms.

1 Introduction

In recent years, the authors have introduced in a series of papers [18, 16, 21, 20] various extensions of
the Constructive Type TheoryLF, with the goal of defining a simpleUniversal Meta-languagethat can
support the effect ofgluing together, i.e. interconnecting, different type systems and proof development
environments.

The basic idea underpinning these logical frameworks is to allow for the user to express explicitly,
in anLF type-theoretic framework theinvocation, and uniformrecordingof theeffect, of external tools
by means of a newmonadictype-constructorL P

M,σ [·], called alock. More specifically, locks permit to
express the fact that, in order to obtain a term of a given type, it is necessary toverify, first, a constraint
P(Γ ⊢Σ M : σ), i.e. to producesuitableevidence. No restrictions are enforced on producing such ev-
idence. It can be supplied by calling anexternal proof search toolor anexternal oracle, or exploiting
some other epistemic source, such as diagrams, physical analogies, or explicit computations according to
thePoincaŕe Principle[3]. Thus, by using lock constructors, one canfactor-outthe goal, produce pieces
of evidence using different proof environments andglue them back together, using theunlock operator,
which releasesthe locked term in the calling framework. Clearly, the task of checking the validity of

∗The work presented in this paper was partially supported by the Serbian Ministry of Education, Science, and Technological
Development, projects ON174026 and III44006.

4 Gluing together Proof Environments:CLLFP & CLLFP?

external evidence rests entirely on the external tool. In our framework we limit ourselves to recording in
the proof term by means of anU -destructor this recourse to an external tool.

One of the original contributions of this paper is that we show how locks can delegate to external
tools not only the task of producing suitable evidence but also that of exhibiting suitablewitnesses, to be
further used in the calling environment. This feature is exhibited byCLLFP? (see Section 3).

Locks subsume differentproof attitudes, such as proof-irrelevant approaches, where one is only inter-
ested in knowing that evidence does exist, or approaches relying on powerful terminating metalanguages.
Indeed, locks allow for a straightforward accommodation ofmany differentproof cultureswithin a single
Logical Framework; which otherwise can be embedded only very deeply [6, 15] or axiomatically [22].

Differently from our earlier work, we focus in this paper only on systems presented in thecanonical
format introduced by the CMU school [35, 14]. This format is syntax-directed and produces a unique
derivation for each derivable judgement. Terms are all in normal form and equality rules are replaced
by hereditary substitution. We present the systems in canonical form, since this formatstreamlines the
proof of adequacy theorems.

First, we present the very expressive systemCLLFP and discuss the relationship to its non-canonical
counterpartLLFP in [20], where we introducedlock-typesfollowing the paradigm of Constructive Type
Theory (̀a la Martin-Löf), via introduction, elimination, andequality rules. This paradigm needs to
be rephrased for the canonical format used here. Introduction rules correspond totype checkingrules
of canonical objects, whereas elimination rules correspond totype synthesisrules of atomic objects.
Equality rules are rendered via the rules ofhereditary substitution. In particular, we introduce alock
constructorfor building canonical objectsL P

N,σ [M] of typeL P
N,σ [ρ], via thetype checking rule(O·Lock).

Correspondingly, we introduce anunlock destructor, U P
N,σ [M], and anatomic rule(O·Unlock), allowing

elimination, in the hereditary substitution rules, of the lock-type constructor, under the condition that a
specific predicateP is verified, possiblyexternally, on a judgement:

Γ ⊢Σ M ⇐ ρ Γ ⊢Σ N ⇐ σ
Γ ⊢Σ L P

N,σ [M]⇐ L P
N,σ [ρ]

(O·Lock)
Γ ⊢Σ A⇒ L P

N,σ [ρ] Γ ⊢Σ N ⇐ σ P(Γ ⊢Σ N ⇐ σ)

Γ ⊢Σ U P
N,σ [A]⇒ ρ

(O·Unlock)

Capitalizing on the monadic nature of the lock constructor,as we did for the systems in [21, 20], one can
use locked terms without necessarily establishing the predicate, provided anoutermostlock is present.
This increases the expressivity of the system, and allows for reasoning under the assumption that the
verification is successful, as well as for postponing and reducing the number of verifications. The rules
which make all this work are:

Γ,x:τ ⊢Σ L P
S,σ [ρ] type Γ ⊢Σ A⇒ L P

S,σ [τ] ρ [U P
S,σ [A]/x]F(τ)− = ρ ′

Γ ⊢Σ L P
S,σ [ρ ′] type

(F·Nested·Unlock)

Γ,x:τ ⊢Σ L P
S,σ [M]⇐ L P

S,σ [ρ] Γ ⊢Σ A⇒ L P
S,σ [τ]

ρ [U P
S,σ [A]/x]F(τ)− = ρ ′ M[U P

S,σ [A]/x]O(τ)− = M′

Γ ⊢Σ L P
S,σ [M

′]⇐ L P
S,σ [ρ ′]

(O·Nested·Unlock)

The (O·Nested·Unlock)-rule is the counterpart of the elimination rule for monads, once we realize that
the standard destructor of monads (see, e.g., [25])letTP(Γ⊢S:σ)

x= A in N can be replaced, in our context,

by N[U P
S,σ [A]/x]. And this holds since theL P

S,σ [·]-monad satisfies the propertyletTP
x= M in N → N if

x /∈ Fv(N), providedx occursguardedin N, i.e. within subterms of the appropriate lock-type. The rule
(F·Nested·Unlock) takes care of elimination at the level of types.

F. Honsell, L. Liquori, P. Maksimović, I. Scagnetto 5

K ∈ K K ::= type | Πx:σ .K Kinds

α ∈ Fa α ::= a | α N Atomic Families

σ ,τ,ρ ∈ F σ ::= α | Πx:σ .τ | L P
N,σ [ρ] Canonical Families

A ∈ Oa A ::= c | x | AM | U P
N,σ [A] Atomic Objects

M,N ∈ O M ::= A | λx:σ .M | L P
N,σ [M] Canonical Objects

Σ ∈ S Σ ::= /0 | Σ,a:K | Σ,c:σ Signatures

Γ ∈ C Γ ::= /0 | Γ,x:σ Contexts

Figure 1: Syntax ofCLLFP

We proceed then to introduceCLLFP?. Syntactically, it might appear as a minor variation ofCLLFP ,
but the lock constructor is used here to express therequestfor a witness satisfying a given property, which
is thenreplacedby the unlock operation. InCLLFP?, the lock acts as abinding operatorand the unlock
as anapplication.

To illustrate the expressive power ofCLLFP andCLLFP? we discuss various challenging encodings
of subtle logical systems, as well as some novel applications. First, we encode inCLLFP Fitch-Prawitz
consistent Set-Theory (FPST), as presented in [30], and to illustrate its expressive power, we show, by
way of example, how it can type all strongly normalizing terms. Next, we give signatures inCLLFP of
a strongly normalizingλ -calculus and a system of Light Linear Logic [2]. Finally, inSection 4.5, we
show how to encode functions inCLLFP?.

The paper is organized as follows: in Section 2 we present thesyntax, the type system and the
metatheory ofCLLFP , whereasCLLFP? is introduced in Section 3. Section 4 is devoted to the presen-
tation and discussion of case studies. Finally, connections with related work in the literature appear in
Section 5.

2 The Canonical SystemCLLFP

In this section, we discuss thecanonicalcounterpart ofLLFP [20], i.e. CLLFP , in the style of [35, 14].
This approach amounts to restricting the language only to terms in longβη-normal form. These are the
normal forms of the original system which are normal also w.r.t. typedη-like expansion rules, namely
M → λx:σ .Mx andM → L P

N,σ [U
P

N,σ [M]] if M is atomic. The added value of canonical systems such
asCLLFP is that one can streamline results of adequacy for encoded systems. Indeed, reductions in
the meta-language of non-canonical terms reflect only the history of how the proof was developed using
lemmata.

2.1 Syntax and Type System forCLLFP

The syntax ofCLLFP is presented in Figure 1. The type system forCLLFP is shown in Figure 2. The
judgements ofCLLFP are the following:

Σ sig Σ is a valid signature
⊢Σ Γ Γ is a valid context inΣ

Γ ⊢Σ K K is a kind inΓ andΣ
Γ ⊢Σ σ type σ is a canonical family inΓ andΣ
Γ ⊢Σ α ⇒ K K is the kind of the atomic familyα in Γ andΣ
Γ ⊢Σ M ⇐ σ M is a canonical term of typeσ in Γ andΣ
Γ ⊢Σ A⇒ σ σ is the type of the atomic termA in Γ andΣ

6 Gluing together Proof Environments:CLLFP & CLLFP?

Valid signatures

/0 sig
(S·Empty)

Σ sig ⊢Σ K a 6∈Dom(Σ)
Σ,a:K sig

(S·Kind)
Σ sig ⊢Σ σ type c 6∈ Dom(Σ)

Σ,c:σ sig
(S·Type)

Kind rules

⊢Σ Γ
Γ ⊢Σ type

(K·Type)

Γ,x:σ ⊢Σ K
Γ ⊢Σ Πx:σ .K

(K·Pi)

Atomic Family rules

⊢Σ Γ a:K ∈ Σ
Γ ⊢Σ a⇒ K

(A·Const)

Γ ⊢Σ α ⇒ Πx:σ .K1

Γ ⊢Σ M ⇐ σ
K1[M/x]K(σ)− = K

Γ ⊢Σ α M ⇒ K
(A·App)

Canonical Family rules

Γ ⊢Σ α ⇒ type

Γ ⊢Σ α type
(F ·Atom)

Γ,x:σ ⊢Σ τ type

Γ ⊢Σ Πx:σ .τ type
(F·Pi)

Γ ⊢Σ ρ type Γ ⊢Σ N ⇐ σ
Γ ⊢Σ L P

N,σ [ρ] type
(F ·Lock)

Γ,x : τ ⊢Σ L P
S,σ [ρ] type

Γ ⊢Σ A⇒ L P
S,σ [τ]

ρ [U P
S,σ [A]/x]F(τ)− = ρ ′

Γ ⊢Σ L P
S,σ [ρ ′] type

(F ·Nested·Unlock)

Context rules

Σ sig

⊢Σ /0
(C·Empty)

⊢Σ Γ Γ ⊢Σ σ type x 6∈ Dom(Γ)
⊢Σ Γ,x:σ (C·Type)

Atomic Object rules

⊢Σ Γ c:σ ∈ Σ
Γ ⊢Σ c⇒ σ (O·Const)

⊢Σ Γ x:σ ∈ Γ
Γ ⊢Σ x⇒ σ (O·Var)

Γ ⊢Σ A⇒ Πx:σ .τ1

Γ ⊢Σ M ⇐ σ τ1[M/x]F(σ)− = τ

Γ ⊢Σ AM ⇒ τ (O·App)

Γ ⊢Σ A⇒ L P
N,σ [ρ]

Γ ⊢Σ N ⇐ σ P(Γ ⊢Σ N ⇐ σ)

Γ ⊢Σ U P
N,σ [A]⇒ ρ

(O·Unlock)

Canonical Object rules

Γ ⊢Σ A⇒ α
Γ ⊢Σ A⇐ α (O·Atom)

Γ,x:σ ⊢Σ M ⇐ τ
Γ ⊢Σ λx:σ .M ⇐ Πx:σ .τ

(O·Abs)

Γ ⊢Σ M ⇐ ρ Γ ⊢Σ N ⇐ σ
Γ ⊢Σ L P

N,σ [M]⇐ L P
N,σ [ρ]

(O·Lock)

Γ,x:τ ⊢Σ L P
S,σ [M]⇐ L P

S,σ [ρ] Γ ⊢Σ A⇒ L P
S,σ [τ]

ρ [U P
S,σ [A]/x]F(τ)− = ρ ′ M[U P

S,σ [A]/x]O
(τ)− = M′

Γ ⊢Σ L P
S,σ [M

′]⇐ L P
S,σ [ρ

′]
(O·Nested·Unlock)

Figure 2: TheCLLFP Type System

The judgementsΣ sig, and⊢Σ Γ, andΓ ⊢Σ K are as in Section 2.1 of [19], whereas the remaining ones
are peculiar to the canonical style. Informally, the judgment Γ ⊢Σ M ⇐ σ usesσ to check the type
of the canonical termM, while the judgmentΓ ⊢Σ A ⇒ σ uses the type information contained in the
atomic termA andΓ to synthesizeσ . PredicatesP in CLLFP are defined on judgements of the shape
Γ ⊢Σ M ⇐ σ .

There are two rules whose conclusion is the lock constructorL P
S,σ [·]. But nevertheless, this system

is still syntax directed: when there are subterms of the formU P
S,σ [A] in eitherM′ or ρ ′, the type checking

algorithm always tries to apply the(O·Nested·Unlock) rule. If this is not possible, it applies instead the
(O ·Lock) rule.

The type system makes use, in the rules(A·App) and(F·App), of the notion ofHereditary Substitu-
tion, which computes the normal form resulting from the substitution of one normal form into another.

F. Honsell, L. Liquori, P. Maksimović, I. Scagnetto 7

(a)− = a

(α)− = ρ
(α M)− = ρ

(σ)− = ρ1 (τ)− = ρ2

(Πx:σ .τ)− = ρ1 → ρ2

(τ)− = ρ
(L P

N,σ [τ])− = L P
N,σ [ρ]

Figure 3: Erasure to simple-types

Substitution in Kinds

type[M0/x0]
K
ρ0

= type
(S ·K·Type)

σ [M0/x0]
F
ρ0

= σ ′ K[M0/x0]
K
ρ0

= K′

(Πx:σ .K)[M0/x0]
K
ρ0

= Πx:σ .′K′ (S ·K·Pi)

Substitution in Atomic Families

a[M0/x0]
f
ρ0 = a

(S ·F ·Const)
α[M0/x0]

f
ρ0 = α ′ M[M0/x0]

O
ρ0

= M′

(αM)[M0/x0]
f
ρ0 = α ′M′

(S ·F ·App)

Substitution in Canonical Families

α[M0/x0]
f
ρ0 = α ′

α[M0/x0]
F
ρ0

= α ′ (S ·F·Atom)
σ1[M0/x0]

F
ρ0

= σ ′
1 σ2[M0/x0]

F
ρ0

= σ ′
2

(Πx:σ1.σ2)[M0/x0]
F
ρ0

= Πx:σ ′
1.σ ′

2

(S ·F ·Pi)

σ1[M0/x0]
F
ρ0

= σ ′
1 M1[M0/x0]

O
ρ0

= M′
1 σ2[M0/x0]

F
ρ0

= σ ′
2

L P
M1,σ1

[σ2][M0/x0]
F
ρ0

= L P
M′

1,σ
′
1
[σ ′

2]
(S ·F ·Lock)

Figure 4: Hereditary substitution, kinds and families ofCLLFP

The general form of the hereditary substitution judgement is T[M/x]tρ = T ′, whereM is the term being
substituted,x is the variable being substituted for,T is the term being substituted into,T ′ is the result of
the substitution,ρ is thesimple-typeof M, andt denotes the syntactic class (e.g. atomic families/object,
canonical families/objects, etc.) under consideration. We give the rules of the Hereditary Substitution
in the style of [14], where the erasure function to simple types is necessary to simplify the proof of
termination, which we omit.

The simple-typeρ of M is obtained via the erasure function of [14] (Figure 3), mapping depen-
dent into simple-types. The rules for Hereditary Substitution are presented in Figures 4 and 5, using
Barendregt’s hygiene condition.

Notice that, in the rule(O·Atom) of the type system (Figure 2), the syntactic restriction of the classi-
fier to α atomic ensures that canonical forms arelong βη-normal formsfor the suitable notion of long
βη-normal form, which extends the standard one for lock-types. For one, the judgementx:Πz:a.a⊢Σ x⇐
Πz:a.a is not derivable, asΠz:a.a is not atomic, hence⊢Σ λx:(Πz:a.a).x ⇐ Πx:(Πz:a.a).Πz:a.a is not
derivable. On the other hand,⊢Σ λx:(Πz:a.a).λy:a.xy⇐ Πx:(Πz:a.a).Πz:a.a, wherea is a family con-
stant of kindType, is derivable. Analogously, for lock-types, the judgementx:L P

N,σ [ρ] ⊢Σ x⇐ L P
N,σ [ρ]

is not derivable, sinceL P
N,σ [ρ] is not atomic. As a consequence, we have that⊢Σ λx:L P

N,σ [ρ].x ⇐
Πx:L P

N,σ [ρ].L P
N,σ [ρ] is not derivable. However,x:L P

N,σ [ρ] ⊢Σ L P
N,σ [U

P
N,σ [x]]⇐ L P

N,σ [ρ] is derivable, if
ρ is atomic. Hence, the judgment⊢Σ λx:L P

N,σ [ρ].L P
N,σ [U

P
N,σ [x]] ⇐ Πx:L P

N,σ [ρ].L P
N,σ [ρ] is derivable.

Note that the unlock constructor takes anatomicterm as its main argument, thus avoiding the creation
of possibleL -redexes under substitution. Moreover, since unlocks can only receive locked terms in
their body, no abstractions can ever arise. In Definition 2.3, we formalize the notion ofη-expansion of a
judgement, together with correspondence theorems betweenLLFP andCLLFP .

We presentCLLFP in a fully-typed style,i.e. à la Church, but we could also follow [14] and present
a versionà la Curry, where the canonical formsλx.M andL P

M [N] do not carry type information. The
type rules would then be,e.g.:

8 Gluing together Proof Environments:CLLFP & CLLFP?

Substitution in Atomic Objects

c[M0/x0]
o
ρ0

= c
(S ·O·Const)

x0[M0/x0]
o
ρ0

= M0 : ρ0
(S ·O·Var·H)

x 6= x0

x[M0/x0]
o
ρ0

= x
(S ·O·Var)

A1[M0/x0]
o
ρ0

= λx:ρ2.M′
1 : ρ2 → ρ M2[M0/x0]

O
ρ0

= M′
2 M′

1[M
′
2/x]Oρ2

= M′

(A1M2)[M0/x0]
o
ρ0

= M′ : ρ
(S ·O·App·H)

A1[M0/x0]
o
ρ0

= A′
1 M2[M0/x0]

O
ρ0

= M′
2

(A1M2)[M0/x0]
o
ρ0

= A′
1M′

2
(S ·O·App)

σ [M0/x0]
F
ρ0

= σ ′ M[M0/x0]
O
ρ0

= M′ A[M0/x0]
o
ρ0

= L P
M′,σ ′ [M1] : L P

M′,σ ′ [ρ]

U P
M,σ [A][M0/x0]

o
ρ0

= M1 : ρ
(S ·O·Unlock·H)

σ [M0/x0]
F
ρ0

= σ ′ M[M0/x0]
O
ρ0

= M′ A[M0/x0]
o
ρ0

= A′

U P
M,σ [A][M0/x0]

o
ρ0

= U P
M′ ,σ ′ [A′]

(S ·O·Unlock)

Substitution in Canonical Objects

A[M0/x0]
o
ρ0

= A′

A[M0/x0]
O
ρ0

= A′ (S ·O·R)
A[M0/x0]

o
ρ0

= M′ : ρ

A[M0/x0]
O
ρ0

= M′ (S ·O·R·H)
M[M0/x0]

O
ρ0

= M′

λx:σ .M[M0/x0]
O
ρ0

= λx:σ .M′ (S ·O·Abs)

σ1[M0/x0]
F
ρ0

= σ ′
1 M1[M0/x0]

O
ρ0

= M′
1 M2[M0/x0]

O
ρ0

= M′
2

L P
M1,σ1

[M2][M0/x0]
O
ρ0

= L P
M′

1,σ
′
1
[M′

2]
(S ·O·Lock)

Substitution in Contexts

[M0/x0]
C
ρ0

= /0
(S ·Ctxt·Empty)

x0 6= x x 6∈ Fv(M0) Γ[M0/x0]
C
ρ0

= Γ′ σ [M0/x0]
F
ρ0

= σ ′

(Γ,x:σ)[M0/x0]
C
ρ0

= Γ′,x:σ ′ (S ·Ctxt·Term)

Figure 5: Hereditary substitution, objects and contexts ofCLLFP

Γ,x:σ ⊢Σ M ⇐ τ
Γ ⊢Σ λx.M ⇐ Πx:σ .τ

(O·Abs)
Γ ⊢Σ M ⇐ σ Γ ⊢Σ N ⇐ τ
Γ ⊢Σ L P

M [N]⇐ L P
M,σ [τ]

(O·Lock)

This latter syntax is more suitable in implementations because it simplifies the notation. Following [18],
we stick to the typeful syntax because it allows for a more direct comparison with non-canonical sys-
tems. This, however, is technically immaterial. Since judgements in canonical systems have unique
derivations, one can show by induction on derivations that any provable judgement in the system where
object terms arèa la Curry has aunique type decoration of its object subterms, which turns it into a
provable judgement in the versioǹa la Church. Vice versa, any provable judgement in the versionà
la Church can forget the types in its object subterms, yieldinga provable judgement in the versionà la
Curry.

2.2 The Metatheory ofCLLFP

For lack of space we omit proofs, but these follow the standard patterns in [14, 19]. We start by studying
the basic properties of hereditary substitution and the type system. First of all, we need to assume that
the predicates arewell-behavedin the sense of [19]. In the context of canonical systems, this notion
needs to be rephrased as follows:

Definition 2.1 (Well-behaved predicates for canonical systems). A finite set of predicates{Pi}i∈I is
well-behavedif eachP in the set satisfies the following conditions:

1. Closure under signature and context weakening and permutation:
(a) If Σ andΩ are valid signatures such thatΣ ⊆ Ω andP(Γ ⊢Σ N ⇐ σ), thenP(Γ ⊢Ω N ⇐ σ).

F. Honsell, L. Liquori, P. Maksimović, I. Scagnetto 9

(b) If Γ and∆ are valid contexts such thatΓ ⊆ ∆ andP(Γ ⊢Σ N ⇐ σ), thenP(∆ ⊢Σ N ⇐ σ).

2. Closure under hereditary substitution:If P(Γ,x:σ ′,Γ′ ⊢Σ N⇐ σ) andΓ ⊢Σ N′ : σ ′, then
P(Γ,Γ′[N′/x]C(σ ′)− ⊢Σ N[N′/x]O(σ ′)−⇐ σ [N′/x]F(σ ′)−).

As canonical systems do not feature reduction, the “classical” third constraint for well-behaved pred-
icates (closure under reduction) is not needed here. Moreover, the second condition (closure under
substitution) becomes “closure under hereditary substitution”.

Lemma 2.1(Decidability of hereditary substitution).

1. For any T in{K ,A ,F ,O,C }, and any M, x, andρ , it is decidable whether there exists a T′

such that T[M/x]mρ = T ′ or there is no such T′.
2. For any M, x,ρ , and A, it is decidable whether there exists an A′, such that A[M/x]oρ = A′, or there

exist M′ andρ ′, such that A[M/x]oρ = M′ : ρ ′, or there are no such A′ and M′.

Lemma 2.2(Head substitution size). If A[M0/x0]
o
ρ0
= M:ρ , thenρ is a subexpression ofρ0.

Lemma 2.3(Uniqueness of substitution and synthesis).

1. It is not possible that A[M0/x0]
o
ρ0
= A′ and A[M0/x0]

o
ρ0
= M:ρ .

2. For any T , if T[M0/x0]
m
ρ0
= T ′, and T[M0/x0]

m
ρ0
= T ′′, then T′ = T ′′.

3. If Γ ⊢Σ α ⇒ K, andΓ ⊢Σ α ⇒ K′, then K= K′.
4. If Γ ⊢Σ A⇒ σ , andΓ ⊢Σ A⇒ σ ′, thenσ = σ ′.

Lemma 2.4(Composition of hereditary substitution). Let x 6= x0 and x 6∈ Fv(M0). Then:

1. For all T′
1 in {K ,Fa,F ,Oa,O}, if M2[M0/x0]

O
ρ0

= M′
2, T1[M2/x]mρ2

= T ′
1, and T1[M0/x0]

m
ρ0

= T ′′
1 ,

then there exists a T : T′1[M0/x0]
m
ρ0
= T, and T′′1 [M

′
2/x]mρ2

= T.

2. If M2[M0/x0]
O
ρ0
=M′

2, A1[M2/x]oρ2
=M : ρ , and A1[M0/x0]

o
ρ0
=A, then there exists an M′: M [M0/x0]

O
ρ0
=

M′, and A[M′
2/x]oρ2

= M′ : ρ .

3. If M2[M0/x0]
O
ρ0
=M′

2, A1[M2/x]oρ2
=A, and A1[M0/x0]

o
ρ0
=M : ρ , then there exists an M′: A[M0/x0]

o
ρ0
=

M′ : ρ , and M[M′
2/x]Oρ2

= M′.

Theorem 2.5(Transitivity). LetΣ sig, ⊢Σ Γ,x0:ρ0,Γ′ andΓ ⊢Σ M0 ⇐ ρ0, and assume that all predicates
are well-behaved. Then,

1. There exists aΓ′′: [M0/x0]
C
ρ0
= Γ′′ and⊢Σ Γ,Γ′′.

2. If Γ,x0:ρ0,Γ′ ⊢Σ K then there exists a K′: [M0/x0]
K
ρ0

K = K′ andΓ,Γ′′ ⊢Σ K′.

3. If Γ,x0:ρ0,Γ′ ⊢Σ σ type, then there exists aσ ′: [M0/x0]
F
ρ0

σ = σ ′ andΓ,Γ′′ ⊢Σ σ ′ type.

4. If Γ,x0:ρ0,Γ′ ⊢Σ σ type andΓ,x0:ρ0,Γ′ ⊢Σ M ⇐ σ , then there existσ ′ and M′: [M0/x0]
F
ρ0

σ = σ ′

and [M0/x0]
O
ρ0

M = M′ andΓ,Γ′′ ⊢Σ M′ ⇐ σ ′.

Theorem 2.6(Decidability of typing). If predicates inCLLFP are decidable, then all of the judgements
of the system are decidable.

We can now precisely state the relationship betweenCLLFP and theLLFP system of [20]:

Theorem 2.7 (Soundness). For any predicateP of CLLFP , we define a corresponding predicate in
LLFP as follows: P(Γ ⊢Σ M : σ) holds if and only ifΓ ⊢Σ M : σ is derivable inLLFP and P(Γ ⊢Σ
M ⇐ σ) holds inCLLFP . Then, we have:

1. If Σ sig is derivable inCLLFP , thenΣ sig is derivable inLLFP .
2. If ⊢Σ Γ is derivable inCLLFP , then⊢Σ Γ is derivable inLLFP .
3. If Γ ⊢Σ K is derivable inCLLFP , thenΓ ⊢Σ K is derivable inLLFP .

10 Gluing together Proof Environments:CLLFP & CLLFP?

4. If Γ ⊢Σ α ⇒ K is derivable inCLLFP , thenΓ ⊢Σ α : K is derivable inLLFP .

5. If Γ ⊢Σ σ type is derivable inCLLFP , thenΓ ⊢Σ σ : type is derivable inLLFP .

6. If Γ ⊢Σ A⇒ σ is derivable inCLLFP , thenΓ ⊢Σ A : σ is derivable inLLFP .

7. If Γ ⊢Σ M ⇐ σ is derivable inCLLFP , thenΓ ⊢Σ M : σ is derivable inLLFP .

Vice versa, allLLFP judgements inlong βη-normal form(βη-lnf) are derivable inCLLFP . The
definition of a judgement inβη-lnf is based on the following extension of the standardη-rule to the lock
constructorλx:σ .Mx→η M andL P

N,σ [U
P

N,σ [M]]→η M.

Definition 2.2. An occurrenceξ of a constant or a variable in a term of anLLFP judgement isfully
applied and unlockedw.r.t. its type or kindΠ #»x 1: #»σ 1.

»

L 1[. . .Π #»x n: #»σ n.
»

L n[α] . . .], where
»

L 1, . . . ,
»

L n are
vectors of locks, ifξ appears only in contexts that are of the form

»

U n[(. . . (
»

U 1[ξ
#»
M1]) . . .)

#»
Mn], where

#»
M1, . . . ,

#»
Mn,

»

U 1, . . . ,
»

U n have the same arities of the corresponding vectors ofΠ’s and locks.

Definition 2.3 (Judgements in longβη-normal form).

1. A term T in a judgement is inβη-lnf if T is in normal form and every constant and variable
occurrence inT is fully applied and unlocked w.r.t. its classifier in the judgement.

2. A judgement is inβη-lnf if all terms appearing in it are inβη-lnf.

Theorem 2.8(Correspondence). Assume that all predicates inLLFP are well-behaved, according to
Definition 2.1 [19]. For any predicateP in LLFP , we define a corresponding predicate inCLLFP

with: P(Γ ⊢Σ M ⇐ σ) holds ifΓ ⊢Σ M ⇐ σ is derivable inCLLFP andP(Γ ⊢Σ M : σ) holds inLLFP .
Then, we have:

1. If Σ sig is in βη-lnf and isLLFP -derivable, thenΣ sig is CLLFP -derivable.

2. If ⊢Σ Γ is in βη-lnf and isLLFP-derivable, then⊢Σ Γ is CLLFP -derivable.

3. If Γ ⊢Σ K is in βη-lnf, and isLLFP -derivable, thenΓ ⊢Σ K is CLLFP-derivable.

4. If Γ ⊢Σ α : K is in βη-lnf and isLLFP -derivable, thenΓ ⊢Σ α ⇒ K is CLLFP-derivable.

5. If Γ ⊢Σ σ :type is in βη-lnf and isLLFP -derivable, thenΓ ⊢Σ σ type is CLLFP -derivable.

6. If Γ ⊢Σ A : α is in βη-lnf and isLLFP -derivable, thenΓ ⊢Σ A⇒ α is CLLFP-derivable.

7. If Γ ⊢Σ M : σ is in βη-lnf and isLLFP-derivable, thenΓ ⊢Σ M ⇐ σ is CLLFP-derivable.

Notice that, by the Correspondence Theorem above, any well-behaved predicateP in LLFP in the
sense of Definition 2.1 [19] induces a well-behaved predicate in CLLFP . Finally, notice thatnot all
LLFP judgements have a correspondingβη-lnf. Namely, the judgementx:L P

N,σ [ρ] ⊢Σ x : L P
N,σ [ρ] does

not admit anη-expanded normal form when the predicateP doesnot hold onN, as the rule(O·Unlock)
can be applied only when the predicate holds.

3 The Type SystemCLLFP?

The main idea behindCLLFP? (see Figures 6, 7, and 8)1 is to “empower” the framework ofCLLFP

by adding to the lock/unlock mechanism the possibility to receive from the external oracle awitness
satisfying suitable constraints. Thus, we can pave the way for gluing together different proof develop-
ment environments beyond proof irrelevance scenarios. In this context, the lock constructor behaves as
abinder. The new(O·Lock) rule is the following:

1For lack of space, we present in these figures only the categories and rules ofCLLFP? that differ from theirCLLFP

counterparts.

F. Honsell, L. Liquori, P. Maksimović, I. Scagnetto 11

σ ,τ,ρ ∈ F σ ::= α | Πx:σ .τ | L P
x,σ [ρ] Canonical Families

M,N ∈ O M ::= A | λx:σ .M | L P
x,σ [M] Canonical Objects

Figure 6:CLLFP? Syntax — changes w.r.t.CLLFP

Canonical Family rules

Γ,x:σ ⊢Σ ρ type

Γ ⊢Σ L P
x,σ [ρ] type

(F·Lock)

Γ,y : τ ⊢Σ L P
x,σ [ρ] type

Γ ⊢Σ A⇒ L P
x,σ [τ]

ρ [U P
x,σ [A]/y]F(τ)− = ρ ′

Γ ⊢Σ L P
x,σ [ρ ′]type

(F ·Nested·Unlock)

Atomic Object rules

Γ ⊢Σ A⇒ L P
x,σ [ρ] Γ ⊢Σ N ⇐ σ

P(Γ ⊢Σ N ⇐ σ) ρ [N/x]F(σ)− = ρ ′

Γ ⊢Σ U P
N,σ [A]⇒ ρ ′ (O·Unlock)

Canonical Object rules

Γx:σ ⊢Σ M ⇐ ρ
Γ ⊢Σ L P

x,σ [M]⇐ L P
x,σ [ρ]

(O·Lock)

Γ,y:τ ⊢Σ L P
x,σ [M]⇐ L P

x,σ [ρ] Γ ⊢Σ A⇒ L P
x,σ [τ]

ρ [U P
x,σ [A]/y]F(τ)− = ρ ′ M[U P

x,σ [A]/y]O
(τ)− = M′

Γ ⊢Σ L P
x,σ [M

′]⇐ L P
x,σ [ρ ′]

(O·Nested·Unlock)

Figure 7: TheCLLFP? Type System — changes w.r.t.CLLFP

Γ,x:σ ⊢Σ M ⇐ ρ
Γ ⊢Σ L P

x,σ [M]⇐ L P
x,σ [ρ]

where the variablex is a placeholder bound inM andρ , which will be replaced by the concrete term that
will be returned by the external oracle call. The intuitive meaning behind the(O·Lock) rule is, therefore,
that of recording the need to delegate to the external oraclethe inference of a suitable witness of a given
type. Indeed,M can be thought of as an “incomplete” term which needs to be completed by an inhabitant
of a given typeσ satisfying the constraintP. The actual term, possibly synthesized by the external tool,
will be “released” inCLLFP?, by the unlock constructor in the(O·Unlock) rule as follows:

Γ ⊢Σ A⇒ L P
x,σ [ρ] ρ [N/x]F(σ)− = ρ ′ Γ ⊢Σ N ⇐ σ P(Γ ⊢Σ N ⇐ σ)

Γ ⊢Σ U P
N,σ [A]⇒ ρ ′

The termU P
N,σ [M] intuitively means thatN is precisely the synthesized term satisfying the constraint

P(Γ ⊢Σ N ⇐ σ) that will replace inCLLFP? all the free occurrences ofx in ρ . This replacement is
executed in the (S ·O·Unlock·H) hereditary substitution rule (Figure 8).

Similarly to CLLFP , also inCLLFP? it is possible to “postpone” or delay the verification of an
external predicate in a lock, provided anoutermostlock is present. Whence, the synthesis of the actual
inhabitantN can be delayed, thanks to the(O·Nested·Unlock) rule:

Γ,y:τ ⊢Σ L P
x,σ [M]⇐ L P

x,σ [ρ] Γ ⊢Σ A⇒ L P
x,σ [τ] ρ [U P

x,σ [A]/y]F(τ)− = ρ ′ M[U P
x,σ [A]/y]O(τ)− = M′

Γ ⊢Σ L P
x,σ [M

′]⇐ L P
x,σ [ρ ′]

The Metatheory ofCLLFP? follows closely that ofCLLFP as far as decidability. We have no correspon-
dence theorem since we did not introduce a non-canonical variantCLLFP?. This could have been done
similarly toLLFP .

12 Gluing together Proof Environments:CLLFP & CLLFP?

Substitution in Canonical Families

σ1[M0/x0]
F
ρ0

= σ ′
1 σ2[M0/x0]

F
ρ0

= σ ′
2

L P
x,σ1

[σ2][M0/x0]
F
ρ0

= L P
x,σ ′

1
[σ ′

2]
(S ·F ·Lock)

Substitution in Atomic Objects

σ [M0/x0]
F
ρ0

= σ ′ M[M0/x0]
o
ρ0

= M′ M1[M′/x]o
(σ ′)− = M2 A[M0/x0]

o
ρ0

= L P
x,σ ′ [M1] : L P

x,σ ′ [ρ]

U P
M,σ [A][M0/x0]

o
ρ0

= M2 : ρ
(S ·O·Unlock·H)

Substitution in Canonical Objects

σ1[M0/x0]
F
ρ0

= σ ′
1 M1[M0/x0]

O
ρ0

= M′
1

L P
x,σ1

[M1][M0/x0]
O
ρ0

= L P
x,σ ′

1
[M′

1]
(S ·O·Lock)

Figure 8:CLLFP? Hereditary Substitution — changes w.r.t.CLLFP

4 Case studies

In this section, we discuss the encodings of a collection of logical systems which illustrate the expressive
power and the flexibility ofCLLFP andCLLFP?. We discuss Fitch-Prawitz Consistent Set theory,FPST
[30], some applications ofFPST to normalizingλ -calculus, a system of Light Linear Logic inCLLFP ,
and an the encoding of apartial function inCLLFP?.

The crucial step in encoding a logical system inCLLFP or CLLFP? is to define the predicates
involved in locks. Predicates defined on closed terms are usually unproblematic. Difficulties arise in
enforcing the properties of closure under hereditary substitution and closure under signature and context
extension, when predicates are defined on open terms. To be able to streamline the definition of well-
behaved predicates we introduce the following:

Definition 4.1. Given a signatureΣ let ΛΣ (respectivelyΛo
Σ) be the set ofLLFP terms (respectively

closedLLFP terms) definable using constants fromΣ. A term M has askeletonin ΛΣ if there exists a
termN[x1, . . . ,xn] ∈ ΛΣ, whose free variables (calledholesof the skeleton) are in{x1, . . . ,xn}, and there
exist termsM1, . . . ,Mn such thatM ≡ N[M1/x1, . . . ,Mn/xn].

4.1 Fitch Set Theoryà la Prawitz - FPST

In this section, we present the encoding of a formal system ofremarkable logical as well as historical
significance, namely the system of consistentNäıveSet Theory,FPST, introduced by Fitch [11]. This
system was first presented in Natural Deduction style by Prawitz [30]. As Naı̈ve Set Theory is inconsis-
tent, to prevent the derivation of inconsistencies from theunrestrictedabstractionrule, only normalizable
deductionsare allowed inFPST. Of course, this side-condition is extremely difficult to capture using
traditional tools.

In the present context, instead, we can put to use the machinery of CLLFP to provide an appropriate
encoding ofFPST where theglobal normalization constraint is enforcedlocally by checking the proof-
object. This encoding beautifully illustrates thebag of tricksthat CLLFP supports. Checking that a
proof term is normalizable would be the obvious predicate touse in the corresponding lock-type, but this
would not be a well-behaved predicate if free variables,i.e. assumptions, are not sterilized. To this end,
We introduce a distinction betweengenericjudgements, which cannot be directly utilized in arguments,
but which can be assumed, andapodicticjudgements, which are directly involved in proof rules. In order
to make use of generic judgements, one has to downgrade them to an apodictic one. This is achieved by

F. Honsell, L. Liquori, P. Maksimović, I. Scagnetto 13

a suitable coercion function.

Definition 4.2 (Fitch Prawitz Set Theory,FPST). For the lack of space, here we only give the crucial
rules for implication and forset-abstractionand the corresponding elimination rules of the full system
of Fitch (see [30]), as presented by Prawitz:

Γ,A⊢FPST B
Γ ⊢FPST A⊃ B

(⊃ I)
Γ ⊢FPST A Γ ⊢FPST A⊃ B

Γ ⊢FPST B
(⊃ E)

Γ ⊢FPST A[T/x]

Γ ⊢FPST T ∈ λx.A
(λ I)

Γ ⊢FPST T ∈ λx.A
Γ ⊢FPST A[T/x]

(λE)

The intended meaning of the termλx.A is the set{x | A}. In Fitch’s system,FPST, conjunction and
universal quantification are defined as usual, while negation is defined constructively, but it still allows
for the usual definitions of disjunction and existential quantification. What makesFPST consistentis
that not all standard deductions inFPST are legal. Standard deductions are calledquasi-deductionsin
FPST. A legal deductionin FPST is defined instead, as a quasi-deduction which isnormalizablein the
standard sense of Natural Deduction, namely it can be transformed in a derivation where all elimination
rules occur before introductions.

Definition 4.3 (LLFP signatureΣFPST for Fitch Prawitz Set Theory). The following constants are intro-
duced:

o : Type ι : Type

T : o -> Type δ : ΠA:o. (V(A) -> T(A))

V : o -> Type λ intro : ΠA:ι ->o.Πx:ι.T(A x) -> T(ε x (lam A))

lam : (ι -> o)-> ι λ elim : ΠA:ι ->o.Πx:ι.T(ε x (lam A))->T(A x)

ε : ι -> ι -> o ⊃ intro: ΠA,B:o.(V(A) -> T(B)) -> (T(A ⊃B))
⊃ : o -> o -> o ⊃ elim : ΠA,B:o.Πx:T(A).Πy:T(A⊃B) -> L Fitch

〈x,y〉,T(A)×T(A⊃B)[T(B)]

whereo is the type of propositions,⊃ and the “membership” predicateε are the syntactic constructors
for propositions,lam is the “abstraction” operator for building “sets”,T is the apodictic judgement,V is
the generic judgement,δ is the coercion function, and〈x,y〉 denotes the encoding of pairs, whose type
is denoted byσ×τ, e.g. λu:σ → τ → ρ . u x y : (σ → τ → ρ)→ ρ . The predicate in the lock is defined
as follows:

Fitch(Γ ⊢ΣFPST
〈x,y〉 ⇐ T(A)×T(A⊃ B))

it holds iff x andy have skeletons inΛΣFPST
, all the holes of which have either typeo or are guarded by

a δ , and hence have typeV(A), and, moreover, the proof derived by combining the skeletons of x andy
is normalizable in the natural sense. Clearly, this predicate is only semi-decidable.

For lack of space, we do not spell out the rules concerning theother logical operators, because
they are all straightforward provided we use only the apodictic judgementT(·), but a few remarks are
mandatory. The notion ofnormalizable proofis the standard notion used in natural deduction. The
predicateFitch is well-behaved because it considers terms only up-to holesin the skeleton, which can
have typeo or are generic judgements. Adequacy for this signature can be achieved in the format of [19]:

Theorem 4.1(Adequacy for Fitch-Prawitz Naive Set Theory). If A1, . . . ,An are the atomic formulas oc-
curring in B1, . . . ,Bm,A, then B1 . . .Bm⊢FPST A iff there exists a normalizableM such thatA1:o, . . . ,An:o,
x1:V(B1), . . . ,xm:V(Bm) ⊢ΣFPST

M⇐ T(A) (whereA, andBi represent the encodings of, respectively, A and
Bi in CLLFP , for 1≤ i ≤ m).

14 Gluing together Proof Environments:CLLFP & CLLFP?

4.2 A Type System for strongly normalizingλ -terms

Fitch-Prawitz Set Theory,FPST, is a rather intriguing, albeit unexplored, set theoretic system. The
normalizability criterion for accepting a quasi-deduction prevents the derivation of contradictions and
hence makes the system consistent. Of course, some intuitive rules are not derivable. For instancemodus
ponensdoes not hold and ift ∈ λx.A then we do not have necessarily thatA[t/x] holds. Similarly, the
transitivity property does not hold. HoweverFPST is a very expressive type system which “encom-
passes” many kinds of quantification, provided normalization is preserved and Fitch has shown, seee.g.
[11], that a large portion of ordinary Mathematics can be carried out inFPST.

In this subsection, we sketch how to useFPST to define a type system which can typeprecisely all
the strongly normalizingλ -terms. Namely, we show that inFPST there exists a setΛ to which belong
only the strongly normalizingλ -terms. We speak of atype systembecause the proof inFPST that a term
belongs toΛ is syntax directed. First we need to be able to define recursive objects inFPST. We adapt,
to FPST, Prop. 4, Appendix A.1 of [13], originally given by J-Y. Girard for Light Linear Logic, as:
Theorem 4.2(Fixpoint). Let A[P,x1 . . . ,xn] be a formula ofFPST with an n-ary predicate variable P.
Then, there exists a formula B ofFPST, such that there exists a normalizable deduction inFPST between
A[λx1 . . . ,xn.B[x1, . . . ,xn],x1 . . . ,xn] and B, and viceversa.

Proof. Let equality be Leibniz equality, then, assumingn= 1, defineΛ≡ λz.∃x.∃y.z= 〈x,y〉&A[(λw.〈w,
y〉 ∈ y),x]. Then〈x,Λ〉 ∈ Λ is equivalent, in the sense ofFPST, to A[(λw.〈w,Λ〉 ∈ Λ),x].

Using the Fixpoint Theorem we define first natural numbers, then a concrete representation of the
terms ofλ -calculus, sayΛ0. Using again the Fixed Point Theorem, we define a (representation of) the
substitution function over terms inΛ0 and finally the setΛ, such thatx ∈ Λ is equivalent inFPST to
x∈ Λ0&∀y.y∈ Λ0 ⊂ app(x,y) ∈ Λ. Here,app(x,y) denotes the concrete representation of “applying”x
to y. One can derive inFPST that (a representation of) aλ -term, sayM, belongs toΛ, only if there is
a normalizable derivation ofM ∈ Λ. But then it is straightforward to check that only normalizing terms
can be typed inFPST with Λ, i.e. belong toΛ. There is indeed a natural reflection of the normalizability
of theFPST derivation of the typing judgementM ∈ Λ, and the fact that the term represented byM is
indeed normalizable!

4.3 A Normalizing call-by-valueλ -calculus

In this section we sketch how to express inCLLFP a call-by-valueλ -calculus whereβ -reductions fire
only if the result isnormalizing.
Definition 4.4 (Normalizing call-by-valueλ -calculus,ΣλN).
o : Type Eq : o -> o -> Type app : o -> o -> o

v : Type var : v -> o lam : (v -> o) -> o

c beta : ΠM:o->o,N:o.L PN

〈M,N〉,(o->o)×o[Eq (app (lam λx:v.M(var x)) N) (M N)]

where the predicatePN holds onΓ ⊢ΣλN
〈M,N〉 ⇐ (o->o)×o if both M andN have skeletons inΛΣλN

whose holes are guarded by avar and, moreover,M N “normalizes”, in the intuitive sense, outside terms
guarded by avar.

4.4 Elementary Affine Logic

In this section we give ashallowencoding ofElementary Affine Logicas presented in [2]. This example
will exemplify how locks can be used to deal with global syntactic constraints as in thepromotion rule
of Elementary Affine Logic.

F. Honsell, L. Liquori, P. Maksimović, I. Scagnetto 15

Definition 4.5 (Elementary Affine Logic [2]). Elementary Affine Logic can be specified by the following
rules:

A⊢EAL A
(Var)

Γ ⊢EAL B
Γ,A⊢EAL B

(Weak)
Γ,A⊢EAL B

Γ ⊢EAL A⊸ B
(Abst)

Γ ⊢EAL A ∆ ⊢EAL A⊸ B
Γ,∆ ⊢EAL B

(Appl)

Γ ⊢EAL!A ∆, !A, . . . , !A⊢EAL B
Γ,∆ ⊢EAL B

(Contr)
A1, . . . ,An ⊢EAL A Γ1 ⊢EAL!A1 . . . Γn ⊢EAL!An

Γ1 . . .Γn ⊢EAL!A
(Prom)

Definition 4.6 (LLFP signatureΣEAL for Elementary Affine Logic).
o : Type T : o -> Type V : o -> Type ⊸ : o -> o -> o ! : o -> o

c appl : ΠA,B :o. T(A) -> T(A ⊸ B)-> T(B) c val : ΠA:o. V(A) -> T(!A)

c abstr : ΠA,B :o. Πx:(T(A) -> T(B)) -> L Light
x,T(A)->T(B) [T(A ⊸ B)]

c promV 1 : ΠA,B :o. Πx:(T(A ⊸ B)) -> L Closed
x,T(A⊸ B)[T(!A) -> V(B)]

c promV 2 : ΠA,B :o. Πx:(V(A ⊸ B)) -> L Closed
x,V(A⊸ B)[T(!A) -> V(B)]

whereo is the type of propositions,⊸ and ! are the obvious syntactic constructors,T is the basic judge-
ment, andV(·) is an auxiliary judgement. The predicates involved in the locks are defined as follows:

• Light (Γ ⊢ΣEAL x⇐ T(A)→ T(B)) holds iff if A is not of the shape !A then the bound variable ofx
occurs at most once in the normal form ofx.

• Closed (Γ ⊢ΣEAL x⇐ T(A)) holds iff the skeleton of x contains only free variables of typeo, i.e.no
variables of typeT(B), for anyB : o.

A few remarks are mandatory. The promotion rule in [2] is in effect afamily of natural deduction
rules with a growing number of assumptions. Our encoding achieves this via the auxiliary judgement
V(·), the effect of which is self-explanatory. Adequacy for thissignature can be achieved only in the
format of [19], namely:
Theorem 4.3(Adequacy for Elementary Affine Logic). if A1, . . . ,An are the atomic formulas occurring
in B1, . . . ,Bm,A, then B1 . . .Bm ⊢EAL A iff there existsM andA1:o, . . . ,An:o,x1: T(B1), . . . ,xm:T(Bm) ⊢ΣEAL

M⇐ T(A) (whereA, andBi represent the encodings of, respectively, A and Bi in CLLFP , for 1≤ i ≤ m)
and all variablesx1 . . .xm occurring more than once inM have type of the shapeT(Bi)≡ T(!Ci) for some
suitable formulaCi.
The check on the context of the Adequacy Theorem isexternalto the systemLLFP , but this is in the
nature of results which relateinternal andexternalconcepts. For example, the very concept ofLLFP

context, which appears in any adequacy result, is external to LLFP . Of course, this check is internalized
if the term is closed.

4.5 Square roots of natural numbers inCLLFP?

It is well-known that logical frameworks based on Constructive Type Theory do not permit definitions
of non-terminating functions (i.e., all the functions one can encode in such frameworks are total). One
interesting example ofCLLFP? system is the possibility of reasoning about partial functions by dele-
gating their computation to external oracles, and getting back their possible outputs, via the lock-unlock
mechanism ofCLLFP?.

For instance, we can encode natural numbers and compute their square roots by means of the follow-
ing signature (〈x,y〉 denotes the encoding of pairs, whose type is denoted byσ × τ, andfst andsnd are
the first and second projections, respectively):
nat: type O: nat S: nat->nat plus : nat->nat->nat minus : nat->nat->nat

mult : nat->nat->nat sqroot: nat->nat eval : nat->nat->type
sqrt : Πx:nat.L SQRT

y,nat×σ [(eval (sqroot x) (fst y))]

16 Gluing together Proof Environments:CLLFP & CLLFP?

whereeval represents the usual evaluation predicate, the variabley is a pair and

σ ≡ (eval (plus (minus x (mult z z)) (minus (mult z z) x) O))

andSQRT(Γ ⊢Σ y⇐ nat×σ) holds if and only if the first projection ofy is the minimum numberN such
that(x _−N∗N)+ (N∗N _−x) = 0, where+ and * are represented byplus andmult, while _− (represented
by minus in our signature) is defined as follows:

x _−y
∆
=

{
x−y if x≥ y

0 otherwise
Thus, the specification ofsqroot is not explicit inCLLFP?, since it is implicit in the definition ofSQRT.

5 Related work

Building a universal framework with the aim of “gluing” different tools and formalisms together is a long
standing goal that has been extensively explored in the inspiring work on Logical Frameworks by [4, 27,
35, 31, 7, 5, 26, 28, 29, 17]. Moreover, the appealing monadicstructure and properties of the lock/unlock
mechanism go back to Moggi’s notion of computational monads[25]. Indeed, our system can be seen
as a generalization to a family of dependentlax operators of Moggi’spartial λ -calculus [24] and of
the work carried out in [8, 23] (which is also the original source of the term “lax”). A correspondence
between lax modalities and monads in functional programming was pointed out in [1, 12]. On the other
hand, although the connection between constraints and monads in logic programming was considered
in the past,e.g., in [26, 10, 9], to our knowledge, our systems are the first attempt to establish a clear
correspondence between side conditions and monads in ahigher-order dependent-type theoryand in
logical frameworks. Of course, there are a lot of interesting points of contact with other systems in the
literature which should be explored. For instance, in [26],the authors introduce a contextual modal logic,
where the notion of context is rendered by means of monadic constructs. We only point out that, as we
did in our system, they could have also simplified their system by doing away with thelet construct in
favor of a deeper substitution. Schröder-Heister has discussed in a number of papers, seee.g. [33, 32],
various restrictions and side conditions on rules and on thenature of assumptions that one can add to
logical systems to prevent the arising of paradoxes. There are some potential connections between his
work and ours. It would be interesting to compare his requirements on side conditions being “closed
under substitution” to our notion ofwell-behavedpredicate. Similarly, there are commonalities between
his distinction betweenspecificand unspecificvariables, and our treatment of free variables in well-
behaved predicates. LFSC, presented in [34], is more reminiscent of our approach as “it extendsLF
to allow side conditions to be expressed using a simple first-order functional programming language”.
Indeed, the author factors the verifications of side-conditions out of the main proof. The task is delegated
to the type checker, which runs the code associated with the side-condition, verifying that it yields the
expected output. The proposed machinery is focused on providing improvements for SMT solvers.

References

[1] N. Alechina, M. Mendler, V. De Paiva, E. Ritter. Categorical and Kripke semantics for constructive s4 modal logic. InComputer Science
Logic, pp. 292–307. Springer, 2001,doi:10.1007/3-540-44802-0_21 .

[2] P. Baillot, P. Coppola, U. Dal Lago. Light logics and optimal reduction: Completeness and complexity. InLICS, pp. 421–430. IEEE
Computer Society, 2007,doi:10.1016/j.ic.2010.10.002 .

[3] H.P. Barendregt, E. Barendsen. Autarkic computations in formal proofs. Journal of Automated Reasoning, 28:321–336, 2002,
doi:10.1.1.39.3551.

[4] G. Barthe, H. Cirstea, C. Kirchner, L. Liquori. Pure Pattern Type Systems. InPOPL’03, pp. 250–261, ACM,doi:10.1.1.298.4555.

F. Honsell, L. Liquori, P. Maksimović, I. Scagnetto 17

[5] M. Boespflug, Q. Carbonneaux, O. Hermant. TheλΠ-calculus modulo as a universal proof language. InPxTP 2012, v. 878, pp.28–43,
2012,doi:10.1.1.416.1602.

[6] R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, J. Van Tassel. Experience with embedding hardware description languages
in HOL. In TPCD, pp. 129–156. North-Holland, 1992,doi:10.1.1.111.260.

[7] D. Cousineau, G. Dowek. Embedding pure type systems in the lambda-pi-calculus modulo. InTLCA, v. 4583 ofLNCS, pp. 102–117.
Springer-Verlag, 2007,doi:10.1.1.102.4096 .

[8] M. Fairtlough, M. Mendler. Propositional lax logic.Information and Computation, 137(1):1–33, 1997,doi:10.1.1.22.5812.

[9] M. Fairtlough, M. Mendler, X. Cheng. Abstraction and refinement in higher order logic. InTheorem Proving in Higher Order Logics,
pp. 201–216. Springer, 2001,doi:10.1.1.29.3515.

[10] M Fairtlough, M. Mendler, M. Walton. First-order lax logic as a framework for constraint logic programming. Technical report, 1997,
doi:10.1.1.36.1549.

[11] F. B. Fitch.Symbolic logic - An Introduction. New York, 1952, ASIN: B0007DLS2O.

[12] D. Garg, M. C. Tschantz. From indexed lax logic to intuitionistic logic. Tech. rep. CMU, 2008,doi:10.1.1.295.8643.

[13] J.-Y. Girard. Light linear logic.Information and Computation, 143(2):175–204, 1998,doi:10.1.1.134.4420 .

[14] R. Harper, D. Licata. Mechanizing metatheory in a logical framework.JFP, 17:613–673, 2007,doi:10.1017/S0956796807006430 .

[15] D. Hirschkoff. Bisimulation proofs for theπ-calculus in the Calculus of Constructions. InTPHOL’97, n. 1275 in LNCS. Springer, 1997,
doi:10.1007/BFb0028392 .

[16] F. Honsell. 25 years of formal proof cultures: Some problems, some philosophy, bright future. InLFMTP’13, pp. 37–42, ACM, 2013,
doi:10.1145/2503887.2503896 .

[17] F. Honsell, M. Lenisa, L. Liquori. A Framework for Defining Logical Frameworks.Volume in Honor of G. Plotkin, ENTCS, 172:399–
436, 2007,doi:10.1016/j.entcs.2007.02.014 .

[18] F. Honsell, M. Lenisa, L. Liquori, P. Maksimovic, I. Scagnetto. LFP : a logical framework with external predicates. InLFMTP, pp.
13–22. ACM, 2012,doi:10.1145/2364406.2364409 .

[19] F. Honsell, M. Lenisa, L. Liquori, P. Maksimovic, I. Scagnetto. An open logical framework. Accepted for publication in Journal of
Logic and Computation, doi:10.1093/logcom/ext028 .

[20] F. Honsell, L. Liquori, P. Maksimovic, I. Scagnetto.LLFP : A Logical Framework for modeling External Evidence, Side Conditions,
and Proof Irrelevance using Monads. Available athttp://www.dimi.uniud.it/scagnett/LLFP_LMCS.pdf .

[21] F. Honsell, L. Liquori, I. Scagnetto.LaxF: Side Conditions and External Evidence as Monads. InMFCS 2014, Part I, v. 8634 ofLNCS,
pp. 327–339, Budapest, Hungary, August 2014. Springer,doi:10.1007/978-3-662-44522-8_28 .

[22] F. Honsell, M. Miculan, I. Scagnetto.π-calculus in (Co)Inductive Type Theories.Theoretical Computer Science, 253(2):239–285, 2001,
doi:10.1016/S0304-3975(00)00095-5 .

[23] M. Mendler. Constrained proofs: A logic for dealing with behavioral constraints in formal hardware verification. In Designing Correct
Circuits, pp. 1–28. Springer-Verlag, 1991,doi:10.1007/978-1-4471-3544-9_1 .

[24] E. Moggi. The partial lambda calculus. PhD thesis, University of Edinburgh, 1988,doi:10.1.1.53.8462.

[25] E. Moggi. Computational lambda-calculus and monads. In LICS 1989, pp. 14–23. IEEE Press,doi:10.1.1.26.2787.

[26] A. Nanevski, F. Pfenning, B. Pientka. Contextual ModalType Theory.ACM TOCL, 9(3), 2008,doi:10.1145/1352582.1352591 .

[27] F. Pfenning, C. Schürmann. System description: Twelf– a meta-logical framework for deductive systems. InCADE, v. 1632 ofLNCS,
pp. 202–206. Springer-Verlag, 1999,doi:10.1007/3-540-48660-7_14 .

[28] B. Pientka, J. Dunfield. Programming with proofs and explicit contexts. In PPDP’08, pp. 163–173, ACM,
doi:10.1145/1389449.1389469 .

[29] B. Pientka, J. Dunfield. Beluga: A framework for programming and reasoning with deductive systems (system description). In IJCAR
2010, v. 6173 ofLNCS, pp. 15–21. Springer-Verlag,doi:10.1007/978-3-642-14203-1_2 .

[30] D. Prawitz.Natural Deduction. A Proof Theoretical Study. Almqvist Wiksell, Stockholm, 1965, ISBN: 978-0486446554.

[31] A. Schack-Nielsen, C. Schürmann. Celf–A logical framework for deductive and concurrent systems (System description). in Automated
Reasoning, pp. 320–326, Springer, 2008,doi:10.1007/978-3-540-71070-7_28 .

[32] P. Schroeder-Heister. Paradoxes and Structural Rules. Insolubles and consequences : essays in honor of Stephen Read, pp. 203–211.
College Publications, London, 2012, ISBN 978-1-84890-086-8.

[33] P. Schroeder-Heister. Proof-theoretic semantics, self-contradiction, and the format of deductive reasoning.Topoi, 31(1):77–85, 2012,
doi:10.1007/s11245-012-9119-x .

[34] A. Stump. Proof checking technology for satisfiabilitymodulo theories. InLFMTP 2008, v. 228, pp. 121–133, 2009,
doi:10.1.1.219.1459.

[35] K. Watkins, I. Cervesato, F. Pfenning, D. Walker. A Concurrent Logical Framework I: Judgments and Properties. Tech. Rep. CMU-CS-
02-101, CMU, 2002,doi:10.1.1.14.5484.

I. Cervesato and K. Chaudhuri (Eds.): Tenth International Workshop
on Logical Frameworks and Meta-Languages: Theory and Practice
EPTCS 185, 2015, pp. 18–32, doi:10.4204/EPTCS.185.2

c© A. Felty, A. Momigliano & B. Pientka
This work is licensed under the
Creative Commons Attribution License.

An Open Challenge Problem Repository for Systems
Supporting Binders

Amy Felty
School of Electrical Engineering and

Computer Science
University of Ottawa

Ottawa, Canada

afelty@eecs.uottawa.ca

Alberto Momigliano
Dipartimento di Informatica

Università degli Studi di Milano
Milano, Italy

momigliano@di.unimi.it

Brigitte Pientka
School of Computer Science

McGill University
Montreal, Canada

bpientka@cs.mcgill.ca

A variety of logical frameworks support the use of higher-order abstract syntax in representing formal
systems; however, each system has its own set of benchmarks.Even worse, general proof assistants
that provide special libraries for dealing with binders offer a very limited evaluation of such libraries,
and the examples given often do not exercise and stress-testkey aspects that arise in the presence of
binders. In this paper we design an open repositoryORBI (Open challenge problem Repository for
systems supporting reasoning with BInders). We believe the field of reasoning about languages with
binders has matured, and a common set of benchmarks providesan important basis for evaluation
and qualitative comparison of different systems and libraries that support binders, and it will help to
advance the field.

1 Introduction

A variety of logical frameworks support the use of higher-order abstract syntax (HOAS) in representing
formal systems; however, each system has its own set of benchmarks, often encoding the same object
logics with minor differences. Even worse, general proof assistants that provide special libraries for
dealing with binders often offer only a very limited evaluation of such libraries, and the examples given
often do not exercise and stress-test key aspects that arisein the presence of binders.

The POPLMARK challenge [2] was an important milestone in surveying the state of the art in mech-
anizing the meta-theory of programming languages. We ourselves proposed several specific bench-
marks [8] that arecrafted to highlight the differences between the designs of variousmeta-languages
with respect to reasoning with and within a context of assumptions, and we compared their implemen-
tation in four systems: the logical framework Twelf [23], the dependently-typed functional language
Beluga [17, 18], the two-level Hybrid system [6, 15] as implemented on top of Coq and Isabelle/HOL,
and the Abella system [10]. Finally, several systems that support reasoning with binders, in particular
systems concentrating on modeling binders using HOAS, alsoprovide a large collection of examples and
case studies. For example, Twelf’s wiki (http://twelf.org/wiki/Case_studies), Abella’s library
(http://abella-prover.org/examples), Beluga’s distribution, and the Coq implementation of Hy-
brid (http://www.site.uottawa.ca/~afelty/HybridCoq/) contain sets of examples that highlight
the many issues surrounding binders.

As the field matures, we believe it is important to be able to systematically and qualitatively evaluate
approaches that support reasoning with binders. Having benchmarks is a first step in this direction.
In this paper, we propose a common infrastructure for representing challenge problems and a central,
Open challenge problem Repository for systems supporting reasoning with BInders (ORBI) for sharing
benchmark problems based on the notation we have developed.

A. Felty, A. Momigliano & B. Pientka 19

ORBI is designed to be a human-readable, easily machine-parsable, uniform, yet flexible and exten-
sible language for writing specifications of formal systemsincluding grammar, inference rules, contexts
and theorems. The language directly upholds HOAS representations and is oriented to support the mech-
anization of benchmark problems in Twelf, Beluga, Abella, and Hybrid, without hopefully precluding
other existing or future HOAS systems. At the same time, we hope it also is amenable to translations to
systems using other representation techniques such as nominal ones.

We structure the language in two parts:

1. the problem description, which includes the grammar of the object language syntax, inference
rules, context schemas, and context relations

2. the logic language, which includes syntax for expressingtheorems and directives to ORBI2X1

tools.

We begin in Sect. 2 with a running example. We consider the untyped lambda-calculus as an object
logic (OL), and present the syntax, some judgments, and sample theorems. In Sect. 3, we present ORBI
by giving its grammar and explaining how it is used to encode our running example; Sect. 3.1 and
Sect. 3.2 present the two parts of this specification as discussed above. We discuss related work in
Sect. 4.

We consider the notation that we present here as a first attempt at defining ORBI (Version 0.1), where
the goal is to cover the benchmarks considered in [8]. As new benchmarks are added, we are well aware
that we will need to improve the syntax and increase the expressive power—we discuss limitations and
some possible extensions in Sect. 5.

2 A Running Example

The first question that we face when defining an OL is how to describe well-formed objects. Consider
the untyped lambda-calculus, defined by the following grammar:

M ::= x | lamx.M | app M1 M2.

To capture additional information that is often useful in proofs, such as when a given term isclosed,
it is customary to give inference rules in natural deductionstyle for well-formed terms using hypothet-
ical and parametric judgments. However, it is often convenient to present hypothetical judgments in a
localizedform, reducing some of the ambiguity of the two-dimensionalnatural deduction notation, and
providing more structure. We therefore introduce anexplicit context for bookkeeping, since when estab-
lishing properties about a given system, it allows us to consider the variable case(s) separately and to state
clearly when considering closed objects, i.e., an object inthe empty context. More importantly, while
structural properties of contexts are implicitly present in the natural deduction presentation of inference
rules (where assumptions are managed informally), the explicit context presentation makes them more
apparent and highlights their use in reasoning about contexts.

is tm x∈ Γ
Γ ⊢ is tm x

tmv
Γ, is tm x⊢ is tm M

Γ ⊢ is tm (lamx.M)
tml

Γ ⊢ is tm M1 Γ ⊢ is tm M2

Γ ⊢ is tm (app M1 M2)
tma

1Following TPTP’s nomenclature [25], we call “ORBI2X” any tool taking an ORBI specification as input; for example,
the translator for Hybrid described in [13] turns syntax, inference rules, and context definitions of ORBI into input to the Coq
version of Hybrid, and it is designed so that it can be adaptedfairly directly to output Abella scripts.

20 ORBI

Traditionally, a context of assumptions is characterized as a sequence of formulasA1,A2, . . . ,An

listing its elements separated by commas [12, 19]. In [7], weargue that this is not expressive enough
to capture the structure present in contexts, especially when mechanizing object logics, and we define
contextschemasto introduce the required extra structure:

Atom A
Block of declarations D ::= A | D;A

Context Γ ::= · | Γ,D
Schema S ::= Ds | Ds+S

A context is a sequence of declarationsD where a declaration is a block of individual atomic assumptions
separated by ’;’.2 The ’;’ binds tighter than ’,’. We treat contexts as ordered, i.e., later assumptions in the
context may depend on earlier ones, but not vice versa—this in contrast to viewing contexts as multi-sets.
Just as types classify terms, aschemawill classify meaningful structured sequences. A schema consists
of declarationsDs, where we use the subscripts to indicate that the declaration occurring in a concrete
context having schemaS may be aninstanceof Ds. We use+ to denote the alternatives in a context
schema. For well-formed terms, contexts have a simple structure where each block contains a single
atom, expressed as the following schema declaration:

Sx := is tm x.

We writeΦx to represent a contextsatisfyingschemaSx (and similarly for other context schemas appear-
ing in this paper). Informally, this means thatΦx has the formis tm x1, . . . , is tm xn wheren ≥ 0 and
x1, . . . ,xn are distinct variables. (See [7] for a more formal account.)

For our running example, we consider two more simple judgments. The first isalgorithmic equality
for the untyped lambda-calculus, written(aeq M N). We say that two terms are algorithmically equal
provided they have the same structure with respect to the constructors.

aeq x x∈ Γ
Γ ⊢ aeq x x

aev
Γ, is tm x;aeq x x⊢ aeq M N
Γ ⊢ aeq (lamx.M) (lamx.N)

ael
Γ ⊢ aeq M1 N1 Γ ⊢ aeq M2 N2

Γ ⊢ aeq (app M1 M2) (app N1 N2)
aea

The second isdeclarative equalitywritten (deq M N), which includes versions of the above three rules
calleddev, del , anddea, whereaeq is replaced bydeq everywhere, plus reflexivity, symmetry and tran-
sitivity shown below.3

Γ ⊢ deq M M
der

Γ ⊢ deq N M
Γ ⊢ deq M N

des
Γ ⊢ deq M L Γ ⊢ deq L N

Γ ⊢ deq M N
det

These judgments give rise to the following schema declarations:

Sxa := is tm x;aeq x x
Sxd := is tm x;deq x x
Sda := is tm x;deq x x;aeq x x

2This is an oversimplification, since there are well-known specifications where contexts have more structure, see the solution
to the POPLMARK challenge in [16] and the examples in [26]. In fact, those arealready legal ORBI specs.

3We acknowledge that this definition of declarative equalityhas a degree of redundancy: the assumptiondeq x x in rule del
is not needed, since ruleder plays the variable role. However, this formulation exhibits issues, such ascontext subsumption,
that would otherwise require more complex benchmarks.

A. Felty, A. Momigliano & B. Pientka 21

The first two come directly from theael anddel rules where declaration blocks come in pairs. The third
combines the two, and is used below in stating one of the example theorems.

When stating properties, we often need to relate two judgments to each other, where each one has
its own context. For example, we may want to prove statementssuch as “ifΦx ⊢ J1 thenΦxa ⊢ J2.” The
proofs in [8] use two approaches.4 In the first, the statement is reinterpreted in thesmallestcontext that
collects all relevant assumptions; we call this thegeneralized contextapproach (G). The above statement
becomes “ifΦxa⊢ J1 thenΦxa⊢ J2.” As an example theorem, we consider the completeness of declarative
equality with respect to algorithmic equality, of which we only show the interesting left-to-right direction.

Theorem 2.1 (Completeness, G Version)

Admissibility of Reflexivity If Φxa ⊢ is tm M thenΦxa ⊢ aeq M M.

Admissibility of Symmetry If Φxa ⊢ aeq M N thenΦxa ⊢ aeq N M.

Admissibility of Transitivity If Φxa ⊢ aeq M N andΦxa ⊢ aeq N L thenΦxa ⊢ aeq M L.

Main Theorem If Φda ⊢ deq M N thenΦda ⊢ aeq M N.

In the second approach, we state how two (or more) contexts are related via context relations. For
example, the following relation captures the fact thatis tm x will occur in Φx in sync with an assumption
block containingis tm x;aeq x x in Φxa.

. ∼ .
Φx ∼ Φxa

Φx, is tm x∼ Φxa, is tm x;aeq x x

Similarly, we can defineΦxa ∼ Φxd.

. ∼ .

Φxa ∼ Φxd

Φxa, is tm x;aeq x x∼ Φxd, is tm x;deq x x

We call this thecontext relationsapproach (R). The theorems are then typically stated as: “ifΦx ⊢ J1 and
Φx ∼ Φxa thenΦxa⊢ J2.” We can then revisit the completeness theorem for algorithmic equality together
with the necessary lemmas as follows.

Theorem 2.2 (Completeness, R Version)

Admissibility of Reflexivity AssumeΦx ∼ Φxa. If Φx ⊢ is tm M thenΦxa ⊢ aeq M M.

Admissibility of Symmetry If Φxa ⊢ aeq M N thenΦxa ⊢ aeq N M.

Admissibility of Transitivity If Φxa ⊢ aeq M N andΦxa ⊢ aeq N L thenΦxa ⊢ aeq M L.

Main Theorem AssumeΦxa ∼ Φxd. If Φxd ⊢ deq M N thenΦxa ⊢ aeq M N.

3 ORBI

ORBI aims to provide a common framework for systems that support reasoning with binders. Cur-
rently, our design is geared towards systems supporting HOAS, where there are (currently) two main
approaches. On one side of the spectrum we have systems that implement various dependently-typed

4In proofs on paper, the differences between the two approaches usually do not appear; they are present in the details that
are left implicit, but must be made explicit when mechanizing proofs. For example, on-paper versions of the admissibility of
reflexivity that make these distinctions explicit appear in[7] as proofs of Theorems 7 and 8.

22 ORBI

calculi. Such systems include Twelf, Beluga, and Delphin [20]. All these systems also provide, to var-
ious degrees, built-in support for reasoning modulo structural properties of a context of assumptions.
These systems support inductive reasoning over terms as well as rules. Often it is more elegant in these
systems to state theorems using the G-version [8].

On the other side there are systems based on a proof-theoretic foundation, which typically follow a
two-level approach: they implement a specification logic (SL) inside a higher-order logic or type the-
ory. Hypothetical judgments of object languages are modeled using implication in the SL and parametric
judgments are handled via (generic) universal quantification. Contexts are commonly represented explic-
itly as lists or sets in the SL, and structural properties areestablished separately as lemmas. For example
substituting for an assumption is justified by appealing to the cut-admissibility lemma of the SL. These
lemmas are not directly and intrinsically supported through the SL, but may be integrated into a system’s
automated proving procedures, usually via tactics. Induction is usually only supported on derivations,
but not on terms. Systems following this philosophy includeHybrid and Abella. Often these systems are
better suited to proving R-versions of theorems.

The desire for ORBI to cater to both type and proof theoretic frameworks requires an almost impossi-
ble balancing act between the two views. For example, contexts are first-class and part of the specification
language in Beluga; in Twelf, schemas for contexts are part of the specification language, which is an
extension of LF, but users cannot explicitly quantify over contexts and manipulate them as first-class ob-
jects; in Abella and Hybrid, contexts are (pre)defined usinginductive definitions on the reasoning level.
We will describe next our common infrastructure design, directives, and guidelines that allow us to cater
to existing systems supporting HOAS.

3.1 Problem Description in ORBI

ORBI’s language for defining the grammar of an object language together with inference rules is based
on the logical framework LF; pragmatically, we have adoptedthe concrete syntax of LF specifications
in Beluga, which is almost identical to Twelf’s. The advantage is that specifications can be directly
parsed and more importantly type checked by Beluga, therebyeliminating many syntactically correct but
meaningless expressions.

Object languages are written according to the EBNF grammar in Fig. 1, which uses certain standard
conventions:{a} means repeat a production zero or more times, and comments inthe grammar are
enclosed between(* and*). The tokenid refers to identifiers starting with a lower or upper case letter.
These grammar rules are basically the standard ones used both in Twelf and Beluga and we do not discuss
them in detail here. We only note that while the presented grammar permits general dependent types up
to level n, ORBI specifications will only use level 0 and level 1. Intuitively, specifications at level 0
define the syntax of a given object language, while specifications at level 1 (i.e., type families that are
indexed by terms of level 0) describe the judgments and rulesfor a given OL. We exemplify the grammar
relative to the example of algorithmic vs. declarative equality. For more example specifications, we refer
the reader to our survey paper [8] or tohttps://github.com/pientka/ORBI.5

Syntax An ORBI file starts in theSyntax section with the declaration of the constants used to encode
the syntax of the OL in question, here untyped lambda-terms,which are introduced with the declarations:

5The observant reader will have noticed that ORBI’s concretesyntax for schemas differs from the one that we have presented
in Sect. 2, in so much that blocks are separated by commas and not by semi-colons. This is forced on us by our choice to re-use
Beluga’s parsing and checking tools.

A. Felty, A. Momigliano & B. Pientka 23

sig ::= {decl (* declaration *)

| s_decl} (* schema declaration *)

decl ::= id ":" tp "." (* constant declaration *)

| id ":" kind "." (* type declaration *)

op_arrow ::= "->" | "<-" (* A <- B same as B -> A *)

kind ::= type

| tp op_arrow kind (* A -> K *)

| "{" id ":" tp "}" kind (* Pi x:A.K *)

tp ::= id {term} (* a M1 ... M2 *)

| tp op_arrow tp

| "{" id ":" tp "}" tp (* Pi x:A.B *)

term ::= id (* constants, variables *)

| "\" id "." term (* lambda x. M *)

| term term (* M N *)

s_decl ::= schema s_id "=" alt_blk ";"

s_id ::= id

alt_blk ::= blk {"+" blk}

blk ::= block id ":" tp {"," id ":" tp}

Figure 1: ORBI grammar for syntax, judgments, inference rules, and context schemas

%% Syntax

tm: type.

app: tm -> tm -> tm.

lam: (tm -> tm) -> tm.

The declaration introducing typetm along with those of the constructorsapp andlam fully specify the
syntax of OL terms. We represent binders in the OL using binders in the HOAS meta-language. Hence
the constructorlam takes in a function of typetm -> tm. For example, the OL term(lamx. lamy.app x y)
is represented aslam (\x. lam (\y. app x y)), where “\” is the binder of the metalanguage. Bound
variables found in the object language are not explicitly represented in the meta-language.

Judgments and Rules These are introduced as LF type families (predicates) in theJudgments sec-
tion followed by object-level inference rules for these judgments in theRules section. In our running
example, we have two judgments:

%% Judgments

aeq: tm -> tm -> type.

24 ORBI

deq: tm -> tm -> type.

Consider first the inference rule for algorithmic equality for application, where the ORBI text is a straight-
forward encoding of the rule:

ae_a: aeq M1 N1 -> aeq M2 N2

-> aeq (app M1 M2) (app N1 N2).

Γ ⊢ aeq M1 N1 Γ ⊢ aeq M2 N2

Γ ⊢ aeq (app M1 M2) (app N1 N2)
aea

Uppercase letters such asM1 denote schematic variables, which are implicitly quantified at the outermost
level, namely{M1:tm}, as is commonly done for readability purposes in Twelf and Beluga.
The binder case is more interesting:

ae_l: ({x:tm} aeq x x -> aeq (M x) (N x))

-> aeq (lam (\x. M x)) (lam (\x. N x)).

Γ, is tm x;aeq x x⊢ aeq M N
Γ ⊢ aeq (lamx.M) (lamx.N)

ael

We view theis tm x assumption as the parametric assumptionx:tm, while the hypothesisaeq x x (and
its scoping) is encoded within the embedded implicationaeq x x -> aeq (M x) (N x) in the cur-
rent (informal) signature augmented with the dynamic declaration forx. As is well known, parametric
assumptions and embedded implication are unified in the type-theoretic view. Note that the “variable”
case, namely ruleaev, is folded inside the binder case. We list here the rest of theRules section:

%% Rules

de_a: deq M1 N1 -> deq M2 N2 -> deq (app M1 M2) (app N1 N2).

de_l: ({x:tm} deq x x -> deq (M x) (N x))

-> deq (lam (\x. M x)) (lam (\x. N x)).

de_r: deq M M.

de_s: deq N M -> deq M N.

de_t: deq M L -> deq L N -> deq M N.

Schemas A schema declarations_decl is introduced using the keywordschema. A blk consists of
one or more declarations andalt_blk describesalternatingschemas. For example, schemas mentioned
in Sect. 2 appear in theSchemas section as:

%% Schemas

schema xG = block (x:tm);

schema xaG = block (x:tm, u:aeq x x);

schema xdG = block (x:tm, u:deq x x);

schema daG = block (x:tm, u:deq x x, v:aeq x x);

To illustrate alternatives in contexts, consider extending our OL to the polymorphically typed lambda-
calculus, which includes a new typetp in theSyntax section, and a new judgment:

atp: tp -> tp -> type.

representing equality of types in theJudgments section (as well as type constructors and rules for well-
formed types and type equality, omitted here). With this extension, the following two examples replace
the first two schemas in theSchemas section.

schema xG = block (x:tm) + block (a:tp);

schema xaG = block (x:tm, u:aeq x x) + block (a:tp, v:atp a a);

A. Felty, A. Momigliano & B. Pientka 25

While we type-check the schema definitions using an extension of the LF type checker (as imple-
mented in Beluga), we do not verify that the given schema definition is meaningful with respect to the
specification of the syntax and inference rules; in other words, we do not perform “world checking” in
Twelf lingo.

Definitions So far we have considered the specification language for encoding formal systems. ORBI
also supports declaring inductive definitions for specifying context relations. We start with the gram-
mar for inductive definitions (Fig. 2). Although we plan to provide syntax for specifying more general
inductive definitions, in this version of ORBI weonly definecontext relationsinductively, that isn-ary
predicates between contexts of some given schemas. Hence the base predicate is of the formid {ctx}

relating different contexts. For example, theDefinitions section defines the relationsΦx ∼ Φxa and

def_dec ::= "inductive" id ":" r_kind "=" def_body ";"

r_kind ::= "prop"

| "{" id ":" s_id "}" r_kind

def_body ::= "|" id ":" def_prp {def_body}

def_prp ::= id {ctx}

| def_prp "->" def_prp

ctx ::= [] | [id] | ctx "," id ":" blk

Figure 2: ORBI grammar for inductive definitions describingcontext relations

Φxa ∼ Φxd. To illustrate, only the former is shown below.

%% Definitions

inductive Rxa : {g:xG} {h:xaG} prop =

| Rxa_nl: Rxa [] []

| Rxa_cs: Rxa [g] [h]

-> Rxa [g, b:block (x:tm)] [h, b: block (x:tm, u:aeq x x)];

This kind of relation can be translated fairly directly to inductive n-ary predicates in systems support-
ing the proof-theoretic view. In the type-theoretic framework underlying Beluga, inductive predicates
relating contexts correspond to recursive data types indexed by contexts; in fact ORBI adopts Beluga’s
concrete syntax, so as to directly type-check those definitions as well. Twelf’s type theoretic framework,
however, is not rich enough to support inductive definitions.

3.2 Theorems and Directives in ORBI

While the elements of an ORBI specification detailed in the previous subsection were relatively easy to
define in a manner that is well understood by all the differentsystems we are targeting, we illustrate in
this subsection those elements that are harder to describe uniformly due to the different treatment and
meaning of contexts in the different systems.

26 ORBI

Theorems We list the grammar for theorems in Fig. 3. Our reasoning language includes a categoryprp
that specifies the logical formulas we support. The base predicates includefalse,true, term equality,
atomic predicates of the formid {ctx}, which are used to express context relations, and predicates of
the form[ctx |- J], which represent judgments of an object language within a given context. Connec-
tives and quantifiers include implication, conjunction, disjunction, universal and existential quantification
over terms, and universal quantification over context variables.

thm ::= "theorem" id ":" prp ";"

prp ::= id {ctx} (* Context relation *)

| "[" ctx "|-" id {term} "]" (* Judgment in a context *)

| term "=" term (* Term equality *)

| false (* Falsehood *)

| true (* Truth *)

| prp "&" prp (* Conjunction *)

| prp "||" prp (* Disjunction *)

| prp "->" prp (* Implication *)

| quantif prp (* Quantification *)

quantif ::= "{" id ":" s_id "}" (* universal over contexts *)

| "{" id ":" tp "}" (* universal over terms *)

| "<" id ":" tp ">" (* existential over terms *)

Figure 3: ORBI grammar for theorems

To illustrate, the reflexivity lemmas and completeness theorems for both the G and R versions as
they appear in theTheorems section are shown below. These theorems are a straightforward encoding
of those stated in Sect. 2.

%% Theorems

theorem reflG: {h:xaG}{M:tm} [h |- aeq M M];

theorem ceqG: {g:daG}{M:tm}{N:tm} [g |- deq M N] -> [g |- aeq M N];

theorem reflR: {g:xG}{h:xaG}{M:tm} Rxa [g] [h] -> [h |- aeq M M];

theorem ceqR: {g:xdG}{h:xaG}{M:tm}{N:tm} Rda [g] [h] ->

[g |- deq M N] -> [h |- aeq M N];

As mentioned, we do not type-check theorems; in particular,we do not define the meaning of
[ctx |- J], since several interpretations are possible. In Beluga, every judgmentJ must be mean-
ingful within the given contextctx; in particular,termsoccurring in the judgmentJ must be meaningful
in ctx. As a consequence, both parametric and hypothetical assumptions relevant for establishing the
proof of J must be contained inctx. Instead of the local context view adopted in Beluga, Twelf has
one global ambient context containing all relevant parametric and hypothetical assumptions. Systems
based on proof-theory such as Hybrid and Abella distinguishbetween assumptions denoting eigenvari-
ables (i.e., parametric assumptions), which live in a global ambient context and proof assumptions (i.e.,
hypothetical assumptions), which live in the contextctx. While users of different systems understand
how to interpret[ctx |- J], reconciling these different perspectives in ORBI is beyond the scope of

A. Felty, A. Momigliano & B. Pientka 27

this paper. Thus for the time being, we view theorem statements in ORBI as a kind ofcomment, where it
is up to the user of a particular system to determine how to translate them.

Directives In ORBI, directivesare comments that help the ORBI2X tools to generate target represen-
tations of the ORBI specifications. The idea is reminiscent of what Ott [24] does to customize certain
declarations, e.g., the representation of variables, to the different programming languages/proof assis-
tants it supports. The grammar for directives is listed in Fig. 4.

dir ::= ’%’ sy_set what decl {"," decl} {dest} ’.’

| ’%%’ sepr ’.’

sy_id ::= hy | ab | bel | tw

sy_set ::= ’[’ sy_id {’,’ sy_id} ’]’

what ::= wf | explicit | implicit

dest ::= ’in’ ctx | ’in’ s_id | ’in’ id

sepr ::= Syntax | Judgments | Rules | Schemas | Definitions

| Directives | Theorems

Figure 4: ORBI grammar for directives

The sepr directives, such asSyntax, are simply means to structure ORBI specifications. Most
of the other directives that we consider in this version of ORBI are dedicated to help the translations
into proof-theoretical systems, although we also include some to facilitate the translation of theorems to
Beluga. The set of directives is not intended to be complete and the meaning of directives is system-
specific. The directiveswf andexplicit are concerned with the asymmetry in the proof-theoretic view
between declarations that give typing information, e.g.,tm:type, and those expressing judgments, e.g.,
aeq:tm -> tm -> type. In Abella and Hybrid, the former may need to be reified in a judgment, in
order to show that judgments preserve the well-formedness of their constituents, as well as to provide
induction on the structure of terms; yet, in order to keep proofs compact and modular, we want to
minimize this reification and only include them where necessary. TheDirectives section of our sample
specification includes, for example,
% [hy,ab] wf tm.

which refers to the first line of theSyntax section wheretm is introduced, and indicates that we need
a predicate (e.g.,is_tm) to express well-formedness of terms of typetm. Formulas expressing the
definition of this predicate are automatically generated from the declarations of the constructorsapp and
lam with their types.

The keywordexplicit indicates when such well-formedness predicates should be included in the
translation of the declarations in theRules section. For example, the following formulas both represent
possible translations of theae_l rule to proof-theoretic systems. We use Abella’s concrete syntax to
exemplify:
aeq (lam M) (lam N) :- pi x\ is_tm x => aeq x x => aeq (M x) (N x).

aeq (lam M) (lam N) :- pi x\ aeq x x => aeq (M x) (N x).

28 ORBI

where the typing information is explicit in the first and implicit in the second. By default, we choose the
latter, that is well-formed judgments are assumed to beimplicit, and require a directive if the former is
desired. Consider, for example, that we want to conclude that whenever a judgment is provable, the terms
in it are well-formed, e.g., ifaeq M N is provable, then so areis_tm M andis_tm N. Such a lemma
is indeed provable in Abella and Hybrid from theimplicit translation of the rules foraeq. Proving
a similar lemma for thedeq judgment, on the other hand, requires some strategically placed explicit
well-formedness information. In particular, the two directives:

% [hy,ab] explicit (x : tm) in de_l.

% [hy,ab] explicit (M : tm) in de_r.

require the clausesde_l andde_r to be translated to the following formulas:

deq (lam M) (lam N) :- pi x\ is_tm x => deq x x => deq (M x) (N x).

deq M M :- is_tm M.

The case for schemas is analogous. In the systems based on proof-theoretic approaches, contexts
are typically represented using lists and schemas are translated to unary inductive predicates that verify
that these lists have a particular regular structure. We again leave typing information implicit in the
translation unless a directive is included. For example, thexaG schema with no associated directive will
be translated to the following inductive definition in Abella:

Define aG : olist -> prop by

xaG nil;

nabla x, xaG (aeq x x :: As) := xaG As.

The directive% [hy,ab] explicit (x : tm) in daG will yield this Hybrid definition:

Inductive daG : list atm -> Prop :=

| nil_da : daG nil

| cns_da : forall (Gamma:list atm) (x:uexp),

proper x -> daG Gamma -> daG (is_tm x :: deq x x :: aeq x x :: Gamma).

Similarly, directives in context relations, such as:

% [hy,ab] explicit (x : tm) in g in Rxa.

also state which well-formedness annotations to make explicit in the translated version. In this case,
when translating the definition ofRxa in theDefinitions section, they are to be kept ing, but skipped
in h.

Keeping in mind that we consider the notion of directiveopento cover other benchmarks and differ-
ent systems, we offer some speculation about directives that we may need to translate theorems for the
examples and systems that we are considering. For example, theoremreflG is proven by induction over
M. As a consequence,M must be explicit.

% [hy,ab,bel] explicit (M : tm) in h in reflG.

The ORBI2Hybrid and ORBI2Abella tools will interpret the directive by adding an explicit assumption,
as illustrated by the result of the ORBI2Abella translation:

forall H M, xaG H -> {H |- is_tm M} -> {H |- aeq M M}.

In Beluga, the directive is interpreted as:

{h:xaG} {M:[h |- tm]} [h |- aeq M M].

A. Felty, A. Momigliano & B. Pientka 29

whereM will have typetm in the contexth. Moreover, since the termM is used in the judgmentaeq
within the contexth, we associateM with an identity substitution, which is not displayed. In short, the
directive allows us to lift the type specified in ORBI to a contextual type that is meaningful in Beluga. In
fact, Beluga always needs additional information on how to interpret terms—are they closed or can they
depend on a given context? For translatingsymG for example, we use the following directive to indicate
the dependence on the context:

% [bel] implicit (M : tm), (N : tm) in h in symG.

3.3 Guidelines

In addition, we introduce a set ofguidelinesfor ORBI specification writers, with the goal of helping
translators generate output that is more likely to be accepted by a specific system. ORBI 0.1 includes
four such guidelines, which are motivated by the desire to avoid putting too many constraints in the
grammar rules. First, as we have seen in our examples, we use as a convention that free variables which
denote schematic variables in rules are written using uppercase identifiers; we use lower case identifiers
for eigenvariables in rules and for context variables. Second, while the grammar does not restrict what
types we can quantify over, the intention is that we quantifyover types of level-0, i.e., objects of the
syntax level, only. Third, in order to more easily accommodate systems without dependent types,Pi

should not be used when writing non-dependent types; an arrow should be used instead. (In LF, for
example,A -> B is an abbreviation forPi x:A.B for the case whenx does not occur inB. Following
this guideline means favoring this abbreviation whenever it applies.) Fourth, when writing a context
(grammarctx), distinct variable names should be used in different blocks.

4 Related Work

Our approach to structuring contexts of assumptions takes its inspiration from Martin-Löf’s theory of
judgments, especially in the way it has been realized in Edinburgh LF. However, our formulation owes
more to Beluga’s type theory, where contexts are first-classcitizens, than to the notion ofregular world
in Twelf.

The creation and sharing of a library of benchmarks has proven to be very beneficial to the field
it represents. The brightest example isTPTP [25], whose influence on the development, testing and
evaluation of automated theorem provers cannot be underestimated. Clearly our ambitions are much
more limited. We have also taken some inspiration from its higher-order extensionTHF0[3], in particular
in its construction in stages.

The success of TPTP has spurred other benchmark suites in related subjects, see for exampleSATLIB
[14]; however, the only one concerned with induction is theInduction Challenge Problems(http://
www.cs.nott.ac.uk/~lad/research/challenges), a collection of examples geared to theautoma-
tion of inductive proof. The benchmarks are taken from arithmetic, puzzles, functional programming
specifications, etc. and as such have little connection withour endeavor. On the other hand, the exam-
ples mentioned earlier coming from Twelf’s wiki, Abella’s library, Beluga’s distribution, and Hybrid’s
web page contain a set of examples that highlight the issues around binders. As such they are prime
candidates to be included in ORBI.

Other projects have put forward LF as a common ground: the goal of Logosphere’s (http://www.
logosphere.org) was the design of a representation language for logical formalisms, individual theo-
ries, and proofs, with an interface to other theorem provingsystems that were somewhat connected, but

30 ORBI

the project never materialized.SASyLF[1] originated as a tool to teach programming language theory:
the user specifies the syntax, judgments, theoremsand proofs thereof (albeit limited toclosedobjects)
in a paper-and-pencil HOAS-friendly way and the system converts them to totality-checked Twelf code.
The capability to express and share proofs is of obvious interest to us, although such proofs, being a lit-
eral proof verbalization of the corresponding Twelf type family, are irremediably verbose. Finally, work
on modularity in LF specifications [21] is of critical interest to give more structure to ORBI files.

Why3(http://why3.lri.fr) is a software verification platform that intends to providea front-
end to third-party theorem provers, from proof assistants such as Coq to SMT-solvers. To this end
Why3 provides a first-order logic with rank-1 polymorphism,recursive definitions, algebraic data types
and inductive predicates [9], whose specifications are thentranslated to the several systems that Why3
supports. Typically, those translations are forgetful, but sometimes, e.g., with respect to Coq, they add
some annotations, for example to ensure non-emptiness of types. Although we are really not in the same
business as Why3, there are several ideas that are relevant;to name one, the notion of adriver, that is,
a configuration file to drive transformations specific to a system. Moreover, Why3 provides an API for
users to write and implement their own drivers and transformations.

Ott [24] is a highly engineered tool for “working semanticists,” allowing them to write programming
language definitions in a style very close to paper-and-pen specifications; then those are compiled into
LATEX and, more interestingly, into proof assistant code, currently supporting Coq, Isabelle/HOL, and
HOL. Ott’s metalanguage is endowed with a rich theory of binders, but at the moment it favors the
“concrete” (nonα-quotiented) representation, while providing support forthe nameless representation
for a single binder. Conceptually, it would be natural to extend Ott to generate ORBI code, as a bridge
for Ott to support HOAS-based systems. Conversely, an ORBI user would benefit from having Ott as a
front-end, since the latter view of grammar and judgment seems at first sight general enough to support
the notion of schema and context relation.

In the category of environments for programming language descriptions, we mentionPLT-Redex[5]
and also theK framework [22]. In both, several large-scale language descriptions have been specified
and tested. However, none of those systems has any support for binders, let alone context specifications,
nor can any meta-theory be formally verified.

Finally, there is a whole research area dedicated to the handling and sharing of mathematical con-
tent (MMK http://www.mkm-ig.org) and its representation (OMDochttps://trac.omdoc.org/
OMDoc), which is only very loosely connected to our project.

5 Conclusion

We have presented the preliminary design of a language, and more generally, of a common infrastructure
for representing challenge problems for HOAS-based logical frameworks. The common notation allows
us to express the syntax of object languages that we wish to reason about, as well as the context schemas,
the judgments and inference rules, and the statements of benchmark theorems.

We strongly believe that the field has matured enough to benefit from the availability of a set of
benchmarks on which qualitative and hopefully quantitative comparison can be carried out. We hope
that ORBI will foster sharing of examples in the community and provide a common set of examples. We
also see our benchmark repository as a place to collect and propose “open” challenge problems to push
the development of meta-reasoning systems.

The challenge problems also play a role in allowing us, as designers and developers of logical frame-
works, to highlight and explain how the design decisions foreach individual system lead to differences

A. Felty, A. Momigliano & B. Pientka 31

in using them in practice. Additionally, our benchmarks aimto provide a better understanding of what
practitioners should be looking for, as well as help them foresee what kind of problems can be solved el-
egantly and easily in a given system, and more importantly, why this is the case. Therefore the challenge
problems provide guidance for users and developers in better comprehending differences and limitations.
Finally, they serve as an excellent regression suite.

The description of ORBI presented here is best thought of as astepping stone towards a more compre-
hensive specification language, much asTHF0 [3] has been extended to the more expressive formalism
THFi, adding for instance, rank-1 polymorphism. Many are the features that we plan to provide in the
near future, starting from general (monotone)(co)inductivedefinitions; currently we only relate contexts,
while it is clearly desirable to relate arbitrary well-typed terms, as shown for example in [4] and [11] with
respect to normalization proofs. Further, it is only natural to support infinite objects and behavior. How-
ever, full support for (co)induction is a complex matter, asit essentially entails fully understanding the
relationship between the proof-theory behind Abella and Hybrid and the type theory of Beluga. Once
this is in place, we can “rescue” ORBI theorems from their current status as comments and even include
proof sketches in ORBI.

Clearly, there is a significant amount of implementation work ahead, mainly on the ORBI2X tools
side, but also on the practicalities of the benchmark suite.Finally, we would like to open up the repository
to other styles of formalization such as nominal, locally nameless, etc.

References

[1] Jonathan Aldrich, Robert J. Simmons & Key Shin (2008):SASyLF: An Educational Proof Assistant for
Language Theory. In: International Workshop on Functional and Declarative Programming in Education,
ACM Press, pp. 31–40, doi:10.1145/1411260.1411266.

[2] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J.Nathan Foster, Benjamin C. Pierce, Peter
Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich & Steve Zdancewic (2005):Mecha-
nized Metatheory for the Masses: ThePOPLMARK Challenge. In: Eighteenth International Conference on
Theorem Proving in Higher Order Logics, LNCS 3603, Springer, pp. 50–65, doi:10.1007/11541868_4.

[3] Christoph Benzmüller, Florian Rabe & Geoff Sutcliffe (2008): THF0—The Core of the TPTP Language
for Higher-Order Logic. In: Fourth International Joint Conference on Automated Reasoning, LNCS 5195,
Springer, pp. 491–506, doi:10.1007/978-3-540-71070-7_41.

[4] Andrew Cave & Brigitte Pientka (2012):Programming with Binders and Indexed Data-Types. In: Thirty-
Ninth Annual ACM SIGPLAN-SIGACT Symposium on Principles ofProgramming Languages, ACM Press,
pp. 413–424, doi:10.1145/2103656.2103705.

[5] Matthias Felleisen, Robert Bruce Findler & Matthew Flatt (2009):Semantics Engineering with PLT Redex.
The MIT Press.

[6] Amy P. Felty & Alberto Momigliano (2012):Hybrid: A Definitional Two-Level Approach to Reasoning
with Higher-Order Abstract Syntax. Journal of Automated Reasoning48(1), pp. 43–105, doi:10.1007/
s10817-010-9194-x.

[7] Amy P. Felty, Alberto Momigliano & Brigitte Pientka (2015): The Next 700 Challenge Problems for Reason-
ing with Higher-Order Abstract Syntax Representations: Part 1—A Common Infrastructure for Benchmarks.
CoRRabs/1503.06095. Available athttp://arxiv.org/abs/1503.06095.

[8] Amy P. Felty, Alberto Momigliano & Brigitte Pientka (2015): The Next 700 Challenge Problems for Reason-
ing with Higher-Order Abstract Syntax Representations: Part 2—A Survey. Journal of Automated Reasoning.
(to appear).

32 ORBI

[9] Jean-Christophe Filliâtre (2013):One Logic To Use Them All. In: Twenty-Fourth International Conference
on Automated Deduction, LNCS 7898, Springer, pp. 1–20, doi:10.1007/978-3-642-38574-2_1.

[10] Andrew Gacek (2008):The Abella Interactive Theorem Prover (System Description). In: Fourth Inter-
national Joint Conference on Automated Reasoning, LNCS 5195, Springer, pp. 154–161, doi:10.1007/

978-3-540-71070-7_13.

[11] Andrew Gacek, Dale Miller & Gopalan Nadathur (2012):A Two-Level Logic Approach to Reasoning About
Computations. Journal of Automated Reasoning49(2), pp. 241–273, doi:10.1007/s10817-011-9218-1.

[12] J.-Y. Girard, Y. Lafont & P. Tayor (1990):Proofs and Types. Cambridge University Press.

[13] Nada Habli & Amy P. Felty (2013):Translating Higher-Order Specifications to Coq Libraries Supporting
Hybrid Proofs. In: Third International Workshop on Proof Exchange for TheoremProving, EasyChair Pro-
ceedings in Computing14, pp. 67–76.

[14] Holger H. Hoos & Thomas Stützle (2000):SATLIB: An Online Resource for Research on SAT. In: SAT 2000:
Highlights of Satisfiability Research in the Year 2000, Frontiers in Artificial Intelligence and Applications63,
IOS Press, pp. 283–292.

[15] Alberto Momigliano, Alan J. Martin & Amy P. Felty (2008): Two-Level Hybrid: A System for Reasoning
Using Higher-Order Abstract Syntax. In: Second International Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice, LFMTP 2007, ENTCS196, Elsevier, pp. 85–93, doi:10.1016/j.entcs.

2007.09.019.

[16] Brigitte Pientka (2007):Proof Pearl: The Power of Higher-Order Encodings in the Logical Framework LF.
In: Twentieth International Conference on Theorem Proving in Higher-Order Logics, LNCS, Springer, pp.
246–261, doi:10.1007/978-3-540-74591-4_19.

[17] Brigitte Pientka & Andrew Cave (2015):Inductive Beluga:Programming Proofs (System Description). In:
Twenty-Fifth International Conference on Automated Deduction, Springer.

[18] Brigitte Pientka & Joshua Dunfield (2010):Beluga: A Framework for Programming and Reasoning with
Deductive Systems (System Description). In: Fifth International Joint Conference on Automated Reasoning,
LNCS 6173, Springer, pp. 15–21, doi:10.1007/978-3-642-14203-1_2.

[19] Benjamin C. Pierce (2002):Types and Programming Languages. MIT Press.

[20] Adam Poswolsky & Carsten Schürmann (2009):System Description: Delphin—A Functional Programming
Language for Deductive Systems. In: Third International Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice (LFMTP 2008), ENTCS 228, Elsevier, pp. 113–120, doi:10.1016/j.

entcs.2008.12.120.

[21] Florian Rabe & Carsten Schürmann (2009):A Practical Module System for LF. In: Fourth International
Workshop on Logical Frameworks and Meta-Languages: Theoryand Practice, ACM Press, pp. 40–48,
doi:10.1145/1577824.1577831.

[22] Grigore Roşu & Traian Florin Şerbănuţă (2010):An Overview of the K Semantic Framework. Journal of
Logic and Algebraic Programming79(6), pp. 397–434, doi:10.1016/j.jlap.2010.03.012.

[23] Carsten Schürmann (2009):The Twelf Proof Assistant. In: Twenty-Second International Confer-
ence on Theorem Proving in Higher Order Logics, LNCS 5674, Springer, pp. 79–83, doi:10.1007/

978-3-642-03359-9_7.

[24] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit Sarkar & Rok
Strniša (2010):Ott: Effective Tool Support for the Working Semanticist. Journal of Functional Programming
20(1), pp. 71–122, doi:10.1017/S0956796809990293.

[25] Geoff Sutcliffe (2009):The TPTP Problem Library and Associated Infrastructure. Journal of Automated
Reasoning43(4), pp. 337–362, doi:10.1007/s10817-009-9143-8.

[26] Yuting Wang, Kaustuv Chaudhuri, Andrew Gacek & GopalanNadathur (2013):Reasoning About Higher-
Order Relational Specifications. In: Fifteenth International ACM SIGPLAN Symposium on Principles and
Practice of Declarative Programming, ACM Press, pp. 157–168, doi:10.1145/2505879.2505889.

I. Cervesato and K. Chaudhuri (Eds.): Tenth International Workshop
on Logical Frameworks and Meta-Languages: Theory and Practice
EPTCS 185, 2015, pp. 33–45, doi:10.4204/EPTCS.185.3

c© A. Cave & B. Pientka
This work is licensed under the
Creative Commons Attribution License.

A Case Study on Logical Relations using Contextual Types

Andrew Cave
McGill University

Montreal QC, Canada

acave1@cs.mcgill.ca

Brigitte Pientka
McGill University

Montreal QC, Canada

bpientka@cs.mcgill.ca

Proofs by logical relations play a key role to establish richproperties such as normalization or con-
textual equivalence. They are also challenging to mechanize. In this paper, we describe the complete-
ness proof of algorithmic equality for simply typed lambda-terms by Crary where we reason about
logically equivalent terms in the proof environment Beluga. There are three key aspects we rely
upon: 1) we encode lambda-terms together with their operational semantics and algorithmic equal-
ity using higher-order abstract syntax 2) we directly encode the corresponding logical equivalence
of well-typed lambda-terms using recursive types and higher-order functions 3) we exploit Beluga’s
support for contexts and the equational theory of simultaneous substitutions. This leads to a direct
and compact mechanization, demonstrating Beluga’s strength at formalizing logical relations proofs.

1 Introduction

Proofs by logical relations play a fundamental role to establish rich properties such as contextual equiva-
lence or normalization. This proof technique goes back to Tait (26) and was later refined by Girard (12).
The central idea of logical relations is to specify relations on well-typed terms via structural induction
on the syntax of types instead of directly on the syntax of terms themselves. Thus, for instance, logically
related functions take logically related arguments to related results, while logically related pairs consist
of components that are related pairwise.

Mechanizing logical relations proofs is challenging: first, specifying logical relations themselves
typically requires a logic which allows arbitrary nesting of quantification and implications; second, to
establish soundness of a logical relation, one must prove the Fundamental Property which says that any
well-typed term under a closing simultaneous substitutionis in the relation. This latter part requires
some notion of simultaneous substitution together with theappropriate equational theory of composing
substitutions. As Altenkirch (1) remarked,

“I discovered that the core part of the proof (here proving lemmas about CR) is fairly
straightforward and only requires a good understanding of the paper version. However,
in completing the proof I observed that in certain places I had to invest much more work
than expected, e.g. proving lemmas about substitution and weakening.”

While logical normalization proofs often are not large, they are conceptually intricate and mechaniz-
ing them has become a challenging benchmark for proof environments. There are several key questions,
when we attempt to formalize such proofs: How should we represent the abstract syntax tree for lambda-
terms and enforce the scope of bound variables? How should werepresent well-typed terms or typing
derivations? How should we deal with substitution? How can we define the logical relation on closed
terms?

Early work (1; 2; 5) represented lambda-terms using (well-scoped) de Bruijn indices which leads
to a substantial amount of overhead to prove properties about substitutions such as substitution lemmas

34 A Case Study on Logical Relations using Contextual Types

and composition of substitution. To improve readability and generally better support such meta-theoretic
reasoning, nominal approaches supportα-renaming but substitution and properties about them are spec-
ified separately; the Isabelle Nominal package has been usedin a variety of logical relations proofs
from proving strong normalization for Moggi’s modal lambda-calculus (7) to mechanically verifying the
meta-theory of LF itself including the completeness of equivalence checking (16; 27).

Approaches representing lambda-terms using higher-orderabstract syntax (HOAS) trees (also called
λ -tree syntax) model binders in the object language (i.e. in our case the simply typed lambda-calculus)
as binders in the meta language (i.e. in our case the logical framework LF (13)). Such encodings inherit
not onlyα-renaming and substitution from the meta-language, but also weakening and substitution lem-
mas. However, direct encodings of logical relations proofsis beyond the logical strength supported in
systems such as Twelf (17). In this paper, we demonstrate thepower and elegance of logical relations
proofs within the proof environment Beluga (22) which is built on top of the logical framework LF.
Beluga allows programmers to pair LF objects together with their surrounding context and this notion is
internalized as a contextual type[Ψ ⊢ A] which is inhabited by termM of typeA in the contextΨ (15).
Proofs about contexts and contextual LF objects are then implemented as dependently-typed recursive
functions via pattern matching (18; 21). Beluga’s functional language supports higher-order functions
and indexed recursive data-types (3) which we use to encode the logical relation. As such it does not
impose any restrictions as for example found in Twelf (17) which does not support arbitrary quantifier
alternation or Delphin (23) which lacks recursive data-types. Recently, Beluga has been extended to first-
class simultaneous substitutions allowing abstraction over substitutions and supporting a rich equational
theory about them (4; 20).

In this paper, we describe the completeness proof of algorithmic equality for simply typed lambda-
terms by Crary (6) where we reason about logically equivalent terms in the proof environment Beluga.
There are three key aspects we rely upon: 1) we encode lambda-terms together with their operational
semantics together with algorithmic equality using higher-order abstract syntax 2) we directly encode
the corresponding logical equivalence of well-typed lambda-terms using recursive types and higher-
order functions 3) we exploit Beluga’s support for contextsand the equational theory of simultaneous
substitutions. This leads to a direct and compact mechanization and allows us to demonstrate Beluga’s
strength at formalizing logical relations proofs. Based onthis case study we also draw some general
lessons.

2 Proof Overview: Completeness of Algorithmic Equality

In this section we give a brief overview of the motivation andhigh level structure of the completeness
proof of algorithmic equality. For more detail, we refer thereader to (6) and (14). Extensions of this
proof are important for the metatheory of dependently typedsystems such as LF and varieties of Martin-
Löf Type Theory, where they are used to establish decidability of typechecking. The proof concerns
three judgements, the first of which is declarative equivalence:

Γ ⊢ M ≡ N : A terms M and N are declaratively equivalent at typeA

Declarative equivalence includes convenient but non-syntax directed rules such as transitivity and
symmetry, among rules for congruence, extensionality andβ -contraction. We will see the full definition
in Sec. 3. In particular, it may include apparently type-directed rules such as extensionality at unit type:

Γ ⊢ M : Unit Γ ⊢ N : Unit
Γ ⊢ M ≡ N : Unit

A. Cave & B. Pientka 35

This rule relies crucially on type information, so the common untyped rewriting strategy for deciding
equivalence no longer applies. Instead, one can define an algorithmic notion of equivalence which is
directed by the syntax of types. This is the path we follow here. We define algorithmic term equivalence
mutually with path equivalence, which is the syntactic equivalence of terms headed by variables, i.e.
terms of the formxM1 ...Mn.

Γ ⊢ M ⇔ N : A terms M and N are algorithmically equivalent at typeA
Γ ⊢ M ↔ N : A paths M and N are algorithmically equivalent at typeA

In what follows, we sketch the proof of completeness of algorithmic equivalence for declarative
equivalence. A direct proof by induction over derivations fails unfortunately in the application case
where we need to show that applying equivalent terms to equivalent arguments yields equivalent results,
which is not so easy. Instead, one can proceed by proving a more general statement that declaratively
equivalent terms arelogically equivalent, and so in turn algorithmically equivalent. Logical equivalence
is a relation defined directly on the structure of the types. We write it as follows:

Γ ⊢ M ≈ N : A Terms M and N are logically equivalent at typeA

The key case is at function type, which directly defines logically equivalent terms at function type as
taking logically equivalent arguments to logically equivalent results. Crary defines:

Γ ⊢ M1 ≈ M2 : A⇒ B iff for all ∆ ≥ Γ andN1, N2,
if ∆ ⊢ N1 ≈ N2 : A
then∆ ⊢ M1 N1 ≈ M2 N2 : B

A key complication is the quantification over all extensions∆ of the contextΓ. This is essential to
show completeness of the algorithmic rule for function types, which states that that to compare two terms
Γ⊢M ⇔N : A⇒B it suffices to compare their applications tofreshvariables:Γ,x : A⊢Mx⇔Nx: B. The
generalization toall extensions∆ of Γ then arises naturally. This Kripke-style monotonicity condition
is one of the reasons that this proof is more challenging thannormalization proofs for simply typed
lambda-terms, where this quantification can often be avoided using other technical tricks.

For our formalization, we take a slightly different approach which better exploits the features of
Beluga available to us. We instead quantify over an arbitrary context∆ together with a simultaneous
substitutionπ which provides for eachx:T in Γ, a pathM satisfying∆ ⊢ M ↔ M : T. We will call such
a substitution apath substitutionand write this condition as∆ ⊢ π : Γ. In the course of the completeness
proof,π will actually only ever be instantiated by substitutions which simply perform weakening. That is,
∆ will be of the formΓ,Γ′ whereΓ = x1:A1, ...,xn:An andπ will be of the formΓ,Γ′ ⊢ x1/x1, ...,xn/xn : Γ.
However, the extra generality of path substitutions surprisingly does no harm to the proof, and fits well
within Beluga.

Γ ⊢ M1 ≈ M2 : A⇒ B iff for all ∆, path substitutions∆ ⊢ π : Γ, andN1, N2

if ∆ ⊢ N1 ≈ N2 : A
then∆ ⊢ M1[π] N1 ≈ M2[π] N2 : B

The high level goal is to establish that declaratively equivalent terms are logically equivalent, and
that logically equivalent terms are algorithmically equivalent. The proof requires establishing a few key
properties of logical equivalence. The first is monotonicity, which is crucially used for weakening logical
equivalence. This is used when applying terms to fresh variables.

Lemma 2.1 (Monotonicity)
If Γ ⊢ M ≈ N : A and∆ ⊢ π : Γ is a path substitution, then∆ ⊢ M[π]≈ N[π] : A

36 A Case Study on Logical Relations using Contextual Types

The second key property is (backward) closure of logical equivalence under weak head reduction.
This is proved by induction on the typeA.

Lemma 2.2 (Logical weak head closure)
If Γ ⊢ N1 ≈ N2 : A and M1 −→∗

wh N1 and M2 −→∗
wh N2 thenΓ ⊢ M1 ≈ M2 : A

In order to escape logical equivalence to obtain algorithmic equivalence in the end, we need the
main lemma, which is a mutually inductive proof showing thatpath equivalence is included in logical
equivalence, and logical equivalence is included in algorithmic equivalence:

Lemma 2.3 (Main lemma)

1. If Γ ⊢ M ↔ N : A thenΓ ⊢ M ≈ N : A

2. If Γ ⊢ M ≈ N : A thenΓ ⊢ M ⇔ N : A

Also required are symmetry and transitivity of logical equivalence, which in turn require symmetry
and transitivity of algorithmic equivalence, determinacyof weak head reduction, and uniqueness of types
for path equivalence. We will not go into detail about these lemmas, as they are relatively mundane, but
refer the reader to the discussion in (6).

What remains is to show that declarative equivalence implies logical equivalence. This requires a
standard technique to generalize the statement to all instantiations of open terms by related substitu-
tions. If σ1 is of the formM1/x1, ...,Mn/xn andσ2 is of the formN1/x1, ...,Nn/xn andΓ is of the form
x1:A1, ...,xn:An, we write∆ ⊢ σ1 ≈ σ2 : Γ to mean that∆ ⊢ Mi ≈ Ni : Ai for all i.

Theorem 2.4 (Fundamental theorem)
If Γ ⊢ M ≡ N : A and∆ ⊢ σ1 ≈ σ2 : Γ then∆ ⊢ M[σ1]≈ N[σ2] : A

The proof goes by induction on the derivation ofΓ ⊢ M ≡ N : A. We show one interesting case in
order to demonstrate some sources of complexity.

Proof Case:
Γ,x : A⊢ M1 ≡ M2 : B

Γ ⊢ λx.M1 ≡ λx.M2 : A⇒ B

1. Suppose we are given∆′, a path substitution∆′ ⊢ π : ∆ andN1,N2 with ∆′ ⊢ N1 ≈ N2 : A.

2. We have∆′ ⊢ σ1[π]≈ σ2[π] : Γ (by monotonicity)

3. Hence∆′ ⊢ (σ1[π],N1/x)≈ (σ2[π],N2/x) : Γ,x : A (by definition)

4. Hence∆′ ⊢ M1[σ1[π],N1/x] ≈ M2[σ2[π],N2/x] : B (by induction hypothesis)

5. Hence∆′ ⊢ M1[σ1[π],x/x][N1/x] ≈ M2[σ2[π],x/x][N2/x] : B (by substitution properties)

6. Hence∆′ ⊢ (λx.M1[σ1[π],x/x]) N1 ≈ (λx.M2[σ2[π],x/x]) N2 : B (by weak head closure)

7. Hence∆′ ⊢ ((λx.M1)[σ1])[π] N1 ≈ ((λx.M2)[σ2])[π] N2 : B (by substitution properties)

8. Hence∆ ⊢ (λx.M1)[σ1]≈ (λx.M2)[σ2] : A⇒ B (by definition of logical equivalence)

We observe that this proof relies heavily on equational properties of substitutions. Some of this com-
plexity appears to be due to our choice of quantifying over substitutions∆ ⊢ π : Γ instead of extensions
∆ ≥ Γ. However, we would argue that reasoning instead about extensions∆ ≥ Γ does not remove this
complexity, but only rephrases it.

Finally, by establishing the relatedness of the identity substitution to itself, i.e.Γ ⊢ id ≈ id : Γ we can
combine the fundamental theorem with the main lemma to obtain completeness.

Corollary 2.5 (Completeness)If Γ ⊢ M ≡ N : A thenΓ ⊢ M ⇔ N : A

A. Cave & B. Pientka 37

3 Mechanization

We mechanize the development of the declarative and algorithmic equivalence together with its com-
pleteness proof in Beluga, a dependently typed proof language built on top of the logical framework
LF. The central idea is to specify lambda-terms, small-stepsemantics, and type-directed algorithmic
equivalence in the logical framework LF. This allows us to model bindings uniformly using the LF
function space and obviates the need to model and manage names explicitly. Beluga’s proof language
allows programmers to encapsulate LF objects together withtheir surrounding context as contextual
objects and provides support for higher-order functions, indexed recursive types, and pattern matching
on contexts and contextual objects. We define logical equivalence and (for technical reasons) declara-
tive equivalence using indexed recursive types. All our proofs will then be implemented as recursive
functions using pattern matching and pass the totality checker. The complete source code for our de-
velopment can be found in the directoryexamples/logrel of the Beluga distribution which is available at
https://github.com/Beluga-lang/Beluga.

3.1 Encoding lambda-terms, typing and reduction in the logical framework LF

Our proof is about a simply-typed lambda calculus with one base typei. Extending the proof to support
a unit type and products is straightforward. We describe thetypes and terms in LF as follows, employing
HOAS for the representation of lambda abstraction. That is,we express the body of the lambda expres-
sion as an LF functiontm → tm. There is no explicit case for variables; they are implicitly handled by
LF. We show side by side the corresponding grammar.

LF tp : type =
| i : tp
| ⇒ : tp → tp → tp % infix
;
LF tm : type =
| app : tm → tm → tm
| lam : (tm → tm) → tm;

Types T,S ::= i | T ⇒ S

Terms M,N ::= x | lamx.M | appM N

Finally, we describe also weak head reduction for our terms.Notice here that the substitution ofN into
M in theβ -reduction case is accomplished using LF application. We then describe multi-step reductions
as a sequence of single step reductions. All free variables occurring in the LF signature are reconstructed
and bound implicitly at the outside.
LF step : tm → tm → type =
| beta : step (app (lam M) N) (M N)
| stepapp : step M M’ → step (app M N) (app M’ N);

LF mstep : tm → tm → type =
| refl : mstep M M
| trans1 : step M M’ → mstep M’ M’’ → mstep M M’’;

3.2 Encoding algorithmic equivalence

We now describe the algorithmic equality of terms. This is defined as two mutually recursive LF specifi-
cations. We writealgeqTm M N T for algorithmic equivalence of termsM andN at typeT andalgeqP P Q T

for algorithmic path equivalence at typeT – these are terms whose head is a variable, not a lambda ab-
straction. Term equality is directed by the type, while pathequality is directed by the syntax. Two terms
M andN at base typei are equivalent if they weak head reduce to weak head normal termsP andQ which
are path equivalent. Two termsM andN are equivalent at typeT ⇒ S if applying them to a fresh variablex

38 A Case Study on Logical Relations using Contextual Types

of typeT yields equivalent terms. Variables are only path equivalent to themselves, and applications are
path equivalent if the terms at function position are path equivalent, and the terms at argument positions
are term equivalent.

LF algeqTm: tm → tm → tp → type =
| algbase: mstep M P → mstep N Q → algeqP P Q i → algeqTm M N i.
| algarr : ({x:tm} algeqP x x T → algeqTm (app M x) (app N x) S) → algeqTm M N (arr T S)
and algeqP : tm → tm → tp → type
| algapp : algeqP M1 M2 (arr T S) → algeqTm N1 N2 T → algeqP (app M1 N1) (app M2 N2) S;

By describing algorithmic equality in LF, we gain structural properties and substitution for free. For
this particular proof, only weakening is important.

A handful of different forms of contexts are relevant for this proof. We describe these withschema

definitions in Beluga. Schemas classify contexts in a similar way as LF types classify LF objects.
Although schemas are similar to Twelf’s world declarations, schema checking does not involve verifying
that a given LF type family only introduces the assumptions specified in the schema; instead schemas will
be used by the computation language to guarantee that we are manipulating contexts of a certain shape.
Below, we define the schemaactx, which enforces that term variables come paired with an algorithmic
equality assumptionalgeqP x x t for some typet.

schema actx = some [t:tp] block x:tm, ax:algeqP x x t;

3.3 Encoding logical equivalence

To define logical equivalence, we need the notion of path substitution mentioned in Sec. 2. For this
purpose, we use Beluga’s built-in notion of simultaneous substitutions. We write[δ ⊢ γ] for the built-in
type of simultaneous substitutions which provide for each variable in the contextγ a corresponding term
in the contextδ . Whenγ is of schemaactx, such a substitution consists of blocks of the formM/x,P/ax
whereM is a term andP is a derivation ofalgeqP M M T, just as we need.

To achieve nice notation, we define an LF type of pairs of terms, where the infix operator≈ simply
constructs a pair of terms:

LF tmpair : type =
| ≈ : tm → tm → tmpair % infix;

Logical equivalence, writtenLog [γ ⊢ M ≈ N] [A], expresses thatM and N are logically related in
contextγ at typeA. We embed contextual objects into computations and recursive types wrapping them
inside[]. SinceM andN are used in the contextγ , by default, they can depend onγ . Formally, each of
these meta-variables is associated with an identity substitution which can be omitted.

We defineLog [γ ⊢ M ≈ N] [A] in Beluga as astratifiedtype, which is a form of recursive type which
is defined by structural recursion on one of its indices, as analternative to an inductive (strictly positive)
definition. Beluga verifies that this stratification condition is satisfied. In this case, the definition is
structurally recursive on the typeA.

stratified Log : (γ:actx) [γ ⊢ tmpair] → [tp] → ctype =
| LogBase : [γ ⊢ algeqTm M N i] → Log [γ ⊢ M ≈ N] [i]

| LogArr : ({δ:actx}{π:[δ ⊢ γ]}{N1:[δ ⊢ tm]}{N2:[δ ⊢ tm]}

Log [δ ⊢ N1 ≈ N2] [T] → Log [δ ⊢ app M1[π] N1 ≈ app M2[π] N2] [S])
→ Log [γ ⊢ M1 ≈ M2] [T ⇒ S];

At base type, two terms are logically equivalent if they are algorithmically equivalent. At arrow type
we employ the monotonicity condition mentioned in Sec. 2:M1 is related toM2 in Γ if, for any context∆,
path substitution∆ ⊢ π : Γ, andN1 , N2 related in∆, we have thatapp M1[π] N1 is related toapp M2[π] N2

A. Cave & B. Pientka 39

in ∆. We quantify over(γ:actx) in round parentheses, which indicates that it is implicit and recovered
during reconstruction. Variables quantified in curly braces such as{δ:actx} are passed explicitly. As
in LF specifications, all free variables occurring in constructor definitions are reconstructed and bound
implicitly at the outside. They are passed implicitly and recovered during reconstruction.

Crucially, logical equality is monotonic under path substitutions.
rec log_monotone : {δ:actx}{π:[δ ⊢ γ]} Log [γ ⊢ M1 ≈ M2] [A] → Log [δ ⊢ M1[π] ≈ M2[π]] [A]

We show below the mechanized proof of this lemma only to illustrate the general structure of Beluga
proofs. The proof is simply by case analysis on the logical equivalence. In the base case, we obtain a
proofP of γ ⊢ algeqTm M N i, which we can weaken for free by simply applyingπ to P. Here we benefit
significantly from Beluga’s built-in support for simultaneous substitutions; we gain not just weakening
by a single variable for free as we would in Twelf, but arbitrary simultaneous weakening. The proof
proceeds in the arrow case by simply composing the two substitutions. We useλ as the introduction
form for universal quantifications over metavariables (contextual objects), for which we use uppercase
and Greek letters, andfn with lowercase letters for computation-level function types (implications).
rec log_monotone : {δ:actx}{π:[δ ⊢ γ]} Log [γ ⊢ M1 ≈ M2] [A] → Log [δ ⊢ M1[π] ≈ M2[π]] [A] =

λ δ,π 7→ fn e 7→ case e of
| LogBase [γ ⊢ P] 7→ LogBase [δ ⊢ P[π]]
| LogArr f 7→ LogArr (λ δ’,π’ 7→ f [δ’] [δ’ ⊢ π[π’]])

The main lemma is mutually recursive, expressing that path equivalence is included in logical equiv-
alence, and logical equivalence is included in algorithmicterm equivalence. This enables “escaping”
from the logical relation to obtain an algorithmic equalityin the end. They are structurally recursive
on the type. Crucially, in the arrow case,reify instantiates the path substitutionπ with a weakening
substitution in order to create a fresh variable.
rec reflect : {A:[tp]} [γ ⊢ algeqP M1 M2 A] → Log [γ ⊢ M1 ≈ M2] [A]
and reify : {A:[tp]} Log [γ ⊢ M1 ≈ M2] [A] → [γ ⊢ algeqTm M1 M2 A]

We can state weak head closure directly as follows. The proofis structurally recursive on the type,
which is implicit.
rec closed : [γ ⊢ mstep N1 M1] → [γ ⊢ mstep N2 M2] → Log [γ ⊢ M1 ≈ M2] [T]

→ Log [γ ⊢ N1 ≈ N2] [T]

3.4 Encoding declarative equivalence

We now define declarative equality of terms, which includes non-algorithmic rules such as transitivity
and symmetry. Declarative equality makes use of a schema which lists only term variables, which we
write ctx.
schema ctx = tm;

For technical reasons which we will go into more detail on later, we resort to a different treatment of
typing contexts. We explicitly represent typing contextsdctx as a list of types, and declarative equality
as a computation-level inductive datatype, instead of an LFspecification.
LF dctx : type =
| nil : dctx
| & : dctx → tp → dctx % infix ;

We describe next the result of looking up the type of a variable x in γ in typing contextΓ by its
position. Ifx is the top variable ofγ , then its type inΓ is the type of the top variable ofΓ. Otherwise, if
looking up the type ofx in γ yields T, then looking it up in an extended context also yieldsT. Here we

40 A Case Study on Logical Relations using Contextual Types

write [γ ⊢ tm] for the contextual type of terms of typetm in contextγ , and[tp] for (closed) types. We
use#p for a meta-variable standing for an object-level variable from γ (as opposed to a general term).
inductive Lookup : {Γ:[dctx]}(γ:ctx)[γ ⊢ tm] → [tp] → ctype =
| Top : Lookup [Γ & T] [γ,x:tm ⊢ x] [T]
| Pop : Lookup [Γ] [γ ⊢ #p] [T] → Lookup [Γ & S] [γ,x:tm ⊢ #p] [T];

We writeDecl [Γ] [γ ⊢ M ≈ N] [T] for declarative equivalence ofM andN at typeT. We employ the
convention thatΓ and∆ stand for typing contexts (of type[dctx]), while γ andδ stand for corresponding
term contexts.
inductive Decl : {Γ:[dctx]}(γ:ctx) [γ ⊢ tmpair] → [tp] → ctype =

| DecBeta : Decl [Γ & T] [γ,x:tm ⊢ M2 ≈ N2] [S] → Decl [Γ] [γ ⊢ M1 ≈ N1] [T]
→ Decl [Γ] [γ ⊢ app (lam (\x. M2)) M1 ≈ N2[.., N1]] [S]

| DecLam : Decl [Γ & T] [γ,x:tm ⊢ M ≈ N] [S]
→ Decl [Γ] [γ ⊢ lam (\x. M) ≈ lam (\x. N)] [T ⇒ S]

| DecExt : Decl [Γ & T] [γ,x:tm ⊢ app M x ≈ app N x] [S]
→ Decl [Γ] [γ ⊢ M ≈ N] [T ⇒ S]

| DecVar : Lookup [Γ] [γ ⊢ #p] [T] → Decl [Γ] [γ ⊢ #p ≈ #p] [T]

| DecApp : Decl [Γ] [γ ⊢ M1 ≈ M2] [T ⇒ S] → Decl [Γ] [γ ⊢ N1 ≈ N2] [T]
→ Decl [Γ] [γ ⊢ app M1 N1 ≈ app M2 N2] [S]

| DecSym : Decl [Γ] [γ ⊢ M ≈ N] [T] → Decl [Γ] [γ ⊢ N ≈ M] [T]

| DecTrans : Decl [Γ] [γ ⊢ M ≈ N] [T] → Decl [Γ] [γ ⊢ N ≈ O] [T]
→ Decl [Γ] [γ ⊢ M ≈ O] [T];

Declarative equality includes aβ rule, as well as an extensionality rule, which states that for two
termsM andN to be equal at typeT ⇒ S, it suffices for them to be equal when applied to a fresh variable
of type T. We again remind the reader that all meta-variables are silently associated with the identity
substitution; in particular in[γ ⊢ lam (\x.M) ≈ lam (\x.N)], the meta-variablesM andN are associated
with the identity substitution on the contextγ, x:tm. Note that every meta-variable is associated with a
simultaneous substitutions in Beluga. If this substitution is the identity, then it can be omitted. Hence,
[γ ⊢ lam (\x.M) ≈ lam (\x.N)] is equivalent to writing[γ ⊢ lam (\x.M[.., x]) ≈ lam (\x.N[..,x])].
Written in η-contracted form this is equivalent to:[γ ⊢ lam M ≈ lam N] or making the identity substitu-
tion explicit [γ ⊢ lam M[..] ≈ lam N[..]].

Note that meta-variables associated with simultaneous substitutions do not exist other systems. For
example in LF and its implementation in Twelf (17) the context of assumptions is ambient and we cannot
express dependencies of LF-variables on them. In Twelf, writing lam M is equivalent to itsη-expanded
form lam \x. M x.

3.5 Fundamental theorem

The fundamental theorem requires us to speak of all instantiations of open terms by related substitutions.
We express here the notion of related substitutions using inductive types. Trivially, empty substitutions,
written as·, are related at empty domain. Ifσ1 andσ2 are related atΓ andM1 andM2 are related atT, thenσ1

,M1 andσ2,M2 are related atΓ & T. The technical reason we use the schemactx of term assumptions only
is that we would like the substitutionsσ1 andσ2 to carry only termsM, butnotderivationsalgeqP M M T (or
declarative equality assumptions). If we had used the schema actx or a schema with declarative equality
assumptions, the proof of the fundamental theorem would be obligated to construct these derivations,
which would be more cumbersome.
inductive LogSub : (γ:ctx)(δ:actx){σ1:[δ ⊢ γ]}{σ2:[δ ⊢ γ]}{Γ:[dctx]} ctype =

| Nil : LogSub [δ ⊢ ·] [δ ⊢ ·] [nil]

A. Cave & B. Pientka 41

| Dot : LogSub [h ⊢ σ1] [h ⊢ σ2] [Γ] → Log [δ ⊢ M1 ≈ M2] [T]

→ LogSub [δ ⊢ σ1, M1] [δ ⊢ σ2, M2] [Γ & T]

We have a monotonicity lemma for logically equivalent substitutions which is similar to the mono-
tonicity lemma for logically equivalent terms:
rec wknLogSub : {π:[δ’ ⊢ δ]} LogSub [δ ⊢ σ1] [δ ⊢ σ2] [Γ]

→ LogSub [δ’ ⊢ σ1[π]] [δ’ ⊢ σ2[π]] [Γ]

The fundamental theorem requires a proof thatM1 andM2 are declaratively equal, together with log-
ically related substitutionsσ1 andσ2, and produces a proof thatM1[σ1] andM2[σ2] are logically related.
In the transitivity and symmetry cases, we appeal to transitivity and symmetry of logical equivalence, the
proofs of which can be found in the accompanying Beluga code.
rec thm : Decl [Γ] [γ ⊢ M1 ≈ M2] [T]

→ LogSub [δ ⊢ σ1] [δ ⊢ σ2] [Γ]
→ Log [δ ⊢ M1[σ1] ≈ M2[σ2]] [T] =

We show thelam case of the proof term only to make a high-level comparison tothe hand-written
proof in Sec. 2. Below, one can see that we appeal to monotonicity (wknLogSub), weak head closure
(closed), and the induction hypothesis on the subderivationd1. However, remarkably, there is no explicit
equational reasoning about substitutions, since applications of substitutions are automatically simplified.
We refer the reader to (4) for the technical details of this simplification.
fn d, s 7→ case d of
| DecLam d1 7→

LogArr (λ δ ′, π, N1, N2 7→ fn rn 7→
let ih = thm d1 (Dot (wknLogSub [δ ′] [δ] [δ ′ ⊢ π] s) rn) in
closed [δ ′ ⊢ trans1 beta refl] [δ ′ ⊢ trans1 beta refl] ih

)
...

Completeness is a corollary of the fundamental theorem. Ourstatement of the completeness theorem
is slightly complicated by the fact that declarative equality and algorithmic equality live in different
context schemas. To overcome this, we describe a predicateEmbedSub [Γ] [γ] [γ’ ⊢ ι] which states
that ι is a simple weakening substitution which performs the work of moving from term contextγ:
ctx to the corresponding (larger) algorithmic equality context γ’:actx with added algorithmic equality
assumptions at the types listed inΓ:[dctx]. Morally, this ι substitution plays the role of the identity
substitution mentioned in Sec. 2.
inductive EmbedSub : {Γ:[dctx]}{γ:ctx}(γ’:actx){ι:[γ’ ⊢ γ]} ctype =
| INil : EmbedSub [nil] [] [·]
| ISnoc : EmbedSub [Γ] [γ] [γ’ ⊢ ι]

→ EmbedSub [Γ & T] [γ,x:tm] [γ’,b:block x:tm,ax:algeqP x x T ⊢ ι, b.1]

It is then straightforward to show that embedding substitutions ι are logically related to themselves
using the main lemma.
rec embed_log : EmbedSub [Γ] [γ] [γ’ ⊢ ι] → LogSub [Γ] [γ] [γ’ ⊢ ι] [γ’ ⊢ ι]

The completeness theorem is stated below, and follows trivially by composing the fundamental the-
orem withembed_log and the main lemma to escape the logical relation.
rec completeness : EmbedSub [Γ] [γ] [γ’ ⊢ ι] → Decl [Γ] [γ ⊢ M1 ≈ M2] [T]

→ [γ’ ⊢ algeqTm M1[ι] M2[ι] T]

It is unfortunate that this transportation fromγ to γ’ is required by the current framework of contextual
types, since intuitively the algorithmic equality assumptions inγ’ are completely irrelevant for the terms
M1 andM2. It’s an open problem how to improve on this.

42 A Case Study on Logical Relations using Contextual Types

3.6 Remarks

The proof passes Beluga’s typechecking and totality checking. As part of the totality checker, Bel-
uga performs a strict positivity check for inductive types (19; 20), and a stratification check for logical
relation-style definitions.

Beluga’s built-in support for simultaneous substitutionsis a big win for this proof. The proof of the
monotonicity lemma is very simple, since the (simultaneous) weakening of algorithmic equality comes
for free, and there is no need for explicit reasoning about substitution equations in the fundamental
theorem or elsewhere. We also found that the technique of quantifying over path substitutions as op-
posed to quantifying over all extensions of a context to worksurprisingly well. However, it seems to
be non-obvious when this technique will work. In an earlier version of this proof, we had resorted to
explicitly enforcing that the substitutionπ contained onlyvariables, limiting its capabilities to weaken-
ing, exchange, and contraction. This was done with an inductive datatype like the following, where the
contextual type#[δ ⊢ tm] contains onlyvariablesof typetm:
datatype IsRenaming : {γ:ctx}(δ:ctx) {π:[δ ⊢ γ]} ctype =

| Nil : IsRenaming [] [δ ⊢ ·]
| Cons : {#p:#[δ ⊢ tm]} IsRenaming [γ] [δ ⊢ π] → IsRenaming [γ,x:tm] [δ ⊢ π, #p]

We were surprised to learn that in fact this restriction was unnecessary, and we could instead simply
directly quantify over path substitutions, as the schemaactx we rely on in our proof already effectively
restricts the substitutions we can build. However, we suspect that the technique of explicitly restricting
to renaming substitutions may still be necessary in some cases, and that it might be convenient to have a
built-in type of these renaming-only substitutions.

We remark that the completeness theorem can in fact be executed, viewing it as an algorithm for nor-
malizing derivations in the declarative system to derivations in the algorithmic system. The extension to
a proof of decidability would be a correct-by-constructionfunctional algorithm for the decision problem.
This is a unique feature of carrying out the proof in a type-theoretic setting like Beluga, where the proof
language also serves as a computation language.

Some aspects of this proof could still be improved. In particular, our treatment of the different context
schemas and the relationship between them seems unsatisfactory. We had to do a bit of work in order to
move terms fromγ:ctx to γ’:actx, and this polluted the final statement of the completeness theorem. It
can also be difficult to know when to resort to using an explicit context and a computation-level datatype,
like we did for declarative equality. This suggests there isroom for improvement in Beluga’s treatment
of contexts, and we are exploring possible approaches.

Furthermore, one might argue that having to explicitly apply the path substitutionsπ to terms like
M[π] is somewhat unsatisfactory, so one might wish for the ability to directly perform the bounded
quantification∀∆ ≥ Γ and a notion of subtyping which permits for example[Γ ⊢ tm] ≤ [∆ ⊢ tm]. This
is also a possibility we are exploring.

Overall, we found that that the tools provided by Beluga, especially its support for simultaneous
substitutions, worked remarkably well to express this proof and to obviate the need for bureaucratic
lemmas about substitutions and contexts, and we are optimistic that these techniques can scale to many
other varieties of logical relations proofs.

4 Related Work

Mechanizing proofs by logical relations is an excellent benchmark to evaluate the power and elegance of
a given proof development. Because it requires nested quantification and recursive definitions, encoding

A. Cave & B. Pientka 43

logical relations has been particularly challening for systems supporting HOAS encodings.

There are two main approaches to support reasoning about HOAS encodings: 1) In the proof-
theoretic approaches, we adopt a two-level system where we implement a specification logic (similar
to LF) inside a higher-order logic supporting (co)inductive definitions, the approach taken in Abella (9),
or type theory, the aproach taken in Hybrid (8). To distinguish in the proof theory between quan-
tification over variables and quantification over terms, (10) introduce a new quantifier,∇, to describe
nominal abstraction logically. To encode logical relations one uses recursive definitions which are part
of the reasoning logic (11). Induction in these systems is typically supported by reasoning about the
height of a proof tree; this reduces reasoning to induction over natural numbers, although much of this
complexity can be hidden in Abella. Compared to our development in Beluga, Abella lacks support
for modelling a context of assumptions and simultanous substitutions. As a consequence, some of the
tedious basic infrastructure to reason about open and closed terms and substitutions still needs to be built
and maintained. Moreover, Abella’s inductive proofs cannot be executed and do not yield a program for
normalizing derivations. It is also not clear what is the most effective way to perform the quantification
over allextensionsof a context in Abella.

2) The type-theoretic approaches fall into two categories:we either remain within the logical frame-
work and encode proofs as relations as advocated in Twelf (17) or we build a dependently typed func-
tional language on top of LF to support reasoning about LF specifications as done in Beluga. The former
approach lacks logical strength; the function space in LF is“weak” and only represents binding structures
instead of computations. To circumvent these limitations,(25) proposes to implement a reasoning logic
within LF and then use it to encode logical relation arguments. This approach scales to richer calculi
(24) and avoids reasoning about contexts, open terms and simultanous substitutions explicitly. However,
one might argue that it not only requires additional work to build up a reasoning logic within LF and
prove its consistency, but is also conceptually different from what one is used to from on-paper proofs. It
is also less clear whether the approach scales easily to proving completeness of algorithmic equality due
to the need to talk about context extensions in the definitionof logical equivalence of terms of function
type.

Outside the world of HOAS, (16) have carried out essentiallythe same proof in Nominal Isabelle,
and later (27) tackle the extension from the simply-typed lambda calculus to LF. Relative to their ap-
proach, Beluga gains substitution for free, but more importantly, equations on substitutions are silently
discharged by Beluga’s built-in support for their equational theory, so they do not even appear in proofs.
In contrast, proving these equations manually requires roughly a dozen intricate lemmas.

5 Conclusion

Our implementation of completeness of algorithmic equality takes advantage of key infrastructure pro-
vided by Beluga: it utilizes first-class simultaneous substitutions, contexts, contextual objects and the
power of recursive types. This yields a direct and compact implementation of all the necessary proofs
which directly correspond to their on-paper developments.Moreover, our proof yields an executable
program. While more work on Beluga’s frontend will improve and make simpler such developments,
we have demonstrated that the core language is not only suitable for standard structural induction proofs
such as type safety, but also proofs by logical relations.

44 A Case Study on Logical Relations using Contextual Types

References

[1] Thorsten Altenkirch (1993):A Formalization of the Strong Normalization Proof for System F in
LEGO. In Marc Bezem & Jan Friso Groote, editors:International Conference on Typed Lambda
Calculi and Applications (TLCA ’93), Lecture Notes in Computer Science664, Springer, pp. 13–
28, doi:10.1007/BFb0037095.

[2] Stefano Berardi (1990):Girard Normalization Proof in LEGO. In: Proceedings of the First Work-
shop on Logical Frameworks, pp. 67–78.

[3] Andrew Cave & Brigitte Pientka (2012):Programming with binders and indexed data-types. In:
39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’12), ACM Press, pp. 413–424, doi:10.1145/2103656.2103705.

[4] Andrew Cave & Brigitte Pientka (2013):First-class substitutions in contextual type the-
ory. In: Proceedings of the Eighth ACM SIGPLAN International Workshop on Logical
Frameworks and Meta-Languages: Theory and Practice (LFMTP’13), ACM Press, pp. 15–24,
doi:10.1145/2503887.2503889.

[5] Catarina Coquand (1992):A proof of normalization for simply typed lambda calculus writting in
ALF. In: Informal Proceedings of Workshop on Types for Proofs and Programs, Dept. of Comput-
ing Science, Chalmers Univ. of Technology and Göteborg Univ., pp. 80–87.

[6] Karl Crary (2005):Logical Relations and a Case Study in Equivalence Checking. In Bejamin C.
Pierce, editor:Advanced Topics in Types and Programming Languages, The MIT Press.

[7] Christian Doczkal & Jan Schwinghammer (2009):Formalizing a Strong Normalization Proof for
Moggi’s Computational Metalanguage: A Case Study in Isabelle/HOL-nominal. In: Proceedings
of the Fourth International Workshop on Logical Frameworksand Meta-Languages: Theory and
Practice (LFMTP’09), ACM, pp. 57–63, doi:10.1145/1577824.1577834.

[8] Amy Felty & Alberto Momigliano (2012): Hybrid - A Definitional Two-Level Approach to
Reasoning with Higher-Order Abstract Syntax. J. Autom. Reasoning48(1), pp. 43–105,
doi:10.1007/s10817-010-9194-x.

[9] Andrew Gacek (2008):The Abella Interactive Theorem Prover (System Description). In: 4th
International Joint Conference on Automated Reasoning, Lecture Notes in Artificial Intelligence
5195, Springer, pp. 154–161, doi:10.1007/978-3-540-71070-7 13.

[10] Andrew Gacek, Dale Miller & Gopalan Nadathur (2008):Combining generic judgments with re-
cursive definitions. In F. Pfenning, editor:23rd Symposium on Logic in Computer Science, IEEE
Computer Society Press, pp. 33–44, doi:10.1109/LICS.2008.33.

[11] Andrew Gacek, Dale Miller & Gopalan Nadathur (2009):Reasoning in Abella about Structural
Operational Semantics Specifications. In: Proceedings of the International Workshop on Logical
Frameworks and Metalanguages: Theory and Practice (LFMTP 2008), Electronic Notes in Theo-
retical Computer Science (ENTCS)228, Elsevier, pp. 85 – 100, doi:10.1016/j.entcs.2008.12.118.

[12] J.-Y. Girard, Y. Lafont & P. Tayor (1990):Proofs and types. Cambridge University Press.

[13] Robert Harper, Furio Honsell & Gordon Plotkin (1993):A Framework for Defining Logics. Journal
of the ACM 40(1), pp. 143–184, doi:10.1145/138027.138060.

[14] Robert Harper & Frank Pfenning (2005):On Equivalence and Canonical Forms in the LF Type The-
ory. ACM Transactions on Computational Logic6(1), pp. 61–101, doi:10.1145/1042038.1042041.

A. Cave & B. Pientka 45

[15] Aleksandar Nanevski, Frank Pfenning & Brigitte Pientka (2008): Contextual modal type theory.
ACM Transactions on Computational Logic9(3), pp. 1–49, doi:10.1145/1352582.1352591.

[16] Julien Narboux & Christian Urban (2008):Formalising in Nominal Isabelle Crary’s Com-
pleteness Proof for Equivalence Checking. Electr. Notes Theor. Comput. Sci.196, pp. 3–18,
doi:10.1016/j.entcs.2007.09.014.

[17] Frank Pfenning & Carsten Schürmann (1999):System Description: Twelf — A Meta-Logical
Framework for Deductive Systems. In H. Ganzinger, editor:16th International Conference on
Automated Deduction (CADE-16), Lecture Notes in Artificial Intelligence (LNAI 1632), Springer,
pp. 202–206, doi:10.1007/3-540-48660-714.

[18] Brigitte Pientka (2008): A type-theoretic foundation for programming with higher-order ab-
stract syntax and first-class substitutions. In: 35th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL’08), ACM Press, pp. 371–382,
doi:10.1145/1328438.1328483.

[19] Brigitte Pientka & Andreas Abel (2015):Structural Recursion over Contextual Objects. In Thorsten
Altenkirch, editor: 13th International Conference on Typed Lambda Calculi and Applications
(TLCA’15), Leibniz International Proceedings in Informatics (LIPIcs) of Schloss Dagstuhl, pp.
273–287, doi:10.4230/LIPIcs.TLCA.2015.273.

[20] Brigitte Pientka & Andrew Cave (2015):Inductive Beluga:Programming Proofs (System descrip-
tion). In: 25th International Conference on Automated Deduction (CADE-25), Springer.

[21] Brigitte Pientka & Joshua Dunfield (2008):Programming with proofs and explicit contexts. In:
ACM SIGPLAN Symposium on Principles and Practice of Declarative Programming (PPDP’08),
ACM Press, pp. 163–173, doi:10.1145/1389449.1389469.

[22] Brigitte Pientka & Joshua Dunfield (2010):Beluga: a Framework for Programming and Reasoning
with Deductive Systems (System Description). In Jürgen Giesl & Reiner Haehnle, editors:5th
International Joint Conference on Automated Reasoning (IJCAR’10), Lecture Notes in Artificial
Intelligence (LNAI 6173), Springer-Verlag, pp. 15–21, doi:10.1007/978-3-642-14203-12.

[23] Adam B. Poswolsky & Carsten Schürmann (2008):Practical programming with higher-order en-
codings and dependent types. In: 17th European Symposium on Programming (ESOP ’08), 4960,
Springer, pp. 93–107, doi:10.1007/978-3-540-78739-67.

[24] Ulrik Rasmussen & Andrzej Filinski (2013):Structural Logical Relations with Case Analysis and
Equality Reasoning. In: Proceedings of the Eighth ACM SIGPLAN International Workshop on
Logical Frameworks and Meta-languages: Theory and Practice (LFMTP’13), ACM Press, pp. 43–
54, doi:10.1145/2503887.2503891.

[25] Carsten Schürmann & Jeffrey Sarnat (2008):Structural Logical Relations. In: 23rd Annual Sym-
posium on Logic in Computer Science (LICS), Pittsburgh, PA,USA, IEEE Computer Society, pp.
69–80, doi:10.1109/LICS.2008.44.

[26] William Tait (1967): Intensional Interpretations of Functionals of Finite TypeI. J. Symb. Log.
32(2), pp. 198–212, doi:10.2307/2271658.

[27] Christian Urban, James Cheney & Stefan Berghofer (2011): Mechanizing the metatheory of LF.
ACM Trans. Comput. Log.12(2), p. 15, doi:10.1145/1877714.1877721.

I. Cervesato and K. Chaudhuri (Eds.): Tenth International Workshop
on Logical Frameworks and Meta-Languages: Theory and Practice
EPTCS ??, 2015, pp. 46–70, doi:10.4204/EPTCS.??.4

c© R. Perera and J. Cheney
This work is licensed under the
Creative Commons Attribution License.

Proof-relevant π-calculus
Roly Perera

University of Glasgow
Glasgow, UK

roly.perera@glasgow.ac.uk

James Cheney
University of Edinburgh

Edinburgh, UK
jcheney@inf.ed.ac.uk

Formalising the π-calculus is an illuminating test of the expressiveness of logical frameworks and
mechanised metatheory systems, because of the presence of name binding, labelled transitions with
name extrusion, bisimulation, and structural congruence. Formalisations have been undertaken in
a variety of systems, primarily focusing on well-studied (and challenging) properties such as the
theory of process bisimulation. We present a formalisation in Agda that instead explores the theory
of concurrent transitions, residuation, and causal equivalence of traces, which has not previously
been formalised for the π-calculus. Our formalisation employs de Bruijn indices and dependently-
typed syntax, and aligns the “proved transitions” proposed by Boudol and Castellani in the context
of CCS with the proof terms naturally present in Agda’s representation of the labelled transition
relation. Our main contributions are proofs of the “diamond lemma” for residuation of concurrent
transitions and a formal deVnition of equivalence of traces up to permutation of transitions.

1 Introduction

The π-calculus [18, 19] is an expressive model of concurrent and mobile processes. It has been
investigated extensively and many variations, extensions and reVnements have been proposed, including
the asynchronous, polyadic, and applied π-calculus (among many others). The π-calculus has also
attracted considerable attention from the logical frameworks and meta-languages community, and
formalisations of its syntax and semantics have been performed using most of the extant mechanised
metatheory techniques, including (among others) Coq [13, 12, 15], Nominal Isabelle [2], Abella [1]
(building onMiller and Tiu [26]), CLF [6], and Agda [21]. These formalisations have overcome challenges
that tested the limits of these systems (at least at the time), particularly relating to the encoding of name
binding, scope extrusion and structural congruence. Indeed, some early formalisations motivated or led
to important contributions to the understanding of these issues in diUerent systems, such as the Theory
of Contexts, or CLF’s support for monadic encapsulation of concurrent executions.

Prior formalisations have typically considered the syntax, semantics (usually via a variation on
labelled transitions), and bisimulation theory of the π-calculus. However, as indicated above, while
these aspects of the π-calculus are essential, they only scratch the surface of the properties that could
be investigated. Most of these developments have been carried out using informal paper proofs, and
formalising them may reveal challenges or motivate further research on logical frameworks.

One interesting aspect of the π-calculus that has not been formally investigated, and remains to
some extent ill-understood informally, is its theory of causal equivalence. Two transitions t1, t2 that can
be taken from a process term p are said to be concurrent (t1 ^ t2) if they could be performed “in either
order” — that is, if after performing t1, there is a natural way to transform the other transition t2 so that
its eUect is performed on the result of t1, and vice versa. The translation of the second transition is said
to be the residual of t2 after t1, written t2/t1. The key property of this operation, called the “diamond
lemma”, is that the two residuals t1/t2 and t2/t1 of transitions t1 ^ t2 result in the same process. Finally,

R. Perera and J. Cheney 47

permutation of concurrent transitions induces a causal equivalence relation on pairs of traces. This is the
standard notion of permutation-equivalence from the theory of traces over concurrent alphabets [17].

Our interest in this area stems from previous work on provenance, slicing and explanation (e.g. [22]),
which we wish to adapt to concurrent settings. Ultimately, we would like to formalise the relationship
between informal “provenance graphs” often used informally to represent causal relationships [7] and
the semantics of concurrent languages and traces. The π-calculus is a natural starting point for this
study. We wish to understand how to represent, manipulate, and reason about π-calculus execution
traces safely: that is, respecting well-formedness and causality.

In classical treatments, starting with Lévy [16], a transition is usually considered to be a triple
(e,t,e′) where e and e′ are the terms and t is some information about the step performed. Boudol and
Castellani [4] introduced the proved transitions approach for CCS in which the labels of transitions
are enriched with more information about the transition performed. Boreale and Sangiorgi [3] and
Degano and Priami [11] developed theories of causal equivalence for the π-calculus, building indirectly
on the proved transition approach; Danos and Krivine [10] and Cristescu, Krivine and Varacca [8]
developed notions of causality in the context of reversible CCS and π-calculus respectively. However,
there does not appear to be a consensus about the correct deVnition of causal equivalence for the
π-calculus. For example, Cristescu et al. [8] write “[in] the absence of an indisputable deVnition of
permutation equivalence for [labelled transition system] semantics of the π-calculus it is hard to assert
the correctness of one deVnition over another.” In their work on reversible π-calculus, they noted that
some previous treatments of causality in the π-calculus did not allow permuting transitions within the
scope of a ν-binder, and showed how their approach would allow this. Moreover, none of the above
approaches has been formalised.

In this paper, we report on a new formalisation of the π-calculus carried out in the dependently-
typed programming language Agda [20]. Our main contributions include formalisations of concurrency,
residuation, the diamond lemma, and causal equivalence. We do not attempt to formalise the above
approaches directly, any one of which seems to be a formidable challenge. Instead, we have chosen
to adapt the ideas of Boudol and Castellani to the π-calculus as directly as we can, guided by the
hypothesis that their notion of proved transitions can be aligned with the proof terms for transition
steps that arise naturally in a constructive setting. For example, we deVne the concurrency relation
on (compatibly-typed) transition proof terms, and we deVne residuation as a total function taking two
transitions along with a proof that the transitions are concurrent, rather than having to deal with a
partial operation.

Our formalisation employs de Bruijn indices [5], an approach with well-known strengths and
weaknesses compared, for example, to higher-order or nominal abstract syntax techniques employed in
existing formalisations. For convenience, we employ a restricted form of structural congruence called
braiding congruence, and we have not formalised as many of the classical results on the π-calculus as
others have, but we do not believe there are major obstacles to Vlling these gaps. To the best of our
knowledge, ours is the Vrst mechanised proof of the diamond lemma for any process calculus.

The rest of the paper is organised as follows. §2 presents our variant of the (synchronous) π-
calculus, including syntax, renamings, transitions and braiding congruence. §3 presents our deVnitions
of concurrency and residuation for transitions, and discusses the diamond lemma. §4 presents our
deVnition of causal equivalence. §5 discusses related work in greater detail and §6 concludes and
discusses prospects for future work. Appendix A summarises the Agda module structure; the source
code can be found at https://github.com/rolyp/proof-relevant-pi, release 0.1. Appendix B contains
graphical proof-sketches for some lemmas, and Appendix C some further examples of residuation.

48 Proof-relevant π-calculus

2 Synchronous π-calculus
We present our formalisation in the setting of a Vrst-order, synchronous, monadic π-calculus with
recursion and internal choice, using a labelled transition semantics. The syntax of the calculus is
conventional (using de Bruijn indices) and is given below.

Name x,y,z ::= 0 | 1 | · · ·
Action a ::= x input

x〈y〉 output
x bound output
τ silent

Process P,Q,R,S ::= 0 inactive
x.P input
x〈y〉.P output
P+Q choice
P | Q parallel
νP restriction
!P replication

Names are ranged over by x , y and z. An input action is written x . Output actions are written x〈y〉
if y is in scope and x if the action represents the output of a name whose scope is extruding, in which
case we say the action is a bound output. Bound outputs do not appear in user code but arise during
execution.

To illustrate, the conventional π-calculus term (νx) x(z).y〈z〉.0 | x〈c〉.0 would be represented using
de Bruijn indices as ν(0.n+1〈0〉.0 | 0〈m+1〉.0), provided that y and c are associated with indices n
and m. Here, the Vrst 0 represents the bound variable x , the second 0 the bound variable z, and the
third refers to x again. Note that the symbol 0 denotes the inactive process term, not a de Bruijn index.

Let Γ and ∆ range over contexts, which are Vnite initial segments of the natural numbers. The
function which extends a context with a new element is written as a postVx ·+1. A context Γ closes P
if Γ contains the free variables of P . We denote by Proc Γ the set of processes closed by Γ, as deVned
below. We write Γ ` P to mean P ∈ Proc Γ. Similarly, actions are well-formed only in closing contexts;
we write a : Action Γ to mean that Γ is closing for a, as deVned below.

Γ ` P

Γ ` 0
Γ+1 ` P
Γ ` x.P x ∈ Γ Γ ` P

Γ ` x〈y〉.P x,y ∈ Γ Γ ` P Γ ` Q
Γ ` P+Q

Γ ` P Γ ` Q
Γ ` P | Q

Γ+1 ` P
Γ ` νP

Γ ` P
Γ ` !P

a : Action Γ

x : Action Γ x ∈ Γ x : Action Γ x ∈ Γ x〈y〉 : Action Γ x,y ∈ Γ τ : Action Γ

To specify the labelled transition semantics, it is convenient to distinguish bound actions b from
non-bound actions c. A bound action b : Action Γ is of the form x or x , and shifts a process from Γ to a
target context Γ+1, freeing the index 0. A non-bound action c : Action Γ is of the form x〈y〉 or τ , and
has a target context which is also Γ. Meta-variable a ranges over all actions, bound and non-bound.

R. Perera and J. Cheney 49

2.1 Renamings

A de Bruijn indices formulation of π-calculus makes extensive use of renamings. A renaming ρ : Γ−→∆
is any function (injective or otherwise) from Γ to ∆. The labelled transition semantics makes use of
the lifting of the successor function ·+1 on natural numbers to renamings, which we call push to
avoid confusion with the ·+1 operation on contexts; pop y which undoes the eUect of push, replacing
0 by y; and swap, which transposes the roles of 0 and 1. This de Bruijn treatment of π-calculus is
similar to that of HirschkoU’s asynchronous µs calculus [14], except that we give a late rather than
early semantics; other diUerences are discussed in §5 below.

pushΓ : Γ−→ Γ+1
push x = x+1

popΓ : Γ−→ Γ+1−→ Γ
pop y 0 = y

pop y (x+1) = x

swapΓ : Γ+2−→ Γ+2
swap 0 = 1
swap 1 = 0

swap (x+2) = x+2

The Γ subscripts that appear on pushΓ, popΓ x and swapΓ are shown in grey to indicate that they may
be omitted when their value is obvious or irrelevant; this is a convention we use throughout the paper.

2.1.1 Lifting renamings to processes and actions

The functorial extension ρ∗ : Proc Γ−→ Proc ∆ of a renaming ρ : Γ−→ ∆ to processes is deVned in the
usual way. Renaming under a binder utilises the action of ·+1 on renamings, which is also functorial.
Syntactically, ρ∗ binds tighter than any process constructor.

·∗ : (Γ−→ ∆)−→ Proc Γ−→ Proc ∆
ρ∗0 = 0

ρ∗(x.P) = ρx.(ρ+1)∗P
ρ∗(x〈y〉.P) = ρx〈ρy〉.ρ∗P
ρ∗(P+Q) = ρ∗P+ρ∗Q
ρ∗(P | Q) = ρ∗P | ρ∗Q
ρ∗(νP) = ν(ρ+1)∗P
ρ∗(!P) = !ρ∗P

·∗ : (Γ−→ ∆)−→ Action Γ−→ Action ∆
ρ∗ x = ρx
ρ∗ x = ρx
ρ∗ τ = τ

ρ∗ x〈y〉= ρx〈ρy〉

·+1 : (Γ−→ ∆)−→ Γ+1−→ ∆+1
(ρ+1) 0 = 0

(ρ+1) (x+1) = ρx+1

2.1.2 Properties of renamings

Several equational properties of renamings are used throughout the development; here we present
the ones mentioned elsewhere in the paper. Diagrammatic versions of the lemmas, along with string
diagrams that oUer a graphical intuition for why the lemmas hold, are given in Appendix B.

50 Proof-relevant π-calculus

Lemma 1. pop x ◦push = id
Freeing the index 0 and then immediately substituting x for it is a no-op.
Lemma 2. pop 0◦push+1 = id
Lemma 3. swap+1◦ swap ◦ swap+1 = swap ◦ swap+1◦ swap
The above are two equivalent ways of swapping indices 0 and 2.
Lemma 4. pop 0◦ swap = pop 0
Lemma 5. swap ◦push+1 = push, swap ◦push = push+1
Lemma 6. push ◦ρ = ρ+1◦push
Lemma 7. ρ ◦pop x = pop ρx ◦ρ+1
Lemma 8. swap ◦ρ+2 = ρ+2◦ swap
These last two lemmas assert various naturality properties of push, pop x and swap.

2.2 Labelled transition semantics

An important feature of our semantics is that each transition rule has an explicit constructor name. This
allow derivations to be written in a compact, expression-like form, similar to the proven transitions used
by Boudol and Castellani to deVne notions of concurrency and residuation for CCS [4]. However, rather
than giving an additional inductive deVnition describing the structure of a “proof” that P a−−−−→R ,
we simply treat the inductive deVnition of −−−−→ as a data type. This is a natural approach in a
dependently-typed setting.

The rule names are summarised below, and have been chosen to reWect, where possible, the structure
of the process triggering the rule. The corresponding relation P a−−−−→R is deVned in Figure 1, for
any process Γ ` P , any a : Action Γ with target ∆ ∈ {Γ,Γ+1}, and any ∆ ` R .

Transition E,F ::= x.P input on x
x〈y〉.P output y on x
E+Q P+F choose left or right branch
E a|Q P |a F propagate a through parallel composition on the left or right
E |τy F E τy| F rendezvous (receiving y on the left or right)
νE initiate name extrusion
E |τν F E τν | F extrusion rendezvous (receiving 0 on the left or right)
νaE propagate a through binder
!E replicate

The constructor name for each rule is shown to the left of the rule. There is an argument position,
indicated by ·, for each premise of the rule. Note that there are two forms of the transition constructors
· a| · and νa· distinguished by whether they are indexed by a bound action b or by a non-bound action
c. Moreover there are additional (but symmetric) rules of the form P+ ·, P |b · and P |b · where the
sub-transition occurs on the opposite side of the operator, and similarly · τν | · and · τy| · rules in which
the positions of sender and receiver are transposed. These are all straightforward variants of the
rules shown, and are omitted from Figure 1 for brevity. Meta-variables E and F range over transition
derivations; if E : P a−−−−→R then src(E) denotes P and tgt(E) denotes R .

Although a de Bruijn formulation of pi calculus requires a certain amount of housekeeping, one
pleasing consequence is that the usual side-conditions associated with the π-calculus transition rules
are either subsumed by syntactic constraints on actions, or “operationalised” using the renamings above.
In particular:

R. Perera and J. Cheney 51

P a−−−−→R

x.P x.P x−−−−−→P
x〈y〉.P

x〈y〉.P x〈y〉−−−−−→P ·+Q P a−−−−−→R
P+Q a−−−−−→R

· c|Q P c−−−−−→R
P | Q c−−−−−→R | Q · b|Q P b−−−−−→R

P | Q b−−−−−→R | push∗Q · |τy · P
x−−−−−→R Q x〈y〉−−−−−→S

P | Q τ−−−−−→ (pop y)∗R | S

ν· P
(x+1)〈0〉−−−−−→R

νP x−−−−−→R · |τν · P
x−−−−−→R Q x−−−−−→S

P | Q τ−−−−−→ ν(R | S) νc· P push∗c−−−−−→R
νP c−−−−−→ νR

νb· P push∗b−−−−−→R
νP b−−−−−→ ν(swap∗R) !· P | !P

a−−−−−→R
!P a−−−−−→R

..
Figure 1: Labelled transition rules (P+ ·, P |b ·, P |c ·, · τν | · and · τy| · variants omitted)

1. The use of push in the · b|Q rule corresponds to the usual side-condition asserting that the binder
being propagated by P is not free in Q. In the de Bruijn setting every binder “locally” has the
name 0, and so this requirement can be operationalised by rewiring Q so that the name 0 is
reserved. The push will be matched by a later pop which substitutes for 0, in the event that the
action has a successful rendezvous.

2. The ν· rule requires an extrusion to be initiated by an output of the form x+1〈0〉, capturing the
usual side-condition that the name being extruded on is distinct from the name being extruded.

3. The rules of the form νa require that the action being propagated has the form push∗a, ensuring
that it contains no uses of index 0. This corresponds to the usual requirement that an action can
only propagate through a binder that it does not mention.

The use of swap in the νb case follows HirschkoU [14] and has no counterpart outside of the de
Bruijn setting. As a propagating binder passes through another binder, their local names are 0 and 1.
Propagation transposes the binders, and so to preserve naming we rewire R with a “braid” that swaps 0
and 1. Since binders are also reordered by permutations that relate causally equivalent executions, the
swap renaming will also play an important role when we consider concurrent transitions (§3).

The following schematic derivation shows how the compact notation works. Suppose E : P z+2〈0〉−−−−→
R takes place immediately under a ν-binder, causing the scope of the binder to be extruded. Then
suppose the resulting bound output propagates through another binder, giving the partial derivation on
the left:

νz ·
ν·

E ⋮
P z+2〈0〉−−−−−→R

νP z+1−−−−−→R
ννP z−−−−−→ νR νz ·

νE ⋮
νP z+1−−−−−→R

ννP z−−−−−→ νR νzνE ⋮
ννP z−−−−−→ νR

with E standing in for the rest of the derivation. The blue constructors annotating the left-hand side of
the derivation tree can be thought of as a partially unrolled “transition term” representing the proof.

52 Proof-relevant π-calculus

The · placeholders associated with each constructor are conceptually Vlled by the transition terms
annotating the premises of that step. We can “roll up” the derivation by a single step, by moving the
premises into their corresponding placeholders, as shown in the middle Vgure.

By repeating this process, we can write the whole derivation compactly as νzνE , as shown on the
right. Thus the compact form is simply a Wattened transition derivation: similar to a simply-typed
lambda calculus term written as a conventional expression, in a (Church-style) setting where a term is,
strictly speaking, a typing derivation.

2.2.1 Residuals of transitions and renamings

A transition survives any suitably-typed renaming. As alluded to already, this will be essential to
formalising causal equivalence. First we deVne the (rather trivial) residual of a renaming ρ : Γ−→ ∆
after an action a : Action Γ.
DeVnition 1 (Residual of ρ after a).

ρ/b def= ρ+1
ρ/c def= ρ

The complementary residual a/ρ is also deVned and is simply the renamed action ρ∗a deVned earlier in
§2.1.1. We use the latter notation.

Lemma 9. Suppose E : P a−−−−→ Q and ρ : Γ −→ ∆, where Γ ` P . Then there exists a transition E/
ρ : ρ∗P ρ∗a−−−−→ (ρ/a)∗Q such that tgt(E/ρ) = ρ/a∗Q.

P

ρ∗P

Q

(ρ/a)∗Q

E

E/ρ

ρ∗ (ρ/a)∗

The proof is the obvious lifting of a renaming to a transition, and is given in Appendix C.
We would not expect E/ρ to be derivable for arbitrary ρ in all extensions of the π-calculus. In

particular, the mismatch operator [x 6= y]P that steps to P if x and y are distinct names is only stable
under injective renamings.

2.2.2 Structural congruences

We believe our semantics to be closed under the usual π-calculus congruences, but have not attempted
to formalise this. The “braiding” congruence ≅ introduced in §3.2.1 is in fact a standard π-calculus
congruence, which we use to track changes in the relative position of binders under permutations
of traces. This could be generalised to include more congruences, but at a corresponding cost in
formalisation complexity.

3 Concurrency and residuals

We now use the compact notation for derivations to deVne a notion of concurrency for transitions with
the same source state, following the work of Boudol and Castellani for CCS [4]. Concurrent transitions
are independent, or causally unordered: they can execute in either order without signiVcant interference.
Permutation of concurrent transitions induces a congruence on traces, which is the topic of §4.

R. Perera and J. Cheney 53

3.1 Concurrent transitions

Transitions P a−−−−→ R and Q a′−−−−→ S are coinitial iU P = Q. We now deVne a symmetric and
irreWexive relation^ over coinitial transitions. If E ^E ′ we say E and E ′ are concurrent. The relation
is deVned as the symmetric closure of the rules given in Figure 2, again with trivial variants of the rules
omitted. For the transition constructors of the form · a|Q and νa· which come in bound and non-bound
variants, we abuse notation a little and write a single^ rule quantiVed over a to mean that there are
two separate (but otherwise identical) cases.

E ^E ′

P |a F ^ E a′ |Q
E ^ E ′

E a|Q ^ E ′ |τy F
F ^ F ′

P |a F ^ E |τy F ′
E ^E ′

E a|Q ^ E ′ |τν F
F ^ F ′

P |a F ^ E |τν F ′

E ^E ′
E+Q ^E ′+Q

F ^ F ′
P |aE ^P |a′ E ′

E ^E ′
E a|Q ^ E ′ a′ |Q

E ^ E ′ F ^ F ′
E |τy F ^ E ′ |τz F ′

E ^E ′ F ^ F ′
E |τy F ^ E ′ τz | F ′

E ^E ′ F ^ F ′
E |τy F ^ E ′ |τν F ′

E ^E ′ F ^ F ′
E |τy F ^ E ′ τν | F ′

E ^E ′ F ^ F ′
E |τν F ^ E ′ |τν F ′

E ^E ′ F ^ F ′
E |τν F ^ E ′ τν | F ′

E ^E ′
νE ^ νE ′

E ^E ′
νE ^ νaE ′

E ^E ′
νaE ^ νa′E ′

E ^E ′
!E ^ !E ′

..
Figure 2: Concurrent coinitial transitions (P+ ·, and some · τy| · and · τν | · variants omitted)

The Vrst rule, P |a F ^ E a′ | Q, says that two transitions E and F are concurrent if they take
place on opposite sides of the same parallel composition. The remaining rules propagate concurrent
sub-transitions up through ν, choice, parallel composition, and replication. Note that there are no
rules allowing us to conclude that a left-choice step is concurrent with a right-choice step: choices
are mutually exclusive. Likewise, there are no rules allowing us to conclude that an input or output
transition is concurrent with any other transition; since both E and E ′ are required to be coinitial, if
one of them is an input or output step then they are equal and hence not concurrent.

The E |τyF ^ E ′ |τz F ′ rule says that a rendezvous is concurrent with another rendezvous under the
same parallel composition, as long as the two inputs are concurrent on the left, and the two outputs
are concurrent on the right. The E |τyF ^ E ′ τz | F ′ variant is similar, but permits concurrent input and
output on the left, with their rendezvous partners concurrent on the right. The E |τyF ^ E ′ τν | F ′ rule
and variants permit a regular rendezvous and an extrusion-rendezvous to be concurrent.

3.2 Residuals of concurrent transitions

Intuitively, if E ^E ′ then E and E ′ are “parallel moves” in the sense of Curry and Feys [9]: if either
execution step is taken, the other remains valid, and if both are taken, one ends up in (essentially) the
same state, regardless of which step is taken Vrst.

However, concurrent transitions are not completely independent: the location and nature of the
redex identiVed by one transition may change as a consequence of the earlier transition. This intuition
is captured by the notion of the residual E/E ′, explored notably by Lévy in the lambda calculus [16],

54 Proof-relevant π-calculus

and later considered by Stark for concurrent transition systems [25] and in the speciVc setting of CCS
by Boudol and Castellani [4]. The residual speciVes how E must be adjusted to take into account the
fact that E ′ has taken place.

DeVnition 2 (Residual). Suppose E ^ E ′. Then the residual of E after E ′, written E/E ′, is given by
the least function satisfying the equations in Figure 3.

The operator ·/· has higher precedence than any transition constructor. The deVnition makes use
of the renaming lemmas in §2.1.2, and is rather tricky; Appendix C.1 gives several examples which
illustrate some of the subtleties that arise in the π-calculus setting, in particular relating to name
extrusion.

E/E ′
(P |a F)/(E c|Q) = tgt(E) |a F
(P |a F)/(E b|Q) = tgt(E) |a push∗F
(E a|Q)/(P |c F) = E a| tgt(F)
(E a|Q)/(P |b F) = push∗E a| tgt(F)
(E a|Q)/(E ′ |τy F) = (pop y)∗(E/E ′) a| tgt(F)
(P |a F)/(E |τy F ′) = (pop y)∗tgt(E) |a F/F ′
(E |τy F)/(E ′ b|Q) = E/E ′ |τy push∗F
(E |τy F)/(E ′ c|Q) = E/E ′ |τy F
(E |τy F)/(P |b F ′) = push∗E |τy F/F ′
(E |τy F)/(P |c F ′) = E |τy F/F ′
(E x |Q)/(E ′ |τν F) = νx (E/E ′ x+1| tgt(F))
(E x |Q)/(E ′ |τν F) = ν(E/E ′ x+1〈0〉| tgt(F))
(E c|Q)/(E ′ |τν F) = νc(E/E ′ push∗c| tgt(F))
(P |x F)/(E |τν F ′) = νx (tgt(E) |x+1 F/F ′)
(P |x F)/(E |τν F ′) = ν(tgt(E) |x+1〈0〉 F/F ′)
(P |c F)/(E |τν F ′) = νc(tgt(E) |push∗c F/F ′)
(E |τν F)/(E ′ b|Q) = E/E ′ |τν push∗F(E |τν F)/(E ′ c|Q) = E/E ′ |τν F(E |τν F)/(P |x F ′) = push∗E |τν F/F ′
(E |τν F)/(P |x F ′) = push∗E |τ0 F/F ′(E |τν F)/(P |c F ′) = E |τν F/F ′(E+Q)/(E ′+Q) = E/E ′
(P |x F)/(P |b F ′) = push∗P |x F/F ′

(P |b F)/(P |x F ′) = push∗P |b F/F ′
(P |x F)/(P |u F ′) = push∗P |x+1〈0〉 F/F ′
(P |c F)/(P |b F ′) = push∗P |c F/F ′
(P |a F)/(P |c F ′) = P |a F/F ′
(E x |Q)/(E ′ b|Q) = E/E ′ x |push∗Q
(E b|Q)/(E ′ x |Q) = E/E ′ b|push∗Q
(E x |Q)/(E ′ u|Q) = E/E ′ x+1〈0〉|push∗Q
(E c|Q)/(E ′ b|Q) = E/E ′ c|push∗Q
(E a|Q)/(E ′ c|Q) = E/E ′ a|Q
(E |τy F)/(E ′ |τz F ′) = (pop z)∗(E/E ′) |τy F/F ′
(E |τy F)/(E ′ |τν F ′) = ντ (E/E ′ |τy F/F ′)
(E |τν F)/(E ′ |τz F ′) = (pop z)∗(E/E ′) |τν F/F ′(E |τν F)/(E ′ |τν F ′) = ντ (E/E ′ |τν F/F ′)(νE)/(νE ′) = E/E ′

(νE)/(νbE ′) = ν swap∗(E/E ′)
(νE)/(νcE ′) = ν E/E ′
(νbE)/(νE ′) = E/E ′
(νcE)/(νE ′) = E/E ′

(νbE)/(νbE ′) = νE/E ′
(νcE)/(νbE ′) = νc swap∗(E/E ′)
(νbE)/(νcE ′) = νb E/E ′
(νcE)/(νcE ′) = νc E/E ′

(!E)/(!E ′) = E/E ′

..
Figure 3: Residual of E after E ′, omitting · τy| · and · τν | · cases

3.2.1 CoVnality of residuals

The idea that one ends up in the same state regardless of whether E or E ′ is taken Vrst is called
coVnality. In CCS, where actions never involve binders, and in the lambda calculus, where binders do
not move around, coVnality simply means the target states are equivalent. Things are not quite so
simple in late-style π-calculus, because binders propagate during execution, as bound actions. Consider

R. Perera and J. Cheney 55

the process x.P | z.Q with two concurrent input actions. Initiating one of the inputs (say x) starts
propagating a binder. As this binder passes through the parallel composition, the transition rules use
push to “reserve” the free variable 0 in the right half of the process for potential use by a subsequent
pop:

· x | z.Q Γ ` x.P x−−−−−→ Γ+1 ` P
Γ ` x.P | z.Q x−−−−−→ Γ+1 ` P | z+1.(push+1)∗Q

When the action (z+1) is performed, a push on the left leaves the Vnal state with both 0 and 1 reserved:

P |z+1 · Γ+1 ` z+1.(push+1)∗Q z+1−−−−−→ Γ+2 ` (push+1)∗Q
Γ+1 ` P | z+1.(push+1)∗Q z+1−−−−−→ Γ+2 ` push∗P | (push+1)∗Q

Had these concurrent actions happened in the opposite order, the push on the left would have
been applied Vrst. The Vnal state would be (push+1)∗P | push∗Q, which is the image of push∗P |
(push+1)∗Q in the permutation swap which renames 0 to 1 and 1 to 0. Instead of the usual coVnality
square, the Vnal states are related by a “braid” (in the form of a swap) which permutes the free names:

Γ ` x.P | z.Q

Γ+1 ` P | z+1.(push+1)∗Q

Γ+1 ` x+1.(push+1)∗P | Q

Γ+2 ` push∗P | (push+1)∗Q

Γ+2 ` swap∗push∗P | swap∗(push+1)∗Q

Γ+2 ` (push+1)∗P | push∗Q

x

z

z+1

x+1

swap∗

α | β

Here α and β are equalities obtained from Lemma 5.
It is not just the reordering of bound actions which nuances π-calculus coVnality. When two τ

actions are reordered, which happen to be extrusion rendezvous of distinct binders, the resulting binders
exchange positions in the Vnal process. In the standard π-calculus this would be subsumed by the
congruence (νxy)P ≅ (νyx)P . In the de Bruijn setting, where adjacent binders cannot be distinguished,
the analogous rule is ννP ≅ νν(swap∗P), which applies a swap braid under the two binders.

These two possibilities are subsumed by the following generalised notion of coVnality. First we
deVne a braiding congruence ≅ just large enough to permit swap under a pair of binders. “CoVnality” is
then deVned using a more general braiding relation which additionally permits swaps of free variables.
Examples showing reordered extrusions are given in Appendix C.1, including concurrent extrusions of
the same binder, an interesting case identiVed by Cristescu et al. [8].

DeVnition 3 (Braiding congruence). Inductively deVne the binary relation ≅ over processes using the
rules given in Figure 4.

In Figure 4, rule names are shown to the left in blue, permitting a compact term-like notation for ≅
proofs similar to the convention we introduced earlier for transitions. The process constructors are
overloaded to witness compatibility; transitivity is denoted by ◦. It is easy to see that ≅ is also reWexive
and symmetric, and therefore a congruence. P≅ denotes the canonical proof that P ≅ P .

In what follows φ and ψ range over braiding congruences; src(φ) and tgt(φ) denote P and R , for
any φ : P ≅ R . As with transitions, braiding congruences are stable under renamings, giving rise to the
usual notion of residuation; however ρ/φ is always ρ. The proof is a straightforward induction.

56 Proof-relevant π-calculus

P ≅ R
νν-swapP νν(swap∗P) ≅ ννP νν-swap−1P ννP ≅ νν(swap∗P) · ◦ · R ≅ S P ≅ R

P ≅ S 0 0 ≅ 0

x.· P ≅ R
x.P ≅ x.R x〈y〉.· P ≅ R

x〈y〉.P ≅ x〈y〉.R ·+ · P ≅ R Q ≅ S
P+Q ≅ R+S · | · P ≅ R Q ≅ S

P | Q ≅ R | S
ν· P ≅ R
νP ≅ νR !· P ≅ R!P ≅ !R

..
Figure 4: Braiding congruence ≅

Lemma 10. For any Γ ` P , suppose φ :P −→Q and ρ : Γ−→∆. Then there exists a braiding congruence
φ/ρ : ρ∗P −→ ρ∗Q.

P

ρ∗P

Q

ρ∗Q

φ

φ/ρ

ρ ρ

DeVnition 4 (Braiding). For any ∆ ∈ {0,1,2} deVne the following family of bijective renamings
braidΓ,∆ : Γ+∆ −→ Γ+∆ and symmetric braiding relations onΓ,∆ over processes in Γ+∆.

braidΓ,0 = idΓ : Γ−→ Γ
braidΓ,1 = idΓ+1 : Γ+1−→ Γ+1
braidΓ,2 = swapΓ : Γ+2−→ Γ+2

P onΓ,∆ P ′ ⇐⇒ braidΓ,∆∗P ≅ P ′

Our key soundness result is that residuals of concurrent transitions E and E ′ are always coVnal
up to a braiding of type onΓ,∆ where ∆ ∈ {0,1,2} is the number of free variables introduced by E and
E ′/E . Rather than the usual parallel-moves square on the left, the residuals satisfy pentagons of the
form shown in the centre of Figure 5, where γ :Q onΓ,∆ Q′ is a braiding.

P

R

R ′

Q
E

E ′

E ′/E

E/E ′
Γ ` P

Γ′ ` R

Γ′′ ` R ′

Γ+∆ ` Q

Γ+∆ ` Q′

E

E ′

E ′/E

E/E ′

γ

Figure 5: CoVnality in the style of CCS (left); with explicit braiding (right)

Arranging for this to hold by construction introduces a certain amount of complexity, so we prove
coVnality as a separate theorem.

R. Perera and J. Cheney 57

Theorem 1 (CoVnality of residuals). Suppose E and E ′ are the transitions on the right of Figure 5, with
E ^E ′. Then there exists coVnE,E ′ :Q on∆ Q′.

The notion of concurrency extends into dimensions greater than two. Following Pratt’s higher-
dimensional automata [23], we can consider a proof χ : E ^ E ′ as a surface that represents the
concurrency of E and E ′ without committing to an order of occurrence. Every such χ : E ^ E ′ has
a two-dimensional residual χ/E ′′ with respect to a third concurrent transition E ′′. First we note that
concurrent transitions are closed under renamings.

Lemma 11. Suppose ρ : Γ−→ ∆ and E , E ′ are both transitions from Γ ` P , with χ : E ^E ′. Then there
exists χ/ρ : E/ρ ^ E ′/ρ.
Proof. By induction on χ , using Lemma 9.

Theorem 2 (Residuation preserves concurrency).
Suppose χ : E ^E ′ with E ^E ′′ and E ′^E ′′. Then there exists χ/E ′′ : E/E ′′^E ′/E ′′.
Proof. By induction on χ and inversion on the other two derivations, using Lemma 11.

Theorem 3. Suppose χ : E ^E ′, with E ′^E ′′ and E ′′^E . Then:
((E ′/E ′′)/(E/E ′′))/coVnE ′′,E = (E ′/E)/(E ′′/E)

The diagram below illustrates Theorems 2 and 3 informally. The three faces χ , χ ′ and χ ′′ with P as
a vertex witness the pairwise concurrency of E , E ′ and E ′′. Theorem 2 ensures that these have opposite
faces χ/E ′′, χ ′/E and χ ′′/E ′. Theorem 3 states that, up to a suitable braiding, there is a unique residual
of a one-dimensional transition after a concurrent two-dimensional one, connecting the faces χ ′/E and
χ ′′/E ′ via the shared edge E ′′/χ . Analogous reasoning for E/χ ′ and E ′/χ ′′ yields a cubical transition
with target P′.

P R ′′

R S3

R ′ S1

S2 P′

E ′

E

E ′′
E ′′/EE/E

′

E ′/E

E ′′/E
E′′/χ

The bold font for S1, S2, S3 and P′ indicates that they represent not a unique process but a
permutation group of processes related by braidings. At P′ there are potentially 3! = 6 variants of the
target process, one for each possible interleaving of E , E ′ and E ′′. The notation E′′/χ is again informal,
referring not to a unique transition but to a permutation group related by braidings.

58 Proof-relevant π-calculus

4 Causal equivalence

4.1 Traces

DeVne Action∗ Γ to be the set of Vnite sequences of composable actions starting at Γ. The empty
sequence at Γ is written []; extension to the left is written a :: ã. A trace t : P ã−−−−→ R is a Vnite
sequence of composable transitions with initial state src(t) = P and Vnal state tgt(t) = R . The empty
trace at P is written []P ; extension to the left of t : R ã−−−−→S by E : P a−−−−→R is written E :: t.
4.2 Residuals of traces and braidings

To deVne the residual of a trace t with respect to a braiding γ, we Vrst observe that a braiding congruence
φ :P ≅P ′ commutes (on the nose) with a transition E :P a−−−−→Q, inducing the corresponding notions
of residual φ/E (the image of the braiding congruence in the transition) and E/φ (the image of the
transition in the braiding congruence).

Theorem 4. Suppose E : P a−−−−→ R and φ : P ≅ P ′. Then there exists a process R ′, transition E/
φ : P ′ a−−−−→R ′ and structural congruence φ/E : R ≅ R ′.

P

P ′

R

R ′

E

E/φ

φ φ/E

Proof. By the deVning equations in Figure 6.
Unlike residuals of the form E/E ′, the coVnality of E/φ and φ/E is by construction. Appendix C.2

illustrates coVnality for the cases where φ is of the form νν-swapP .
To extend this notion of residuation from braiding congruences to braidings requires a more general

notion of braiding which permits the renaming component of the braiding to be shifted under a
binder. First recall (from DeVnition 4) that any braiding γ : P onΓ,∆ P ′ is of the form φ ◦ braidΓ,∆,
where braidΓ,∆ : Γ+∆ −→ Γ+∆ is the renaming id or swap, as determined by ∆ ∈ {0,1,2}, and φ
is a braiding congruence. We omit the Γ,∆ subscripts whenever possible. The more general form of
braiding allows the braid and φ components to be translated by an arbitrary context ∆′.
DeVnition 5 (∆-shifted braiding). For any context ∆ deVne

P on∆Γ,∆′ P ′⇐⇒ (braidΓ,∆′ +∆)∗P ≅ P ′
Now we deVne the residual of a transition E : Γ ` P a−−−−→ Γ+∆ ` R , where ∆ ∈ {0,1}, and

coinitial braiding γ and show that the residual γ/E is γ shifted by ∆.
DeVnition 6 (Residuals of transitions and braidings). For any transition E : P a−−−−→R and braiding
γ : P on∆ P ′ with γ = φ◦σ , deVne E/γ and γ/E by the following equations.

E/(φ◦σ) = (E/σ)/φ (φ◦σ)/E = (φ/(E/σ))◦σ/a

CoVnality is immediate by composing the square obtained by applying Lemma 9 to E and σ with the
square obtained from Theorem 4 above to φ and E/σ . Closure of (∆-shifted) braidings under residuation
follows from the fact that σ/a= σ +∆′ for some ∆′ ∈ {0,1}.

R. Perera and J. Cheney 59

E/φ
νν-swapsrc(E)/(ννx+1〈0〉E) = νxν(swap∗E)

νν-swapsrc(E)/(νxνE) = ννx+1〈0〉(swap∗E)
νν-swapsrc(E)/(νcνc′E) = νcνc′ (swap∗E)
νν-swapsrc(E)/(νbνb′E) = νbνb′ (swap∗E)

(x.P)/(x.φ) = x.tgt(φ)
(x〈y〉.P)/(x〈y〉.φ) = x〈y〉.tgt(φ)

(E+Q)/(φ+ψ) = E/φ+ tgt(ψ)
(E b|Q)/(φ+ψ) = E/φ b| tgt(ψ)
(E c|Q)/(φ+ψ) = E/φ c| tgt(ψ)
(P |b F)/(φ+ψ) = tgt(φ) |b F/ψ
(P |c F)/(φ+ψ) = tgt(φ) |c F/ψ
(E |τy F)/(φ | ψ) = E/φ |τy F/ψ
(E |τν F)/(φ | ψ) = E/φ |τν F/ψ(νE)/(νφ) = ν E/φ

(νbE)/(νφ) = νbE/φ
(νcE)/(νφ) = νcE/φ

(!E)/(!φ) = !E/(φ | !φ)
E/(φ′ ◦φ) = (E/φ)/φ′

φ/E
νν-swapsrc(E)/(ννx+1〈0〉E) = ν tgt(E)≅νν-swapsrc(E)/(νxνE) = ν swap∗tgt(E)≅νν-swapsrc(E)/(νcνc′E) = νν-swap−1

tgt(E)νν-swapsrc(E)/(νbνb′E) = νν-swap−1
swap∗(swap+1)∗swap∗tgt(E)(x.φ)/(x.P) = φ

(x〈y〉.φ)/(x〈y〉.P) = φ
(φ+ψ)/(E+Q) = φ/E
(φ+ψ)/(E b|Q) = φ/E | push∗ψ
(φ+ψ)/(E c|Q) = φ/E | ψ
(φ+ψ)/(P |b F) = push∗φ | ψ/F
(φ+ψ)/(P |c F) = φ | ψ/F
(φ | ψ)/(E |τy F) = (pop y)∗φ/E
(φ | ψ)/(E |τν F) = ν(φ/E | ψ/F)

(νφ)/(νE) = φ/E
(νφ)/(νbE) = ν swap∗φ/E
(νφ)/(νcE) = ν φ/E

(!φ)/(!E) = (φ | !φ)/E
(φ′ ◦φ)/E = (φ′/(E/φ))◦φ/E

..
Figure 6: Residual of transition E and coinitial braiding congruence φ

P R

(σ +∆)∗P

P ′

(σ +∆′)∗R

R ′

E
σ +∆ σ +∆′E/(σ +∆)

(E/(σ +∆))/φ
φ φ/(E/(σ +∆))

where both E/(σ +∆) and (E/(σ +∆))/φ have the action (σ +∆)∗a.
Finally, we extend the deVnition to traces.

DeVnition 7 (Residuals of action sequences and renamings).
Suppose ρ : Γ−→ ∆ and ã : Action∗ Γ. DeVne the residuals ρ/ã and ã/ρ, writing the latter as ρ∗ã.

ρ/[]Γ = ρ
ρ∗[]Γ = []∆

ρ/(a :: ã) = (ρ/a)/ã
ρ∗(a :: ã) = (ρ∗a) :: (ρ/a)∗ã

Lemma 12 (Residuals of traces and braidings).
Suppose t : P ã−−−−→R and γ = φ◦σ : P on∆ P ′. Then there exists a process R ′, trace P ′ σ∗ã−−−−→R ′ and
braiding γ/t : R on R ′.

P

P ′

R

R ′

t

t/γ

γ γ/t

60 Proof-relevant π-calculus

Proof. By the following deVning equations.

P

P ′

P

P ′

[]

[]/γ

γ γ/[]
P

P ′

R

R ′

S

S′

E t

E/γ t/(γ/E)

γ γ/E (γ/E)/t

[]P /γ = []P ′γ/[]P = γ
(E :: t)/γ = (E/γ) :: t/(γ/E)
γ/(E :: t) = (γ/E)/t

4.3 Causal equivalence

We now deVne causal equivalence, the congruence over traces induced by the notion of transition
residual from §3.2. A causal equivalence α : t ' u witnesses the reordering of one trace t into a
coinitial trace u by the permutation of concurrent transitions. Meta-variables α , β range over causal
equivalences.

DeVnition 8. Inductively deVne the relation ' given by the rules in Figure 7, where syntactically '
has lower priority than · :: ·. If α : t ' u then src(α) and tgt(α) denote t and u respectively.

t ' u

[]P []P ' []P · :: · E : P a−−−−−→R t ' u
E :: t ' E :: u src(t) = R ·◦ · t

′ ' u t ' t′
t ' u

(· :
: ·) :: · E : P a−−−−−→R E ′ : P a′−−−−−→R ′ t ' u
E :: E ′/E :: t ' E ′ :: E/E ′ :: u/coVnE,E ′ E ^E ′

..
Figure 7: Causal equivalence

The []P and E :: α rules are the congruence cases. The α ◦β rule closes under transitivity, which
is a form of vertical composition. The transposition rule (E :
:E ′) :: α extends an existing causal
equivalence α : t ' uwith the two possible interleavings of concurrent steps E ^E ′. What is interesting
about this rule is that the trace u must be transported through the braiding coVnE,E ′ witnessing the
coVnality of E and E ′, in order to obtain a trace u/coVnE,E ′ composable with E ′/E . The following
diagram illustrates.

P

R

R ′

Q

Q′

S

S′

S′′

E

E ′

E ′/E

E/E ′

t

u

u/coVnE,E ′

coVnE,E ′
coVnα

coVnE,E ′/u

R. Perera and J. Cheney 61

As the diagram suggests, the transposition rule causes braidings to compose vertically. Here, coVnα
is a composite braiding relating S to S′, which is extended by the braiding coVnE,E ′/u to relate S to S′′.
We leave formalising this aspect of causal equivalence to future work.

Theorem 5. ' is an equivalence relation.
Proof. ReWexivity is a trivial induction, using the []P and E :: α rules. Transitivity is immediate from the
α ◦β rule. Symmetry is trivial in the []P , E :: α and α ◦β cases. The (E :
:E ′) :: α case requires the
symmetry of^ and that (u/coVnα)/coVn−1α = u, where u= tgt(α).

5 Related work

HirschkoU’s µs calculus [14] has a similar treatment of de Bruijn indices. Its renaming operators 〈x〉, φ
and ψ are eUectively our pop x , push and swap renamings, but fused with the ·∗ operator which applies
a renaming to a process. HirschkoU’s operators are also syntactic forms in the µs calculus, rather than
meta-operations, and therefore the operational semantics also includes rules for reducing occurrences
of the renaming operators that arise during a process reduction step.

Formalisations of the π-calculus have been undertaken in several theorem provers used for mecha-
nised metatheory. Due to space limits, we limit attention to closely-related formalisation techniques
based on constructive logics.

Coq. HirschkoU [13] formalised the π-calculus in Coq using de Bruijn indices, and veriVed
properties such as congruence and structural equivalence laws of bisimulation. Despeyroux [12]
formalised the π-calculus in Coq using weak higher-order abstract syntax, assuming a decidable type of
names, and using two separate transitions, for ordinary, input and output transitions respectively; for
input and output transitions the right-hand side is a function of type name−→ proc. This formalisation
included a simple type system and proof of type soundness. Honsell, Miculan and Scagnetto [15]
formalised the π-calculus in Coq, also using weak higher-order abstract syntax. The type of names name
is a type parameter assumed to admit decidable equality and freshness (notin) relations. Transitions
are encoded using two inductive deVnitions, for free and bound actions, which diUer in the type of the
third argument (proc vs. name−→ proc). Numerous results from Milner, Parrow and Walker [19] are
veriVed, using the theory of contexts (whose axioms are assumed in their formalisation, but have been
validated semantically).

CLF. Cervesato, Pfenning, Walker and Watkins [6] formalise synchronous and asynchronous
versions of π-calculus in the Concurrent Logical Framework (CLF). CLF employs higher-order abstract
syntax, linearity and a monadic encapsulation of certain linear constructs that can identify objects such
as traces up to causal equivalence. Thus, CLF’s π-calculus encodings naturally induce equivalences on
traces. However, a nontrivial eUort appears necessary to compare CLF’s notion of trace equivalence
with others (including ours) due to the distinctive approach taken in CLF.

Agda. Orchard and Yoshida [21] present a translation from a functional language with eUects to a
π-calculus with session types and verify some type-preservation properties of the translation in Agda.

6 Conclusions and future work

To the best of our knowledge, we are the Vrst to report on a formalisation of the operational behavior of
the π-calculus in Agda. Compared to prior formalisations, ours is distinctive in two ways.

First, our formalisation employs an indexed family of types for process terms and uses the indices
instead of binding to deal with scope extrusion. Formalisations of lambda-calculi often employ this

62 Proof-relevant π-calculus

technique, but to our knowledge only Orchard and Yoshida report a similar approach for a π-calculus
formalisation. This choice helps tame the complexity of de Bruijn indices, because many invariants are
automatically checked by the type system rather than requiring additional explicit reasoning.

Second, our work appears to be the Vrst to align the notion of “proved transitions” from Boudol and
Castellani’s work on CCS with “transition proofs” in the π-calculus. This hinges on the capability to
manipulate and perform induction or recursion over derivations, and means we can leverage dependent
typing so that residuation is deVned only for concurrent transitions, rather than on all pairs of transitions.
It is worth noting that while CLF’s approach to encoding π-calculus automatically yields an equivalence
on traces, it is unclear (at least to us) whether this equivalence is the same as the one we propose, or
whether such traces can be manipulated explicitly as proof objects if desired.

In future work we may explore trace structures explicitly quotiented by causal equivalence, such
as dependence graphs [17] or event structures [4]. We are also interested in extending braiding
congruence to the full π-calculus structural congruence, and in understanding whether and how ideas
from homotopy type theory [24], such as quotients or higher inductive types, could be applied to ease
reasoning about or correct programming with π-calculus terms (modulo structural congruence) or
traces (modulo causal equivalence).

Acknowledgements The authors were supported by the Air Force OXce of ScientiVc Research,
Air Force Material Command, USAF, under grant number FA8655-13-1-3006. The Vrst author was
also supported by UK EPSRC project From Data Types to Session Types: A Basis for Concurrency and
Distribution (EP/K034413/1).

References

[1] David Baelde, Kaustuv Chaudhuri, Andrew Gacek, Dale Miller, Gopalan Nadathur, Alwen Tiu & Yuting
Wang (2014): Abella: A System for Reasoning about Relational SpeciVcations. J. Formalized Reasoning 7(2),
doi:10.6092/issn.1972-5787/4650.

[2] Jesper Bengtson & Joachim Parrow (2009): Formalising the pi-calculus using nominal logic. Logical Methods
in Computer Science 5(2:16), doi:10.2168/LMCS-5(2:16)2009.

[3] Michele Boreale & Davide Sangiorgi (1998): A Fully Abstract Semantics for Causality in the π-Calculus. Acta
Inf. 35(5), pp. 353–400, doi:10.1007/s002360050124.

[4] Gérard Boudol & Ilaria Castellani (1989): Permutation of transitions: An event structure semantics for CCS and
SCCS. In J.W. Bakker, W.-P. Roever & G. Rozenberg, editors: Linear Time, Branching Time and Partial Order
in Logics and Models for Concurrency, LNCS 354, Springer, pp. 411–427, doi:10.1007/BFb0013028.

[5] N.G. de Bruijn (1972): Lambda-Calculus Notation with Nameless Dummies: a Tool for Automatic Formula
Manipulation with Application to the Church-Rosser Theorem. Indagationes Mathematicae 34(5), pp. 381–392,
doi:10.1016/1385-7258(72)90034-0.

[6] Iliano Cervesato, Frank Pfenning, David Walker & Kevin Watkins (2002): A Concurrent Logical Framework II:
Examples and Applications. Technical Report CMU-CS-02-102, Carnegie Mellon University.

[7] James Cheney & Roly Perera (2014): An Analytical Survey of Provenance Sanitization. In: IPAW, pp. 113–126,
doi:10.1007/978-3-319-16462-5_9.

[8] Ioana Cristescu, Jean Krivine & Daniele Varacca (2013): A compositional semantics for the reversible pi-calculus.
In: LICS, pp. 388–397, doi:10.1109/LICS.2013.45.

[9] Haskell B. Curry & Robert Feys (1958): Combinatory Logic. Studies in Logic and the Foundations of
Mathematics 1, North-Holland, Amsterdam, Holland.

R. Perera and J. Cheney 63

[10] Vincent Danos & Jean Krivine (2004): Reversible Communicating Systems. In Philippa Gardner & Nobuko
Yoshida, editors: CONCUR, LNCS 3170, Springer, pp. 292–307, doi:10.1007/978-3-540-28644-8_19.

[11] Pierpaolo Degano & Corrado Priami (1999): Non-Interleaving Semantics for Mobile Processes. Theor. Comput.
Sci. 216(1-2), pp. 237–270, doi:10.1016/S0304-3975(99)80003-6.

[12] Joëlle Despeyroux (2000): A Higher-Order SpeciVcation of the pi-Calculus. In: IFIP TCS, LNCS 1872, Springer-
Verlag, pp. 425–439, doi:10.1007/3-540-44929-9_30.

[13] Daniel HirschkoU (1997): A Full Formalisation of pi-Calculus Theory in the Calculus of Constructions. In:
TPHOLs, pp. 153–169, doi:10.1007/BFb0028392.

[14] Daniel HirschkoU (1999): Handling Substitutions Explicitly in the pi-Calculus. In: Proceedings of the Second
International Workshop on Explicit Substitutions: Theory and Applications to Programs and Proofs.

[15] Furio Honsell, Marino Miculan & Ivan Scagnetto (2001): π-calculus in (Co)Inductive-type Theory. Theor.
Comput. Sci. 253(2), pp. 239–285, doi:10.1016/S0304-3975(00)00095-5.

[16] Jean-Jacques Lévy (1980): Optimal reductions in the lambda-calculus. In J. P. Seldin & J. R. Hindley, editors: To
H. B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism, Academic Press, pp. 159–191.

[17] A. Mazurkiewicz (1987): Trace Theory. In: Advances in Petri Nets 1986, Part II on Petri Nets: Applications
and Relationships to Other Models of Concurrency, LNCS 255, Springer-Verlag, pp. 279–324, doi:10.1007/3-
540-17906-2_30.

[18] Robin Milner (1999): Communicating and mobile systems: the π calculus. Cambridge University Press.

[19] Robin Milner, Joachim Parrow & David Walker (1992): A Calculus of Mobile Processes, I and II. Inf. Comput.
100(1), pp. 1–77, doi:10.1016/0890-5401(92)90009-5.

[20] Ulf Norell (2009): Dependently Typed Programming in Agda. In: Advanced Functional Programming, LNCS
5832, Springer, pp. 230–266, doi:10.1007/978-3-642-04652-0_5.

[21] Dominic A. Orchard & Nobuko Yoshida (2015): Using session types as an eUect system. In: PLACES.

[22] Roly Perera, Umut A. Acar, James Cheney & Paul Blain Levy (2012): Functional Programs That Explain Their
Work. In: ICFP, ACM, pp. 365–376, doi:10.1145/2364527.2364579.

[23] Vaughan Pratt (2000): Higher Dimensional Automata Revisited. Mathematical Structures in Computer Science
10(4), pp. 525–548, doi:10.1017/S0960129500003169.

[24] The Univalent Foundations Program (2013): Homotopy type theory: Univalent foundations of mathematics.
Technical Report, Institute for Advanced Study.

[25] Eugene W. Stark (1989): Concurrent Transition Systems. Theoretical Computer Science 64(3), pp. 221–269,
doi:10.1016/0304-3975(89)90050-9.

[26] Alwen Tiu & Dale Miller (2010): Proof Search SpeciVcations of Bisimulation and Modal Logics for the π-calculus.
ACM Trans. Comput. Logic 11(2), pp. 13:1–13:35, doi:10.1145/1656242.1656248.

64 Proof-relevant π-calculus

A Agda module structure

Figure 8 summarises the module structure of the Agda formalisation.

Utilities
Common Useful deVnitions not found in the Agda standard library
SharedModules Common imports from standard library

Core modules
Action Actions a
Action.Concur Concurrent actions a^ a′; residuals a/a′
Action.Concur.Action Residual of a^ a′ after a′′
Action.Seq Action sequences ã
Name Contexts Γ; names x
Proc Processes P
Ren Renamings ρ : Γ−→ Γ′
StructuralCong.Proc Braiding congruence relation φ : P ≅ P ′
StructuralCong.Transition Residuals E/φ and φ/E
Transition Transitions E : P a−−−−−→R
Transition.Concur Concurrent transitions χ : E ^E ′; residuals E/E ′
Transition.Concur.Cofinal CoVnality braidings γ
Transition.Concur.Cofinal.Transition Residuals E/γ and γ/E
Transition.Concur.Transition Residual χ/E
Transition.Seq Transition sequences
Transition.Seq.Cofinal Residuals t/γ and γ/t; permutation equivalence α : t ' u
Typical sub-modules
.Properties Additional properties relating to X
.Ren Renaming lifted to X

..
Figure 8: Module overview

B Renaming lemmas

Each lemma asserts the commutativity of the diagram on the left; when a string diagram is also provided,
it should be interpreted as an informal proof sketch.

Lemma 1.

Γ Γ+1

Γ

push

pop x

Γ
0
1⋮

Γ+1
0
1
2⋮

Γ
0
1
2⋮
x

push pop x

=
Γ
0
1⋮

Γ
0
1⋮

id

Lemma 2.

R. Perera and J. Cheney 65

Γ+1 Γ+2

Γ+1

pushΓ +1
popΓ+1 0

Γ+1
0
1
2⋮

Γ+2
0
1
2
3⋮

Γ+1
0
1
2⋮

push+1 pop 0

=
Γ+1
0
1
2⋮

Γ+1
0
1
2⋮

id

Lemma 3.

Γ+3

Γ+3 Γ+3

Γ+3 Γ+3

Γ+3

swapΓ+1

swapΓ +1

swapΓ +1
swapΓ+1

swapΓ+1

swapΓ +1

Γ+3
0
1
2⋮

Γ+3
0
1
2⋮

Γ+3
0
1
2⋮

Γ+3
0
1
2⋮

swapΓ +1 swapΓ+1 swapΓ +1

=
Γ+3
0
1
2⋮

Γ+3
0
1
2⋮

Γ+3
0
1
2⋮

Γ+3
0
1
2⋮

swapΓ+1 swapΓ +1 swapΓ+1

Lemma 4.

Γ+2 Γ+2 Γ+1swap

id

popΓ+1 0
Γ+2
0
1
2⋮

Γ+2
0
1
2⋮

Γ+1
0
1⋮

swap pop 0

=
Γ+2
0
1
2⋮

Γ+1
0
1⋮

pop 0

Lemma 5.

Γ+1 Γ+2

Γ+2

pushΓ +1

pushΓ+1
swapswap

Γ+1
0
1⋮

Γ+2
0
1
2⋮

Γ+2
0
1
2⋮

pushΓ+1 swapΓ

=
Γ+1
0
1⋮

Γ+2
0
1
2⋮

pushΓ +1

Γ+1
0
1⋮

Γ+2
0
1
2⋮

Γ+2
0
1
2⋮

pushΓ +1 swapΓ

=
Γ+1
0
1⋮

Γ+2
0
1
2⋮

pushΓ+1

Lemmas 6, 7 and 8.

Γ

∆

Γ+1

∆+1

Γ

∆

pushΓ

push∆ pop∆ ρx
ρ ρ+1

popΓ x
ρ

Γ+2

∆+2

Γ+2

∆+2

swapΓ

swap∆

ρ+2 ρ+2

66 Proof-relevant π-calculus

C Additional proofs

Proof of Lemma 9. By the following mutually recursive proofs-by-induction on the derivations. The
various renaming lemmas needed to enable the induction hypothesis in each case are omitted.

ρ∗Ec

ρ∗(x〈y〉.P) = ρx〈ρy〉.ρ∗P
ρ∗(E+F) = ρ∗E+ρ∗F
ρ∗(P |c F) = ρ∗P |ρ∗c ρ∗F
ρ∗(E c|Q) = ρ∗E ρ∗c| ρ∗Q
ρ∗(E |τy F) = ρ∗E |τρ∗y ρ∗F
ρ∗(E |τν F) = ρ∗E |τν ρ∗F
ρ∗(νcE) = νρ∗c(ρ+1)∗E
ρ∗(!E) = !ρ∗E

ρ∗Eb

ρ∗(x.P) = ρx.(ρ+1)∗P
ρ∗(E+F) = ρ∗E+ρ∗F
ρ∗(P |b F) = ρ∗P |ρ∗b ρ∗F
ρ∗(E b|Q) = ρ∗E ρ∗b| ρ∗Q
ρ∗(νE) = ν(ρ+1)∗E
ρ∗(νbE) = νρ∗b(ρ+1)∗E
ρ∗(!E) = !ρ∗E

C.1 Additional illustrative cases of Theorem 1

Example: permuting concurrent extrusions (diUerent binders). First, note that the residuals of
bound output transitions are not themselves necessarily bound. More speciVcally, the residuals of the
output transition on x with the output on z is bound only if the outputs represent extrusions of diUerent
ν-binders. In this section we consider only the case when the concurrent extrusions are of diUerent
ν-binders.

In this case, each binder is unaUected by the extrusion of the other, and the residuals remain bound
outputs, shifted into Γ+1 as usual. The general form of such residuals is:

Γ ` Q

Γ+1 ` S′

Γ+1 ` S Γ+2 ` Q′

Γ+2 ` swap∗Q′

Γ+2 ` Q′′

F x

F ′u

(F ′/F)u+1

(F/F ′)x+1

swap∗

φ

where φ ranges over braiding congruence. Then the residual is able to handle the inner extrusion, with
the resulting τ action again propagated through the outer binder:

· |τν ·
E ⋮

Γ ` P x−−−−−→R F ⋮
Γ ` Q x−−−−−→S

Γ ` P | Q τ−−−−−→ ν(R | S)

R. Perera and J. Cheney 67

Γ ` P | Q

Γ ` ν(R ′ | S′)

Γ ` ν(R | S) Γ ` νν(swap∗P ′ | swap∗Q′)

Γ ` νν(P ′ | Q′)

Γ ` νν(P ′′ | Q′′)

E |τν F

E ′ |τν F ′

ντ (E ′/E |τν F ′/F)

ντ (E/E ′ |τν F/F ′)

νν-swapP ′|Q′

νν(φ | ψ)

Example: permuting concurrent extrusions (same binder). Consider the process ν(x+1〈0〉.P |
z+1〈0〉.Q), as described in Cristescu et al. [8]. There are two concurrent outputs, both of which try to
extrude the top-level binder. Suppose we take the x+1〈0〉 action Vrst:

ν·
· ·| · x+1〈0〉.P x+1〈0〉−−−−−→P

Γ+1 ` x+1〈0〉.P | z+1〈0〉.Q x+1〈0〉−−−−−→ Γ+1 ` P | z+1〈0〉.Q
Γ ` ν(x+1〈0〉.P | z+1〈0〉.Q) x−−−−−→ Γ+1 ` P | z+1〈0〉.Q

If we then take the z+1〈0〉 action, the enclosing ν-binder no longer exists, and so z+1〈0〉 simply
propagates as a non-bound action.

P |z+1〈0〉 · Γ+1 ` z+1〈0〉.Q z+1〈0〉−−−−−→ Γ+1 ` Q
Γ+1 ` P | z+1〈0〉.Q z+1〈0〉−−−−−→ Γ+1 ` P | Q

Example: permuting one extrusion-rendezvous with another. Now consider what happens
when the extrusions from the previous example eventually rendezvous with a compatible input.

E |τν F : Γ ` P | Q τ−−−−−→ Γ ` ν(R | S)
E ′ |τν F ′ : Γ ` P | Q τ−−−−−→ Γ ` ν(R ′ | S′)

Γ ` P

Γ+1 ` R ′

Γ+1 ` R Γ+2 ` P ′

Γ+2 ` swap∗P ′

Γ+2 ` P ′′

Ex

E ′u

(E ′/E)u+1

(E/E ′)x+1

swap∗

φ

When the extrusions are of the same ν-binder, and the residual outputs are not bound, then we have:

Γ ` Q

Γ+1 ` S′

Γ+1 ` S Γ+1 ` Q′

Γ+1 ` Q′′

F x

F ′u

(F ′/F)u+1〈0〉

(F/F ′)x+1〈0〉

ψ

68 Proof-relevant π-calculus

and the residual of one extrusion-handling after another is a plain communication, with the resulting τ
action simply propagated through the second ν binder:

Γ ` P | Q

Γ ` ν(R ′ | S′)

Γ ` ν(R | S) Γ ` ν((pop 0)∗swap∗P ′ | Q′)

Γ ` ν((pop 0)∗P ′ | Q′)

Γ ` ν((pop 0)∗P ′′ | Q′′)

E |τν F

E ′ |τν F ′

ντ (E ′/E |τ0 F ′/F)

ντ (E/E ′ |τ0 F/F ′)

ν(α | Q′)

ν((pop 0)∗φ | ψ)

Here α is the equality (pop 0)◦ swap = pop 0 (Lemma 4) applied to P ′.
Example: permuting bound actions propagating through a binder. Now suppose we have a
process of the form νP which has two concurrent transitions propagating an input action through the
ν binder:

νx ·
E ⋮

Γ+1 ` P x+1−−−−−→ Γ+2 ` R
Γ ` νP x−−−−−→ Γ+1 ` ν(swap∗R) νu·

E ′ ⋮
Γ+1 ` P u+1−−−−−→ Γ+2 ` R ′

Γ ` νP u−−−−−→ Γ+1 ` ν(swap∗R ′)
(The derivations are valid because both x+1 and z+1 are of the form push∗b.) The residuals of E and
E ′ with respect to each other have the form:

Γ+1 ` P

Γ+2 ` R

Γ+2 ` R ′

Γ+3 ` P ′

Γ+3 ` swap∗P ′

Γ+3 ` P ′′

Ex+1

E ′u+1

(E ′/E)u+2

(E/E ′)x+2

swap∗

φ

We can use these residuals to deVne the following composite residual (νuE ′)/(νxE):

ν··
swap∗·

E ′/E ⋮
Γ+2 ` R u+2−−−−−→ Γ+3 ` P ′

Γ+2 ` swap∗R u+2−−−−−→ Γ+3 ` (swap+1)∗P ′
Γ+1 ` ν(swap∗R) u+1−−−−−→ Γ+2 ` ν(swap∗(swap+1)∗P ′)

noting that swap∗(u+2) = u+2 by Lemma 8. The complementary residual (νxE)/(νuE ′) is similar,
with x instead of u and R ′ instead of R . It remains to show that the terminal states are swap-congruent:

swap∗ν(swap∗(swap+1)∗P ′)
= ν((swap+1)∗swap∗(swap+1)∗P ′) (deVnition of ·∗)
= ν(swap∗(swap+1)∗swap∗P ′) (Lemma 3)≅ ν(swap∗(swap+1)∗P ′′) (ν(swap∗(swap+1)∗φ))

R. Perera and J. Cheney 69

Example: permuting extruding rendezvous and unhandled extrusion. Of course concurrent
transitions are not always as symmetric as the ones we have seen. Here a name extrusion which has a
successful rendezvous, resulting in a τ action, is concurrent with another which does not and which
therefore propagates as a bound output:

P |u F : Γ ` P | Q u−−−−−→ Γ+1 ` push∗P | S
E |τν F ′ : Γ ` P | Q τ−−−−−→ Γ ` ν(R | S′)

As before, it matters whether the extrusions F x ^F ′u are of the same or diUerent binders.
Sub-case: extrusions of same binders. In this case, the residuals F ′/F and F/F ′ become sends of index

0, the binder being extruded.

· |τ0 ·
push∗·

E ⋮
Γ ` P x−−−−−→ Γ+1 ` R

Γ+1 ` push∗P x+1−−−−−→ Γ+2 ` (push+1)∗R
F ′/F ⋮

Γ+1 ` S x+1〈0〉−−−−−→ Γ+1 ` Q′
Γ+1 ` push∗P | S τ−−−−−→ Γ+1 ` (pop 0)∗(push+1)∗R | Q′

For the other residual, we can derive:

ν·
R |u+1〈0〉 ·

F /F ′ ⋮
Γ+1 ` S′ u+1〈0〉−−−−−→ Γ+1 ` Q′′

Γ+1 ` R | S′ u+1〈0〉−−−−−→ Γ+1 ` R | Q′′
Γ ` ν(R | S′) u−−−−−→ Γ+1 ` R | Q′′

with Q′ ≅Q′′, and noting that pop 0 retracts push+1 (Lemma 2 below).
Sub-case: extrusions of diUerent binders. In this case the residuals F ′/F and F/F ′ remain bound

outputs. Then, with the push∗E derivation as before, we can derive:

push∗E |τν ·
F ′/F ⋮

Γ+1 ` S x+1−−−−−→ Γ+2 ` Q′
Γ+1 ` push∗P | S τ−−−−−→ Γ+1 ` ν((push+1)∗R | Q′)

and for the other residual:

νu·
R |u+1 ·

F /F ′ ⋮
Γ+1 ` S′ u+1−−−−−→ Γ+2 ` Q′′

Γ+1 ` R | S′ u+1−−−−−→ Γ+2 ` push∗R | Q′′
Γ ` ν(R | S′) u−−−−−→ Γ+1 ` ν(swap∗push∗R | swap∗Q′′)

with swap∗Q′ ≅ Q′′. It remains to establish a ≅-path between the two terminal processes. We have
Q′ ≅ swap∗Q′′ by functionality and involutivity of swap, and push+1 = swap◦push by Lemma 5 and
then the rest follows by reWexivity and congruence.

70 Proof-relevant π-calculus

C.2 CoVnality for Theorem 4

Γ ` νν(swap∗P)

Γ ` ννP

Γ+1 ` νR

Γ+1 ` νR

ννx+1〈0〉E

νν-swapP

νxν(swap∗E)

Γ ` νν(swap∗P)

Γ ` ννP

Γ ` ννR

Γ ` νν(swap∗R)

νcνc′E

νν-swapP νν-swap−1R

νcνc′(swap∗E)
Γ ` νν(swap∗P)

Γ ` ννP

Γ+1 ` ν(swap∗R)

Γ+1 ` ν(swap∗R)

νxνE

νν-swapP

ννx+1〈0〉(swap∗E)

Γ ` νν(swap∗P)

Γ ` ννP

Γ+1 ` νν((swap+1)∗swap∗R)

Γ+1 ` νν(swap∗(swap+1)∗swap∗R)

νbνb′E

νν-swapP νν-swap−1(swap+1)∗swap∗R

νbνb′(swap∗E)
..

Figure 9: CoVnality of φ/E and E/φ in the νν-swap cases

Figure 9 illustrates coVnality for the νν-swap cases, omitting the renaming lemmas used as type-level
coercions. The νν-swap−1 cases are symmetric.

I. Cervesato and K. Chaudhuri (Eds.): Tenth International Workshop
on Logical Frameworks and Meta-Languages: Theory and Practice
EPTCS 185, 2015, pp. 71–86, doi:10.4204/EPTCS.185.5

© C. Mangin & M. Sozeau
This work is licensed under the
Creative Commons Attribution License.

Equations for Hereditary Substitution in Leivant’s
Predicative System F: a case study

Cyprien Mangin
Univ Paris Diderot & École Polytechnique

Paris, France
cyprien.mangin@m4x.org

Matthieu Sozeau
Inria Paris & PPS, Univ Paris Diderot

Paris, France
matthieu.sozeau@inria.fr

This paper presents a case study of formalizing a normalization proof for Leivant’s Predicative Sys-
tem F [6] using the EQUATIONS package. Leivant’s Predicative System F is a stratified version of
System F, where type quantification is annotated with kinds representing universe levels. A weaker
variant of this system was studied by Stump & Eades [5, 3], employing the hereditary substitution
method to show normalization. We improve on this result by showing normalization for Leivant’s
original system using hereditary substitutions and a novel multiset ordering on types. Our develop-
ment is done in the COQ proof assistant using the EQUATIONS package, which provides an inter-
face to define dependently-typed programs with well-founded recursion and full dependent pattern-
matching. EQUATIONS allows us to define explicitly the hereditary substitution function, clarifying
its algorithmic behavior in presence of term and type substitutions. From this definition, consistency
can easily be derived. The algorithmic nature of our development is crucial to reflect languages with
type quantification, enlarging the class of languages on which reflection methods can be used in the
proof assistant.

1 Introduction

EQUATIONS [10] is a toolbox built as a plugin on top of the COQ proof assistant for writing dependently-
typed programs in COQ. Given a high-level specification of a function, using dependent pattern-matching
and complex recursion schemes, its purpose is to compile it to pure COQ terms. This compilation scheme
builds on the work of Goguen et al [4], which explains dependent pattern-matching [2] in terms of ma-
nipulations of propositional equalities. In essence, dependent pattern-matching is compiled away using
a reduction-preserving encoding with eliminators for the equality type between datatypes. In addition to
this compilation scheme, EQUATIONS also automatically derives the resulting equations as propositional
equalities, abstracting entirely from the encoding of pattern-matching found in the actual compiled def-
inition, and an elimination scheme corresponding to the graph of the function. This elimination scheme
can then be used to simplify proofs that directly follow the case-analysis and recursion behavior of the
function without repeating it. EQUATIONS supports definitions using arbitrarily complex well-founded
recursion schemes, including the nested kind of recursion found in hereditary substitution functions, and
the generation of unfolding lemmas and elimination schemes for those as well. Additionally, EQUA-
TIONS plays well with the Program extension of COQ to manipulate subset types (also known as refine-
ment types).

The purpose of this paper is to present a case study of using EQUATIONS to show the normalization
of Predicative System F, in an algorithmic way such that the normalization function can actually be run
inside the proof assistant.

Predicative System F was introduced by Leivant [6] to study the logical strength of different exten-
sions of arithmetic. Using kinds to represent levels of allowed predicative quantification, he can show

72 Equations for Predicative System F

that super-elementary functions can be represented in this system. He employs a Tait-Girard logical
relation proof to argue normalization.

Stump and Eades [5] took the system and studied a normalization proof using hereditary substitution.
However, they needed to define a variant of the system where the kinding rule of universal quantifications
is more restrictive, which makes level n+ 1 not closed by quantifications over types in level n. They
claim that the same derivations can be done in their system but give no proof of such fact. We remedy
this situation by giving a simple normalization proof still based on hereditary substitution using a novel
ordering on types based on multisets of kinds.

The hereditary substitution function ends up being defined as one would do in e.g. ML, but com-
bining Program and EQUATIONS, it can be shown to inhabit a richer type, providing a proof that the
function indeed computes normal forms given inputs in normal form. The pre and postconditions of the
hereditary subsitution function, which will be explicited later, are actually necessary to justify the termi-
nation of this function. From this it is easy to derive normalization and show that the system is consistent
(relatively to Coq’s theory, with the K axiom currently, although we hope to have an axiom-free version
working by the time of the workshop).

The paper is organized as follows: in §2 we present a gentle introduction to the EQUATIONS pack-
age and its features and quickly explain the main differences with the original presentation from [10].
Then we summarize the standard definitions and metatheoretical results on Predicative System F that we
proved and highlight the main differences with the presentation of [5]. We provide the COQ develop-
ment of our proof supplemented with some commentary to help follow along. First in §3 we present the
language definition, with its typing and reduction rules. Then we show in §4 some metatheoretical prop-
erties on this language, such as substitution lemmas and regularity. Section 5 is dedicated to showing
strong normalization of the calculus, which includes defining a well-founded ordering to justify the ter-
mination of the hereditary substitution function, and its definition itself using the EQUATIONS package.
We also provide as an appendix the code which is produced from this definition by COQ’s extraction
mechanism. Finally, we compare with related work and conclude in §6.

2 Equations

EQUATIONS allows one to write recursive functions by specifying a list of clauses with a pattern on the
left and a term on the right, à la Agda [9] and Epigram [8]. Here is an example recursive definition on
lists, where wildcards corresponds to arbitrary fresh variables in patterns:

Equations length {A} (l : list A) : nat :=
length []⇒ 0;
length (cons t)⇒ S (length t).

The package starts by building a splitting tree for the definition and then compiles it to a pure COQ

term. From the splitting tree, it also derives the equations as propositional equalities, which can be more
robust to use than reduction when writing proofs about the constant, although in this particular case the
compiled definition is the same as the one from the standard library. Here we have two leaves in the
computation tree hence two equations:

Check length equation 1 : ∀ A : Type, length [] = 0.
Check length equation 2 : ∀ (A : Type) (a : A) (l : list A), length (cons a l) = S (length l).

These two equations are automatically added to a rewrite hint database named length and can be used
during proofs using the simp length tactic. In addition, an elimination principle for length is derived. Note

C. Mangin & M. Sozeau 73

that length comp is just a definition of the return type of length in terms of its arguments, i.e. it is λ A l,
nat here:

Check length elim : ∀ P : ∀ (A : Type) (l : list A), length comp l→ Prop,

(∀ A : Type, P A [] 0)→
(∀ (A : Type) (a : A) (l : list A), P A l (length l)→ P A (cons a l) (S (length l)))→
∀ (A : Type) (l : list A), P A l (length l).

This elimination principle can be used in proofs to eliminate calls to length and refine at the same
time the arguments and results of the call in the goal. For example, to prove the following lemma, one
can apply the functional elimination principle using the funelim tactic to eliminate the length l call:

Lemma length rev {A} (l : list A) : length (rev l) = length l.
Proof.

funelim (length l).

We get two subgoals, easily solved by simplification and arithmetic.

A : Type
============================
length (rev []) = 0

A : Type
a : A
l : list A
H : length (rev l) = length l
============================
length (rev (cons a l)) = S (length l)

- simp length.
- simpl; rewrite length app, H; simp length; omega.

Qed.

2.1 Dependent Pattern-Matching

EQUATIONS handles not only simple pattern-matching on inductive types, but also dependent pattern-
matching on inductive families. With respect to the standard COQ match construct, it eases the definition
of complex pattern-matchings by compiling in the proof term all the inversion and unification steps that
must be witnessed. Here is an example with the le relation on natural numbers.

Inductive le : nat→ nat→ Set :=
| lz : ∀ {n}, 0 ≤ n
| ls : ∀ {m n}, m ≤ n→ (S m) ≤ (S n) where ”m ≤ n” := (le m n).

Proving antisymmetry of this relation requires only two cases, because pattern matching on the first
argument determines the endpoints of the second argument:

Equations antisym {m n : nat} (x : m ≤ n) (y : n ≤ m) : m = n :=
antisym x y by rec x⇒
antisym lz lz⇒ eq refl;

74 Equations for Predicative System F

antisym (ls x) (ls y)⇒ f equal S (antisym x y).

More precisely, in the x = lz case, it is possible during the translation to deduce that m must be
0, which implies that y cannot be some application of ls. These deductions are done automatically by
EQUATIONS, which allows to reduce this proof to its simplest form. Writing it explicitely in pure COQ

would be actually annoying and require explicit mention of impossible cases and surgical rewritings with
equalities.

2.2 Recursion

Note that we use a clause by rec x⇒ here in addition to the pattern-matching. This is a different kind of
right-hand-side, that allows to specify the recursion scheme of the function. We are using well-founded
recursion on the m ≤ n hypothesis here. The implicit ordering used is actually automatically derived
using a Derive Subterm for le command, and corresponds to the transitive closure of the direct subterm
relation, i.e. the deep structural recursion ordering.

The compiled definition cannot be checked using the built-in structural guardness check of COQ,
because the equality manipulations appearing in the term go outside of the subset of recursion schemes
recognized by it. It would have to handle commutative cuts and specific constructs on the equality type.
Also, the syntactic check can be very slow on medium-sized terms.

The solution here, using the logic to justify the recursive calls, means that we are freed from any
syntactic restriction, and any logical justification for termination is allowed. At each recursive call, we
must simply provide a proof that the given argument is strictly smaller than the initial one in the subterm
relation. An automatic proof search using the constructors of the subterm relation for le solves these
subgoals for us here, otherwise they are given as obligations for the user to prove.

As in the case of length, we provide equations and an elimination principle for the definition. In case
well-founded recursion is used, we first prove an unfolding lemma for the definition which allows us to
remove any reasoning on the termination conditions after the definition. The equations are as expected:

Check antisym equation 1 : antisym lz lz = eq refl.
Check antisym equation 2 : ∀ (n1 m0 : nat) (l : n1 ≤ m0) (l0 : m0 ≤ n1),

antisym (ls l) (ls l0) = f equal S (antisym l l0).

And the elimination principle, with the correct inductive hypothesis in the recursive case:

Check antisym elim : ∀ P : ∀ (m n : nat) (x : m ≤ n) (y : n ≤ m), antisym comp x y→ Prop,

P 0 0 lz lz eq refl
→ (∀ (n1 m0 : nat) (l : n1 ≤ m0) (l0 : m0 ≤ n1), P n1 m0 l l0 (antisym l l0)→

P (S n1) (S m0) (ls l) (ls l0) (f equal S (antisym l l0)))→
∀ (m n : nat) (x : m ≤ n) (y : n ≤ m), P m n x y (antisym x y).

The last feature of EQUATIONS necessary to write real definitions is the with construct. This con-
struct allows to do pattern-matching on intermediary results in a definition. A typical example is the filter
function on lists, which selects all elements of the original list respecting some boolean predicate:

Context {A} (p : A→ bool).

Equations filter (l : list A) : list A :=
filter [] := [] ;
filter (cons a l)⇐ p a⇒ { | true := cons a (filter l) ; | false := filter l }.

The ⇐ p a ⇒ right-hand side adds a new pattern to the left-hand side of its subprogram, for an
object of type bool here. The subprogram is actually defined as another proxy constant, which takes as

C. Mangin & M. Sozeau 75

arguments the variables a, p and a new variable of type bool. The clauses of the subprogram can shortcut
the filter (cons a l) part of the pattern which is automatically inferred from the enclosing left-hand side.

The generated equations for such definitions go through the proxy constant, hence we have two
equations for filter and two for filter helper 1, which is the name of the proxy constant. To generate
the elimination principle, a mutually inductive graph is generated, and the predicate applying to the
subprogram is defined in terms of the original one, adding an equality between the new variable and the
exact term it is applied to in the enclosing program. This way, we cannot forget during proofs that the
true or false cases are actually results of a call to p a. Note that there are three leaves in the original
program (and splitting tree) hence three cases to consider here.

Check ?filter elim : ∀ (A : Type) (p : A→ bool) (P : list A→ list A→ Prop)
(P0:=λ (a : A) (refine : bool) (l H : list A), p a = refine→ P (cons a l) H),

P [] []→ (∀ (a : A) (l : list A), P l (filter p l)→ P0 a true l (cons a (filter p l)))→
(∀ (a : A) (l : list A), P l (filter p l)→ P0 a false l (filter p l))→
∀ l : list A, P l (filter p l).

In general, the term used as a new discriminee is abstracted from the context and return type at
this point of the program before checking the subprogram. In that case the eliminator predicate for the
subprogram has a dependent binding for the t = refine hypothesis that is used to rewrite in the type of
hypotheses and results. This is examplified in the following classical example:

Inductive incl {A} : list A→ list A→ Prop :=
stop : incl nil nil

| keep {x : A} {xs ys : list A} : incl xs ys→ incl (cons x xs) (cons x ys)
| skip {x : A} {xs ys : list A} : incl xs ys→ incl (xs) (cons x ys).

We define list inclusion inductively and show that filtering out some elements from a list xs results
in a included list.

Equations(nocomp) sublist {A} (p : A→ bool) (xs : list A) : incl (filter p xs) xs :=
sublist A p nil := stop ;
sublist A p (cons x xs) with p x := {
| true := keep (sublist p xs) ; | false := skip (sublist p xs) }.

Here at the with node, the return type is incl (if p x then cons x (filter p xs) else filter p xs) (cons
x xs). We abstract p x from the return type and check the new subprogram in context A P x xs (refine :
bool) with return type: incl (if refine then cons x (filter p) xs else filter p xs) (cons x xs).

Each of the patterns instantiates refine to a constructor, so the return type reduces to the two ex-
pected cases matching with conclusions of the incl relation. The (nocomp) option indicates that we do
not want the return type to be defined using a comp constant. Indeed, the term keep (sublist p xs) would
not be well-typed, as it is expected to have type sublist comp p (x :: xs) which is incl (filter p (x :: xs)) (x
:: xs), but has type incl (x :: filter p xs) (x :: xs). This is just a technical limitation we hope to remove in
the future.

Check ?sublist elim : ∀ (P : ∀ (A : Type) (p : A→ bool) (xs : list A), incl (filter p xs) xs→ Prop)
(P0:= λ (A : Type) (p : A→ bool) (a : A) (refine : bool) (l : list A)
(H : incl (filter obligation 2 (filter p) a refine l) (cons a l)),
∀ Heq : p a = refine, P A p (cons a l)

(eq rect r (λ r : bool, incl (filter obligation 2 (filter p) a r l) (cons a l)) H Heq)),
(∀ (A : Type) (p : A→ bool), P A p [] stop)→
(∀ (A : Type) (p : A→ bool) (a : A) (l : list A),

76 Equations for Predicative System F

P A p l (sublist p l)→ P0 A p a true l (keep (sublist p l)))→
(∀ (A : Type) (p : A→ bool) (a : A) (l : list A),

P A p l (sublist p l)→ P0 A p a false l (skip (sublist p l)))→
∀ (A : Type) (p : A→ bool) (xs : list A), P A p xs (sublist p xs).

The resulting elimination principle, while maybe not so useful in that case as this program constructs
a proof, shows the explicit rewriting needed in the definition of the subpredicate P0.

This concludes our exposition of EQUATIONS and we now turn to the formalization of Predicative
System F.

3 Typing and reduction

3.1 Definition of terms

Recall that Predicative System F is a typed lambda calculus with type abstractions and applications. Our
type structure is very simple here, with just the function space and universal quantification on kinded type
variables. We use an absolutely standard de Bruijn encoding for type and term variables. The kinds (a.k.a
universe levels) are represented using natural numbers. Our development is based on Jérôme Vouillon’s
solution to the POPLmark challenge for System Fsub [11].

Definition kind := nat.

Inductive typ : Set :=
| tvar : nat→ typ | arrow : typ→ typ→ typ | all : kind→ typ→ typ.

We will write ∀ X :* k. T for the quantification over types of kind k.

Inductive term : Set :=
| var : nat→ term
| abs : typ→ term→ term
| app : term→ term→ term
| tabs : kind→ term→ term
| tapp : term→ typ→ term.

Our raw terms are simply the abstract syntax trees.

3.2 Shiftings and substitutions

We define the different operations of shifting and substitutions with the EQUATIONS package, we only
show the substitution function here which uses a with right-hand side. All the development can be
downloaded or browsed at http://equations-fpred.gforge.inria.fr.

Check shift typ : ∀ (X : nat) (t : term), term.
Check tsubst : typ→ nat→ typ→ typ.

Equations subst (t : term) (x : nat) (t’ : term) : term :=
subst (var y) x t’⇐ lt eq lt dec y x⇒ {
| inleft (left)⇒ var y;
| inleft (right)⇒ t’;
| inright ⇒ var (y - 1) };

subst (abs T1 t2) x t’⇒ abs T1 (subst t2 (1 + x) (shift 0 t’));

C. Mangin & M. Sozeau 77

subst (app t1 t2) x t’⇒ app (subst t1 x t’) (subst t2 x t’);
subst (tabs k t2) x t’⇒ tabs k (subst t2 x (shift typ 0 t’));
subst (tapp t1 T2) x t’⇒ tapp (subst t1 x t’) T2.

Check subst typ : term→ nat→ typ→ term.

3.3 Contexts

We define the contexts env and the two functions get kind and get var which access the context. A
context is an interleaving of types and terms contexts. Vouillon’s great idea is to have parallel de Bruijn
indexings for type and term variables, which means separate indices for type and term variables. That
way, shifting and substitution of one kind does not influence the other, making weakening and substitu-
tion lemmas much simpler, we follow this idea here.

Inductive env : Set :=
| empty : env | evar : env→ typ→ env | etvar : env→ kind→ env.

Note that EQUATIONS allows wildcards and overlapping clauses with a first match semantics, as
usual.

Equations(nocomp) get kind (e : env) (X : nat) : option kind :=
get kind empty ⇒ None;
get kind (evar e) X⇒ get kind e X;
get kind (etvar T) O⇒ Some T;
get kind (etvar e) (S X)⇒ get kind e X.

We need the functorial map on option types to ease writing these partial lookup functions.

Equations opt map (A B : Set) (f : A→ B) (x : option A) : option B :=
opt map f (Some x)⇒ Some (f x);
opt map None⇒ None.

Equations(nocomp) get var (e : env) (x : nat) : option typ :=
get var empty ⇒ None;
get var (etvar e) x⇒ opt map (tshift 0) (get var e x);
get var (evar T) O⇒ Some T;
get var (evar e) (S x)⇒ get var e x.

3.4 Well-formedness conditions

We also define some well-formedness conditions for types, terms and contexts. Namely, in a type (resp.
in a term), the variables must all be kinded (resp. typed). We just show the wf typ definition here, those
follow Stump and Haye’s work.

Equations wf typ (e : env) (T : typ) : Prop :=
wf typ e (tvar X)⇒ get kind e X 6= None;
wf typ e (arrow T1 T2)⇒ wf typ e T1 ∧ wf typ e T2;
wf typ e (all k T2)⇒ wf typ (etvar e k) T2.

78 Equations for Predicative System F

3.5 Kinding and typing rules

The kinding rules are the main difference between Leivant’s and Stump’s presentations. We refer to these
works for pen and paper presentations of these systems, due to lack of space, we cannot include them
here. The case for universal quantification sets the level of a universal type at 1 + max k k’, where k and
k’ are respectively the domain and codomain kinds, in Stump’s case, which allows for a straightforward
order on types based on levels, but this means that each level is not closed under products from lower
levels anymore. In other words, multiple quantifications at the same level raise the overall level. For
example (∀ X :* 0. X) :* 1 as expected but ∀ X :* 0. ∀ Y :* 0. X :* (1 + max 0 (1 + max 0 0)) = 2. This is
a very strange behavior.

We use the standard predicative product rule which sets the product level to max (k+1) k’, which di-
rectly corresponds to Martin-Löf’s Predicative Type Theory. Note that the system includes cumulativity
through the Var rule which allows to lift a type variable declared at level k into any higher level k’.

Inductive kinding : env→ typ→ kind→ Prop :=
| T TVar : ∀ (e : env) (X : nat) (k k’ : kind), wf env e→

get kind e X = Some k→ k⇐ k’→ kinding e (tvar X) k’
| T Arrow : ∀ e T U k k’, kinding e T k→ kinding e U k’→ kinding e (arrow T U) (max k k’)
| T All : ∀ e T k k’, kinding (etvar e k) T k’→ kinding e (all k T) (max (k+1) k’).

The typing relation is straightforward. Just note that we check for well-formedness of environments
at the variable case, so typing derivations are always well-formed.

Inductive typing : env→ term→ typ→ Prop :=
| T Var (e : env) (x : nat) (T : typ) : wf env e→ get var e x = Some T → typing e (var x) T
| T Abs (e : env) (t : term) (T1 T2 : typ) :

typing (evar e T1) t T2→ typing e (abs T1 t) (arrow T1 T2)
| T App (e : env) (t1 t2 : term) (T11 T12 : typ) :

typing e t1 (arrow T11 T12)→ typing e t2 T11→ typing e (app t1 t2) T12
| T Tabs (e : env) (t : term) (k : kind) (T : typ) :

typing (etvar e k) t T → typing e (tabs k t) (all k T)
| T Tapp (e : env) (t : term) k (T1 T2 : typ) :

typing e t (all k T1)→ kinding e T2 k→ typing e (tapp t T2) (tsubst T1 0 T2).

3.6 Reduction rules

To define normalization we must formalize the reduction relation of the calculus. Beta-redexes for this
calculus are the application of an abstraction to a term and the application of a type abstraction to a type.

Inductive red : term→ term→ Prop :=
| E AppAbs (T : typ) (t1 t2 : term) : red (app (abs T t1) t2) (subst t1 0 t2)
| E TappTabs k (T : typ) (t : term) : red (tapp (tabs k t) T) (subst typ t 0 T).

We define the transitive closure of reduction on terms by closing red by context.

Inductive sred : term→ term→ Prop :=
| Red sred t t’ : red t t’→ sred t t’
| sred trans t1 t2 t3 : sred t1 t2→ sred t2 t3→ sred t1 t3
| Par app left t1 t1’ t2 : sred t1 t1’→ sred (app t1 t2) (app t1’ t2)
| Par app right t1 t2 t2’ : sred t2 t2’→ sred (app t1 t2) (app t1 t2’)
| Par abs T t t’ : sred t t’→ sred (abs T t) (abs T t’)

C. Mangin & M. Sozeau 79

| Par tapp t t’ T : sred t t’→ sred (tapp t T) (tapp t’ T)
| Par tabs k t t’ : sred t t’→ sred (tabs k t) (tabs k t’).

Definition reds t n := clos refl sred t n.

We can prove usual congruence lemmas on reds showing that it indeed formalizes parallel reduc-
tion.

4 Metatheory

The metatheory of the system is pretty straightforward and follows the one of Fsub closely. We only
mention the main idea for type substitution and the statements of the main metatheoretical lemmas.

To formalize type substitution, we use a proposition env subst that corresponds to the environment
operation: E, X :* k, E’ ⇒ E, (X 7→ T’) E’ assuming E ` T’ :* k. In other words, env subst X T e e’
holds whenever we can find environments E, E’ and a kind k such that E ` T’ :* k and e = E, X :* k, E’
and e’ = E, (X 7→ T’) E’.

Inductive env subst : nat→ typ→ env→ env→ Prop :=
| es here (e : env) (T : typ) (k : kind) : kinding e T k→ env subst 0 T (etvar e k) e
| es var (X : nat) (T T’ : typ) (e e’ : env) :

env subst X T’ e e’→ env subst X T’ (evar e T) (evar e’ (tsubst T X T’))
| es kind (X : nat) k (T’ : typ) (e e’ : env) :

env subst X T’ e e’→ env subst (1 + X) (tshift 0 T’) (etvar e k) (etvar e’ k).

4.1 Typing and well-formedness

Actually, both kinding and typing imply well-formedness. In other words, it is possible to kind a type T
in an environment e only if both the type and the environment are well-formed.

Lemma kinding wf (e : env) (T : typ) (k : kind) : kinding e T k→ wf env e ∧ wf typ e T .

4.2 Weakening

We only show the main weakening lemma for typing: if e’ results from e by inserting a type variable at
position X with any kind, the term and types of a typing derivation can be shifted accordingly to give a
new typing derivation in the extended environment.

Lemma typing weakening kind ind (e e’ : env) (X : nat) (t : term) (U : typ) :
insert kind X e e’→ typing e t U→ typing e’ (shift typ X t) (tshift X U).

Weakening by a term variable preserves typing as well.

Lemma typing weakening var (e : env) (t : term) (U V : typ) :
wf typ e V → typing e t U→ typing (evar e V) (shift 0 t) U.

4.3 Narrowing

As the system includes a kind of subtyping relation due to level cumulativity, we can prove a narrowing
property for derivations. Again we define a judgment formalizing that a context e’ is a narrowing of a
context e if they are identical but for one type variable binding (T : k’) in e’ and (T : k) in e with k’ < k.

80 Equations for Predicative System F

Inductive narrow : nat→ env→ env→ Set :=
narrow 0 (e : env) (k k’ : kind) : k’ < k→ narrow 0 (etvar e k) (etvar e k’)
| narrow extend kind (e e’ : env) (k : kind) (X : nat) :

narrow X e e’→ narrow (1 + X) (etvar e k) (etvar e’ k)
| narrow extend var (e e’ : env) (T : typ) (X : nat) :

wf typ e’ T → narrow X e e’→ narrow X (evar e T) (evar e’ T).

Before we can show narrowing, we have to show that kinding respects cumulativity: If it is provable
that a type T has kind k in the context e, then we can also prove that it has any kind k’ for k ≤ k’.

Lemma kinding transitive e T k k’ : kinding e T k→ k ≤ k’→ kinding e T k’.

Narrowing is a strong property, in the sense that a type T can have in a narrowing of a context e any
kind that it can have in e itself.

Lemma typing narrowing ind (e e’ : env) (X : nat) (t : term) (U : typ) : narrow X e e’→ typing e t U
→ typing e’ t U.

4.4 Substitution

Now, substitution lemmas can be proven for the various substitution functions.

Lemma subst preserves typing (e : env) (x : nat) (t u : term) (V W : typ) :
typing e t V → typing (remove var e x) u W → get var e x = Some W → typing (remove var e x)

(subst t x u) V .

Lemma subst typ preserves typing (e : env) (t : term) (U P : typ) k :
typing (etvar e k) t U→ kinding e P k→ typing e (subst typ t 0 P) (tsubst U 0 P).

Finally, we prove regularity, which is to say that the type of any well-typed term is kinded. This is
a consequence of the fact that any well-formed type is kindable. All these results correspond directly to
the paper proofs of Stump and Hayes.

Theorem regularity (e : env) (t : term) (U : typ) : typing e t U→ ∃ k : kind, kinding e U k.

5 Normalization

To show that hereditary substitution is well-defined, we must provide an order of termination. In our
case, we will have a lexicographic combination of a multiset ordering on kinds. To formalize this, we
reuse CoLoR’s [1] library of multisets and definition of the multiset order. Those are multisets on ordered
types, here natural numbers with the usual ordering, which is well-founded.

Notation ”X <mY” := (MultisetLt gt X Y) (at level 70).

Definition wf multiset order : well founded (MultisetLt gt).

The kinds of function computes the multiset of kinds appearing in a type, which reduces to the
bounds of universal quantifications.

Equations kinds of (t : typ) : Multiset :=
kinds of (tvar)⇒ empty; kinds of (arrow T U)⇒ union (kinds of T) (kinds of U);
kinds of (all k T)⇒ union {k} (kinds of T).

C. Mangin & M. Sozeau 81

Clearly, the singleton multiset built from any valid kind for T bounds the bag of kinds appearing in
T , according to the kinding rules. This is proved by induction on the kinding derivation:

Lemma kinds of kinded e T k : kinding e T k→ kinds of T <mul { k }.
Kinds in a type are invariant by shifting or lifting. This is a simple example of a proof by functional

elimination. The T argument and result of kinds of T get refined and we just need to simplify the right
hand sides according to the definitions of kinds of and tshift, using rewriting not computation, and finish
by rewriting with the induction hypotheses.

Lemma kinds of tshift X T : kinds of (tshift X T) = kinds of T .
Proof.

funelim (kinds of T); simp kinds of tshift; now rewrite H, ?H0.
Qed.

For type substitution of T in U however, an exact arithmetic relation holds. We know that the multiset
of kinds of the substituted type can appear a finite number of times in the resulting type, along with the
original kinds of U.

Lemma kinds of tsubst e e’ X T U k : env subst X T e e’→ kinding e U k→
∃ n : nat, kinds of (tsubst U X T) =mul= kinds of U + mul sum n (kinds of T).

This allows us to derive a general result about kindings of universal types: any well-kinded instance
substitution produces a type with a strictly smaller bag of kinds. This is the central result needed to show
termination. In Stump’s work, the measure considered was solely the depth of types, and only through
the stricter kinding invariant could the order be shown well-founded.

Lemma kinds of tsubst all e U k k’ T : kinding e (all k U) k’→
kinding e T k→ kinds of (tsubst U 0 T) <mul kinds of (all k U).

5.1 Definition of the measure.

We first define the depth of a type as being the number of universal quantifications and type variables in
that type.

Equations depth (t : typ) : nat :=
depth (tvar)⇒ 1; depth (arrow T U)⇒ (depth T + depth U)%nat;
depth (all k U)⇒ S (depth U).

Of course, it cannot be zero, which is useful since it allows to have depth T < depth (arrow T U),
which will be needed to prove the well-foundedness of the hereditary substitution.

Lemma depth nz t : 0 < depth t.

The order that we will use on types is a lexicographical order on the multiset of kinds and the depth.
As the first part of the lexicographic product is a multiset, and as those should not be compared with the
Leibniz equality but rather a specific setoid equality, we defined a generalized notion of lexicographic
product up-to an equivalence relation on the first component, here meq which represents multiset equal-
ity.

Definition relmd : relation (Multiset × nat) := lexprod (MultisetLt gt) meq lt.

It is well-founded, relying ultimately on the well-foundedness of lt.

Definition wf relmd : well founded relmd.

82 Equations for Predicative System F

The actual order is relmd on the kinds of and depth measures on types.

Definition order (x y : typ) := relmd (kinds of x, depth x) (kinds of y, depth y).

Definition wf order : well founded order.

It is well-founded and clearly transitive. Lemma order trans t u v : order t u→ order u v→ order
t v.

As we expected, we can compare a type with an arrow on that type, on the left and on the right.

Lemma order arrow l : ∀ A B, order A (arrow A B).

Lemma order arrow r : ∀ A B, order B (arrow A B).

We also define the reflexive closure of this order. It will be useful to express the postcondition of the
hereditary substitution function, as we will explain below.

Definition ordtyp := clos refl order.

Finally, we define the size of a term as usual.

Equations(nocomp) term size (t : term) : nat :=
term size (var)⇒ 0; term size (abs T t)⇒ S (term size t);
term size (app t u)⇒ S (term size t + term size u);
term size (tabs k t)⇒ S (term size t); term size (tapp t U)⇒ S (term size t).

Definition wf term size : well founded (MR term size lt) := wf inverse image lt term size lt wf.

The hereditary substitution order is a lexicographic combination of the order on the multisets of kinds
in the substituted term’s type, the number of universal quantifiers and type variables in the substituted
term’s type, and the term size of the substituend. In other words, with U the type of the substituted term
and t the substituend, we first compare the multiset of kinds in U, then the depth of U, and ultimately the
size of t.

Definition her order : relation (typ × term) :=
lexprod order (fun x y⇒ kinds of x = kinds of y ∧ depth x = depth y) (MR term size lt).

Instance WF her order : WellFounded her order.

5.2 The model

We now turn to the interpretation proper. We characterize the normal forms as a subset of the terms using
mutually-inductive normal and neutral judgments. The plan is to show that the hereditary substitution
function, when given two terms in normal form will produce terms in normal form. We can already
expect some complications as normal terms also include neutral ones...

Inductive normal : term→ Prop :=
| normal abs T t : normal t→ normal (abs T t)
| normal tabs k t : normal t→ normal (tabs k t)
| normal neutral r : neutral r→ normal r
with neutral : term→ Prop :=
| neutral var i : neutral (var i)
| neutral app t n : neutral t→ normal n→ neutral (app t n)
| neutral tapp t T : neutral t→ neutral (tapp t T).

C. Mangin & M. Sozeau 83

A term t is said to be a canonical inhabitant of a type T in environment e if e ` t : T and t is in normal
form. Our goal will be to show that every typeable term can be normalized to a canonical one.

Definition canonical e t T := typing e t T ∧ normal t.

We define a relation expressing that n is the interpretation of some arbitrary term t of type T and in
environment e. Definition interp e t T n := reds t n ∧ canonical e n T .

5.3 Hereditary substitution

As we said, hereditary substitution takes two terms t and u in normal form and returns a term which is
the result of substituting u in t at some index. From a purely algorithmic point of view, we only need t, u
and the index X to compute the result of this function. However, we need more to prove its correctness.

First of all, the well-founded order that we use to justify its termination is an order on the type of the
substituted and on the substituend, which is why the function hsubst also takes as an argument the type
of the substituted term.

We then need a typing environment for t and u, which is not useful from a computational point of
view but will serve to prove the termination and the correctness of hsubst. To this effect, we will decorate
the function with a precondition and a postcondition. We define those in the universe of propositions to
underline the fact that they are not useful in a computational way.

Definition pre (t : typ × term) (u : term) (X : nat) (p : env × typ) : Prop :=
(get var (fst p) X = Some (fst t) ∧ canonical (fst p) (snd t) (snd p)
∧ canonical (remove var (fst p) X) u (fst t)).

There is one subtle point in the formulation of the postcondition. When we substitute in an applica-
tion app t1 t2, it may be that the result of substituting in t1 is an abstraction abs T t. If that’s the case, to
preserve the invariant that the result of hsubst is in normal form, we have to call again hsubst to perform
the beta-reduction. However to do this, we need to know that the type of t1 is smaller than the type of
the substituted term. Note that we need to add a side-condition to this property, which is not always true:
if the substituted variable did not appear at all, then there is no reason to have any relation between those
types. There is a relation only if the original term was not an abstraction but the substituted term is.

Equations is abs (t : term) : Prop :=
is abs (abs)⇒ True; is abs (tabs)⇒ True; is abs ⇒ False.

Definition post (t : typ × term) (u : term) (X : nat) (r : term) (p : env × typ) : Prop :=
interp (remove var (fst p) X) (subst (snd t) X u) (snd p) r ∧
(¬ is abs (snd t)→ is abs r→ ordtyp (snd p) (fst t)).

The Program mode proposed by COQ interacts nicely with EQUATIONS, in that it allows us to just
return a term, and provide later the postcondition, thanks to subtyping of subset types. In the same way,
we can treat a value returned by a call as if it was just the term. We use a standard encoding for the ghost
p : env × typ variable. The (noind) option disables the generation of the graph and elimination principle
for the function, its type and computational behavior is all we need here.

Equations(noind) hsubst (t : typ × term) (u : term) (X : nat) (P : ∃ (p : env × typ), pre t u X p) :
{r : term | ∀ (p : env × typ), pre t u X p→ post t u X r p} :=

hsubst t u X P by rec t her order⇒
hsubst (pair U t) u X P⇐ t⇒ {

84 Equations for Predicative System F

| var i⇐ lt eq lt dec i X⇒ {
| inleft (right p)⇒ u; | inleft (left p)⇒ var i;
| inright p⇒ var (pred i) };
| abs T t⇒ abs T (hsubst (U, t) (shift 0 u) (S X)) ;
| tabs k t⇒ tabs k (hsubst (tshift 0 U, t) (shift typ 0 u) X) ;
| tapp t T⇐ hsubst (U, t) u X ⇒ {
| exist (tabs k t’) P⇒ subst typ t’ 0 T;
| exist r P⇒ tapp r T };
| app t1 t2⇐ hsubst (U, t2) u X ⇒ {
| exist r2 P2⇐ hsubst (U, t1) u X ⇒ {
| exist (abs T’ t’) P1⇒ hsubst (T’, t’) r2 0 ;
| exist r1 P1⇒ app r1 r2 } } }.

With hsubst defined, it is now easy to implement a normalize function which takes a term and re-
turns its normal form. As for hsubst, we add a precondition and a postcondition which allow to show
correctness by construction.

Definition pre’ (t : term) (p : env × typ) : Prop :=
typing (fst p) t (snd p).

Definition post’ (t : term) (n : term) (p : env × typ) : Prop :=
interp (fst p) t (snd p) n.

Equations(noind) normalize (t : term) (P : ∃ (p : env × typ), pre’ t p) :
{n : term | ∀ (p : env × typ), pre’ t p→ post’ t n p} :=

normalize (var i) P⇒ var i;
normalize (abs T1 t) P⇒ abs T1 (normalize t) ;
normalize (app t1 t2) P⇐ normalize t2 ⇒ {
| exist t2’ P2’⇐ normalize t1 ⇒ {
| exist (abs T t) P1’⇒ hsubst (T, t) t2’ 0 ;
| exist t1’ P1’⇒ app t1’ t2’ } };

normalize (tabs k t) P⇒ tabs k (normalize t) ;
normalize (tapp t T) P⇐ normalize t ⇒ {
| exist (tabs k t’) P’⇒ subst typ t’ 0 T ;
| exist t’ P’⇒ tapp t’ T }.

The existence of the normalize function is in itself a proof of the strong normalization of Leivant’s
Predicative System F.

Theorem normalization e t T : typing e t T → ∃ n, reds t n ∧ typing e n T ∧ normal n.

5.4 Consistency

It is easy to show consistency based on the normalization function. We just need lemmas showing that
neutral terms cannot inhabit any type in an environment with only a type variable, by inversion on the
neutrality derivation.

Lemma neutral tvar t k T : neutral t→ typing (etvar empty env k) t T → False.

Consistency is then proved using case analysis on an assumed typing derivation of falsehood at any
universe level k. Informally, it is showing that ∀ X :* k, X is not inhabited for any k.

C. Mangin & M. Sozeau 85

Corollary consistency k : ¬ ∃ t, typing empty env t (all k (tvar 0)).

6 Related Work and Conclusion

There are many formalizations of similar calculi, and we do not claim any originality there. However,
to our knowledge, the multiset ordering used to show normalization is original. The point of this paper
is more to show that the EQUATIONS plugin is ready to handle more consequent developments and
showcase its features. Is has similar expressivity w.r.t. Agda and Idris, but derives more principles, and
everything is compiled down to vanilla COQ terms, so it does not change the trusted code base except for
the use of K, which we are hopeful we can get rid of by the time of the workshop.

It would be interesting to study extensions of the language with type recursion. As shown by Leivant,
this would allow to type terms that are not typeable in second-order lambda calculus. We will also need
to extend the language with existentials, pairs and a minimal notion of inductive types to be able to
handle a larger class of programs. One of the possible venues for generalization is to extend the work of
Malecha et al [7] to reflect a larger fragment of GALLINA, the language of COQ.

References
[1] Frédéric Blanqui: CoLoR, a Coq Library on Rewriting and Termination. Available at http://color.

inria.fr.
[2] Thierry Coquand (1992): Pattern Matching with Dependent Types. Available at http://www.cs.

chalmers.se/~coquand/pattern.ps. Proceedings of the Workshop on Logical Frameworks.
[3] Harley D Eades III (2014): The semantic analysis of advanced programming languages. Ph.D. thesis, The

University of Iowa. Available at http://metatheorem.org/wp-content/papers/thesis.pdf.
[4] Conor McBride Healfdene Goguen & James McKinna (2006): Eliminating Dependent Pattern Matching.

Available at http://cs.ru.nl/~james/RESEARCH/goguen2006.pdf.
[5] Harley D. Eades III & Aaron Stump (2010): Hereditary Substitution for Stratified System F. In: International

Workshop on Proof-Search in Type Theories, A FLoC workshop, Edinburgh, Scotland. Available at http:
//homepage.divms.uiowa.edu/~astump/papers/pstt-2010.pdf.

[6] Daniel Leivant (1990): Finitely stratified polymorphism. Technical Report, Carnegie Mellon Univer-
sity. Available at http://repository.cmu.edu/cgi/viewcontent.cgi?article=2961&context=

compsci.
[7] Gregory Malecha, Adam Chlipala & Thomas Braibant (2014): Compositional Computational Reflec-

tion. In Gerwin Klein & Ruben Gamboa, editors: ITP’14, Lecture Notes in Computer Science 8558,
Springer, pp. 374–389, doi:10.1007/978-3-319-08970-6 24. Available at http://dx.doi.org/10.1007/
978-3-319-08970-6.

[8] Conor McBride (2005): Epigram: Practical Programming with Dependent Types. Advanced Functional
Programming, pp. 130–170, doi:10.1007/11546382 3.

[9] Ulf Norell (2007): Towards a practical programming language based on dependent type theory. Ph.D.
thesis, Department of Computer Science and Engineering, Chalmers University of Technology, SE-412 96
Göteborg, Sweden. Available at http://www.cs.chalmers.se/~ulfn/papers/thesis.html.

[10] Matthieu Sozeau (2010): Equations: A Dependent Pattern-Matching Compiler. In: First International Con-
ference on Interactive Theorem Proving, Springer, doi:10.1007/978-3-642-14052-5 29.

[11] Jérôme Vouillon: POPLmark challenge solution. Available at http://www.seas.upenn.edu/~plclub/
poplmark/vouillon.html.

86 Equations for Predicative System F

A Extracted code

let hereditary_subst t u x =

let rec fix_F x0 =

let h = fun y -> fix_F y in

(fun u0 x1 _ ->

let Pair (t0 , t1) = x0 in

(match t1 with

| Var n ->

(match lt_eq_lt_dec n x1 with

| Inleft s ->

(match s with

| Left -> Var n

| Right -> u0)

| Inright -> Var (pred n))

| Abs (t2 , refine) ->

Abs (t2 , (h (Pair (t0 , refine)) (shift O u0) (S x1) __))

| App (refine1 , refine2) ->

(match h (Pair (t0 , refine1)) u0 x1 __ with

| Abs (t2 , x2) ->

h (Pair (t2 , x2)) (h (Pair (t0 , refine2)) u0 x1 __) O __

| x2 -> App (x2 , (h (Pair (t0 , refine2)) u0 x1 __)))

| Tabs (k, refine) ->

Tabs (k, (h (Pair ((tshift O t0), refine)) (shift_typ O u0) x1 __))

| Tapp (refine , t2) ->

(match h (Pair (t0 , refine)) u0 x1 __ with

| Tabs (k, x2) -> subst_typ x2 O t2

| x2 -> Tapp (x2 , t2))))

in fix_F t u x __

type normalize_comp = term

(** val normalize : term -> normalize_comp **)

let rec normalize = function

| Var n -> Var n

| Abs (t0 , t1) -> Abs (t0 , (normalize t1))

| App (t1 , t2) ->

(match normalize t1 with

| Abs (t0 , x0) -> hereditary_subst (Pair (t0 , x0)) (normalize t2) O

| x -> App (x, (normalize t2)))

| Tabs (k, t0) -> Tabs (k, (normalize t0))

| Tapp (t0 , t1) ->

(match normalize t0 with

| Tabs (k, x) -> subst_typ x O t1

| x -> Tapp (x, t1))

I. Cervesato and K. Chaudhuri (Eds.): Tenth International Workshop
on Logical Frameworks and Meta-Languages: Theory and Practice
EPTCS 185, 2015, pp. 87–101, doi:10.4204/EPTCS.185.6

c© R. Saillard
This work is licensed under the
Creative Commons Attribution License.

Rewriting Modulo β in the λ Π-Calculus Modulo

Ronan Saillard
MINES ParisTech, PSL Research University, France

ronan.saillard@mines-paristech.fr

Theλ Π-calculus Modulo is a variant of theλ -calculus with dependent types whereβ -conversion is
extended with user-defined rewrite rules. It is an expressive logical framework and has been used
to encode logics and type systems in a shallow way. Basic properties such as subject reduction or
uniqueness of types do not hold in general in theλ Π-calculus Modulo. However, they hold if the
rewrite system generated by the rewrite rules together withβ -reduction is confluent. But this is
too restrictive. To handle the case where non confluence comes from the interference between the
β -reduction and rewrite rules withλ -abstraction on their left-hand side, we introduce a notionof
rewriting moduloβ for theλ Π-calculus Modulo. We prove that confluence of rewriting modulo β
is enough to ensure subject reduction and uniqueness of types. We achieve our goal by encoding the
λ Π-calculus Modulo into Higher-Order Rewrite System (HRS). As a consequence, we also make the
confluence results for HRSs available for theλ Π-calculus Modulo.

1 Introduction

The λΠ-calculus Modulo is a variant of theλ -calculus with dependent types (λΠ-calculus or LF)
whereβ -conversion is extended with user-defined rewrite rules. Since its introduction by Cousineau
and Dowek [8], it has been used as a logical framework to express different logics and type systems. A
key advantage of rewrite rules is that they allow designingshallowembeddings, that is embeddings that
preserve the computational content of the encoded system. It has been used, for instance, to encode func-
tional Pure Type Systems [8], First-Order Logic [9], Higher-Order Logic [2], the Calculus of Inductive
Constructions [4], resolution and superposition proofs [6], and theς -calculus [7].

The expressive power of theλΠ-calculus Modulo comes at a cost: basic properties such as subject
reduction or uniqueness of types do not hold in general. Therefore, one has to prove these properties
for each particular set of rewrite rules considered. The usual way to do so is to prove that the rewriting
relation generated by the rewrite rules together withβ -reduction is confluent. This entails a property
called product compatibility (also known asΠ-injectivity or injectivity of function types) which, in turn,
implies both subject reduction and uniqueness of types. Another important consequence of confluence
is that, together with termination, it implies the decidability of the corresponding congruence. Indeed,
for confluent and terminating relations, checking congruence boils down to a syntactic equality check
between normal forms. As a direct corollary, we get the decidability of type checking in theλΠ-calculus
Modulo for the corresponding rewrite relations.

One case where confluence is easily lost is if one allows rewrite rules withλ -abstractions on their
left-hand side. For instance, consider the following rewrite rule (which reflects the mathematical equality
(ef)′ = f ′ ∗ef):

D (λx : R.Exp (f x)) →֒ fMult (D (λx : R. f x)) (λx : R.Exp (f x)).

This rule introduces a non-joinable critical peak when combined withβ -reduction:

88 Rewriting Moduloβ in theλΠ-calculus Modulo

x,y,z ∈ V (Variable)
c, f ∈ CO (Object Constant)
C,F ∈ CT (Type Constant)
t,u,v ::= x | c | u v | λx : U.t (Object)
U,V ::= C |U v | λx : U.V | Πx : U.V (Type)
K ::= Type | Πx : U.K (Kind)
t,u,v ::= u |U | K | Kind (Term)

Figure 1: The terms of theλΠ-calculus Modulo

D (λx : R.Exp ((λy : R.y) x))

fMult (D (λx : R.(λy : R.y) x)) (λx : R.(Exp ((λy : R.y) x))) D (λx : R.Exp x)

D β

A way to recover confluence is to consider a generalized rewriting relation where matching is done
moduloβ -reduction. In this settingD (λx : R.Exp x) is reducible because it isβ -equivalent to the redex
D (λx : R.Exp((λy : R.y) x)) and, as we will see, this allows closing the critical peak.

In this paper, we formalize the notion ofrewriting moduloβ in the context of theλΠ-calculus
Modulo. We achieve this by encoding theλΠ-calculus Modulo into Nipkow’s Higher-Order Rewrite
Systems [14]. This encoding allows us, first, to properly define matching moduloβ using the notion
of higher order rewriting and, secondly, to make available,in theλΠ-calculus Modulo, confluence and
termination criteria designed for higher-order rewriting. Then we prove that the assumption of conflu-
ence for the rewriting moduloβ relation can be used, in most proofs, in place of standard confluence.
In particular this implies subject reduction (for both standard rewriting and rewriting moduloβ) and
uniqueness of types.

The paper is organized as follows. First, we define in Section2 theλΠ-calculus modulo for which
we prove subject reduction and uniqueness of types under theassumption of product compatibility and
we show that confluence implies this latter property. In Section 3, we show that a naive definition of
rewriting moduloβ does not work in a typed setting. This leads us to use Higher-Order Rewrite Systems
which we present in Section 4 and in which we encode theλΠ-calculus Modulo in Section 5. Then, we
use this encoding to properly define rewriting moduloβ in Section 6 and generalize the results of the
previous sections. We discuss possible applications in Section 7 before concluding in Section 8.

2 The λ Π-Calculus Modulo

TheλΠ-calculus Modulo is an extension of the dependently-typedλ -calculus (λΠ-calculus) where the
β -conversion is extended by user-defined rewrite rules.

2.1 Terms

The terms of theλΠ-calculus Modulo are the same as the terms of theλΠ-calculus. Their syntax is
given in Figure 1.

R. Saillard 89

∆ ::= /0 | ∆(x : U) (Local Context)
Γ ::= /0 | Γ(c : U) | Γ(C : K) | Γ(u →֒ v) | Γ(U →֒V) (Global Context)

Figure 2: Syntax for contexts

Definition 2.1 (Object, Type, Kind, Term). A term is either anobject, a type, a kind or the symbolKind .
An object is either avariablein the setV , or anobject constantin the setCO, or an applicationu v

of two objects, or anabstractionλx : A.t where A is a type and tis an object.
A type is either atype constantin the setCT , or an applicationU v where U is a type and vis an

object, or anabstractionλx : U.V where U and V are types, or aproductΠx : U.V where U and V are
types.

A kind is either aproductΠx : U.K where U is a type and K is a kind or the symbolType.
Type andKind are calledsorts.
The setsV , CO andCT are assumed to be infinite and pairwise disjoint.

Definition 2.2. A term isalgebraicif it is not a variable, it is built from constants, variablesand appli-
cations and variables do not have arguments.

Notation 2.1. In addition to the naming convention of Figure 1, we use A and Bto denote types or kinds;
T to denote a type, a kind orKind ; s for Type or Kind .

Moreover, we write t~u to denote the application of t to an arbitrary number of arguments u1, . . . ,un.
We write u[x/v] for the usual (capture-avoiding) substitution of x by v in u.We write A−→B for Πx : A.B
when B does not depend on x.

2.2 Contexts

We distinguish two kinds of context: local and global contexts. A local context is a list of typing decla-
rations corresponding to variables. The syntax for contexts is given in Figure 2.

Definition 2.3 (Local Context). A local contextis a list of variable declarations (variables together with
their type).

Following our previous work [17], we give a presentation of the λΠ-calculus Modulo where the
rewrite rules are internalized in the system as part of the global context. This is a difference with earlier
presentations [8] where the rewrite rules livedoutsidethe system and were typed in an external system
(either the simply-typed calculus or theλΠ-calculus). The main benefit of this approach is that the typing
of the rewrite rules is made explicit and becomes an iterative process: rewrite rules previously added in
the system can be used to type new ones.

Definition 2.4. A rewrite rule is a pair of terms. We distinguishobject-level rewrite rules(pairs of
objects) fromtype-level rewrite rules(pairs of types).

These are the only allowed rewrite rules. We write(u →֒ v) for the rewrite rule(u,v).
It is left-algebraicif u is algebraic andleft-linear if no free variable occurs twice in u.

Definition 2.5 (Global Context). A global contextis a list of object declarations (an object constant
together with a type), type declarations (a type constant together with a kind), object-level rewrite rules
and type-level rewrite rules.

90 Rewriting Moduloβ in theλΠ-calculus Modulo

(Sort) Γ;∆ ⊢ Type : Kind

(Variable) (x : A) ∈ ∆
Γ;∆ ⊢ x : A

(Constant) (c : A) ∈ Γ
Γ;∆ ⊢ c : A

(Application) Γ;∆ ⊢ t : Πx : A.B Γ;∆ ⊢ u : A
Γ;∆ ⊢ tu : B[x/u]

(Abstraction)
Γ;∆ ⊢ A : Type Γ;∆(x : A) ⊢ t : B B 6= Kind

Γ;∆ ⊢ λx : A.t : Πx : A.B

(Product) Γ;∆ ⊢ A : Type Γ;∆(x : A) ⊢ B : s
Γ;∆ ⊢Πx : A.B : s

(Conversion)
Γ;∆ ⊢ t : A Γ;∆ ⊢ B : s A≡βΓ B

Γ;∆ ⊢ t : B

Figure 3: Typing rules for terms in theλΠ-calculus Modulo.

2.3 Rewriting

Definition 2.6 (β -reduction). Theβ -reductionrelation→β is the smallest relation on terms containing
(λx : A.u)v→β u[x/v], for all terms A,u and v, and closed by subterm rewriting.

Definition 2.7 (Γ-reduction). Let Γ be a global context. TheΓ-reductionrelation→Γ is the smallest
relation on terms containing u→Γ v for every rewrite rule(u →֒ v) ∈ Γ, closed by substitution and by
subterm rewriting. We say that→Γ is left-algebraic(respectivelyleft-linear) if the rewrite rules inΓ are
left-algebraic (respectively left-linear).

Notation 2.2. We write→βΓ for →β ∪ →Γ, ≡β for the congruence generated by→β and≡βΓ the
congruence generated by→βΓ.

It is important to notice that these notions of reduction aredefined as relations on all (untyped)
terms. In particular, we do not require the substitutions tobe well-typed. This allows defining the notion
of rewriting independently from the notion of typing (see below). This makes the system closer from
what we would implement in practice.

Since the rewrite rules are either object-level or type-level, rewriting preserves the three syntactic
categories (object, type, kind). Moreover, sorts are only convertible to themselves.

2.4 Type System

We now give the typing rules for theλΠ-calculus Modulo. We begin by the inference rules for terms,
then for local contexts and finally for global contexts.

Definition 2.8 (Well-Typed Term). We say that a term thas typeA in the global contextΓ and the local
context∆ if the judgmentΓ;∆ ⊢ t : A is derivable by the inference rules of Figure 3. We say that aterm is
well-typedif such A exists.

R. Saillard 91

(Empty Local Context) Γ ⊢ctx /0

(Variable Declaration)
Γ ⊢ctx ∆ Γ;∆ ⊢U : Type x /∈ dom(∆)

Γ ⊢ctx ∆(x : U)

Figure 4: Typing rules for local contexts

The typing rules only differ from the usual typing rules for theλΠ-calculus by the(Conversion)rule
where the congruence is extended fromβ -conversion toβΓ-conversion allowing taking into account the
rewrite rules in the global context.

Definition 2.9 (Well-Formed Local Context). A local context∆ is well-formedwith respect to a global
contextΓ if the judgmentΓ ⊢ctx ∆ is derivable by the inference rules of Figure 4.

Well-formed local contexts ensure that local declarationsare unique and well-typed.
Besides the new conversion relation, the main difference between theλΠ-calculus and theλΠ-

calculus Modulo is the presence of rewrite rules in global contexts. We need to take this into account
when typing global contexts.

A key feature of any type system is the preservation of typingby reduction: the subject reduction
property.

Definition 2.10 (Subject Reduction). Let Γ be a global context. We say that a rewriting relation→
satisfies thesubject reductionproperty inΓ if, for all terms t1, t2,T and local context∆ such thatΓ ⊢ctx ∆,
Γ;∆ ⊢ t1 : T and t1→ t2 imply Γ;∆ ⊢ t2 : T.

In theλΠ-calculus Modulo, we cannot allow adding arbitrary rewriterules in the context, if we want
to preserve subject reduction. In particular, to prove subject reduction for theβ -reduction we need the
following property:

Definition 2.11 (Product-Compatibility). We say that a global contextΓ satisfies theproduct compati-
bility property (and we notePC(Γ)) if the following proposition is verified:
if Πx : A1.B1 andΠx : A2.B2 are two well-typed product types in the same well-formed local context such
that Πx : A1.B1≡βΓ Πx : A2.B2 then A1≡βΓ A2 and B1≡βΓ B2.

On the other hand, subject reduction for theΓ-reduction requires rewrite rules to be well-typed in the
following sense:

Definition 2.12 (Well-typed Rewrite Rules).

• A rewrite rule(u →֒ v) is well-typedfor a global contextΓ if, for any substitutionσ , well-formed
local context∆ and term T,Γ;∆ ⊢ σ(u) : T impliesΓ;∆ ⊢ σ(v) : T.

• A rewrite rule ispermanently well-typedfor a global contextΓ if it is well-typed for any extension
Γ0 ⊃ Γ that satisfies product compatibility. We writeΓ ⊢ u →֒ v when(u →֒ v) is permanently
well-typed inΓ.

The notion of permanently well-typed rewrite rule makes possible to typecheck rewrite rules only
once and not each time we make new declarations or add other rewrite rules in the context.

We can now give the typing rules for global contexts.

Definition 2.13 (Well-formed Global Context). A global context iswell-formed if the judgmentΓ wf is
derivable by the inference rules of Figure 5.

92 Rewriting Moduloβ in theλΠ-calculus Modulo

(Empty Global Context) /0 wf

(Object Declaration)
Γ wf Γ; /0⊢U : Type c /∈ dom(Γ)

Γ(c : U) wf

(Type Declaration)
Γ wf Γ; /0⊢ K : Kind PC(Γ(C : K)) C /∈ dom(Γ)

Γ(C : K) wf

(Rewrite Rules)
Γ wf (∀i)Γ ⊢ ui →֒ vi PC(Γ(u1 →֒ v1) . . . (un →֒ vn))

Γ(u1 →֒ v1) . . . (un →֒ vn) wf

Figure 5: Typing rules for global contexts

The rules(Object Declaration) and(Type Declaration) ensure that constant declarations are well-
typed. One can remark that the premisePC(Γ(c : U)) is missingin the (Object Declaration) rule. This
is becausePC(Γ(c :U)) can be proved fromPC(Γ); to prove product compatibility forΓ(c :U) it suffices
to emulate the constantc by a fresh variable and use the product compatibility property of Γ. This cannot
be done for type declarations since type-level variables donot exist in theλΠ-calculus Modulo. The rule
(Rewrite Rules)permits adding rewrite rules. Notice that we can add severalrewrite rules at once. In
this case, only product compatibility for the whole system is required. On the other hand, when a rewrite
rule is added it needs to be well-typed independently from the other rules that are added at the same time.

Well-formed global contexts satisfy subject reduction anduniqueness of types. Proofs can be found
in the long version of this paper at the author’s webpage.
Theorem 2.1(Subject Reduction). Let Γ be a well-formed global context. Subject reduction holds for
→βΓ in Γ.
Theorem 2.2(Uniqueness of Types). Let Γ be a well-formed global context and let∆ be a local context
well-formed forΓ. If Γ;∆ ⊢ t : T1 andΓ;∆ ⊢ t : T2 then T1≡βΓ T2.

Remark that strong normalization of well-typed terms for the relations→Γ and→β is not guaranteed.

2.5 Criteria for Product Compatibility and Well-typedness of Rewrite Rules

We now give effective criteria for checking product compatibility and well-typedness of rewrite rules.
The usual way to prove product compatibility is by showing the confluence of the rewrite system.

Theorem 2.3(Product Compatibility from Confluence). Let Γ be a global context. If→βΓ is confluent
then product compatibility holds forΓ.

One could think that we can weaken the assumption of confluence requiring only confluence for
well-typed terms. This is not a viable option since, withoutproduct compatibility, we do not know if
reduction preserves typing (subject reduction) and if the set of well-typed terms is closed by reduction.
Therefore, it seems unlikely to be able to prove confluence only for well-typed terms before proving the
product compatibility property.

The confluence of→βΓ can be obtained from the confluence of→Γ.
Theorem 2.4(Müller [12]). If →Γ is left-algebraic, left-linear and confluent, then→βΓ is confluent.

To show that a rewrite rule is well-typed, one can use the following result:
Theorem 2.5. LetΓ be a well-formed global context and(u →֒ v) be a rewrite rule. If u is algebraic and
there exist∆ and T such thatΓ ⊢ctx ∆, dom(∆) = FV(u), Γ;∆ ⊢ u : T andΓ;∆ ⊢ v : T then(u →֒ v) is
permanently well-typed forΓ.

R. Saillard 93

2.6 Example

As an example, we define the map function on lists of integers.We first define the type ofPeano integers
by the three successive global declarations:

Nat : Type.
0 : Nat.
S : Nat−→ Nat.

For readability, we will writen instead of

n times︷ ︸︸ ︷
S(S . . . (S 0)). We now define a type for lists:

List : Type.
Nil : List.
Cons : Nat −→ List −→ List.

and the function map on lists:

Map : (Nat −→ Nat) −→ List −→ List.
Map f Nil →֒ Nil.
Map f (Cons hd tl) →֒ Cons (f hd) (Map f tl).

For instance, we can use this function to add some value to theelements of a list. First, we define addi-
tion:

plus : Nat−→ Nat−→ Nat.
plus 0 n →֒ n.
plus (S n1) n2 →֒ S (plus n1 n2).

Then, we have the following reduction:

Map (plus 3) (Cons 1 (Cons 2 (Cons 3 Nil)))→∗Γ Cons 4 (Cons 5 (Cons 6 Nil)).

This global context is well-formed. Indeed, one can check that each global declaration is well-
typed. Moreover, each time we add a rewrite rule, it verifies the hypotheses of Theorem 2.5 and it
preserves the confluence of the relation→βΓ. Therefore, the rewrite rules are permanently well-typed
and, by Theorem 2.3, product compatibility is always guaranteed.

3 A Naive Definition of Rewriting Modulo β

As already mentioned, our goal is to give a notion of rewriting moduloβ in the setting ofλΠ-calculus
Modulo. We first exhibit the issues arising from a naive definition of this notion.

In an untyped setting, we could define rewriting moduloβ in this manner:t1 rewrites tot2 if, for some
rewrite rule(u →֒ v) and substitutionσ , σ(u) ≡β t1 andσ(v) ≡β t2. This definition is not satisfactory
for several reasons.

It breaks subject reduction. For the rewrite rule of Section 1, takingσ = { f 7→ λy : Ω.y} whereΩ is
some ill-typed term, we have

D (λx : R.Exp x)−→ fMult (D (λx : R.(λy : Ω.y) x) (λx : R.Exp ((λy : Ω.y) x)))

and, even ifD (λx : R.Exp x) is well-typed, its reduct is ill-typed since it contains an ill-typed subterm.

94 Rewriting Moduloβ in theλΠ-calculus Modulo

It may introduce free variables. In the example above,Ω has no reason to be closed.

It does not provide confluence. If we consider the following variant of the rewrite rule

D (λx : R.Exp (f x)) →֒ fMult (D f) (λx : R.Exp (f x))

and takeσ1 = { f 7→ λy : A1.y} andσ2 = { f 7→ λy : A2.y} whereA1 andA2 are two non convertible types
then we have:

D (λx : R.Exp ((λy : R.y) x))

fMult (D (λy : A1.y)) (λx : R.(Exp ((λy : A1.y) x))) fMult (D (λy : A2.y)) (λx : R.(Exp ((λy : A2.y) x)))

Dσ1 Dσ2

and the peak is not joinable.
Therefore, we need to find a definition that takes care of theseissues. We will achieve this using an

embedding ofλΠ-calculus Modulo into Higher-Order Rewrite Systems.

4 Higher-Order Rewrite Systems

In 1991, Nipkow [14] introduced Higher-Order Rewrite Systems (HRS) in order to lift termination and
confluence results from first-order rewriting to rewriting over λ -terms. More generally, the goal was to
study rewriting over terms with bound variables such as programs, theorem and proofs.

Unlike the λΠ-calculus Modulo, in HRSsβ -reduction and rewriting do not operate at the same
level. Rewriting is defined as a relation between theβη-equivalence classes of simply typedλ -terms:
theλ -calculus is used as a meta-language.

Higher-Order Rewrite Systems are based upon the (pre)termsof the simply-typedλ -calculus built
from a signature. A signature is a set of base typesB and a set of typed constants. A simple type is
either a base typeb∈B or an arrowA−→ B whereA andB are simple types.

Definition 4.1 (Preterm). A pretermof type A is

• either avariablex of type A (we assume given for each simple type A an infinite number of variables
of this type),

• or a constantf of type A,

• or an applicationt(u) where t is a preterm of type B−→ A and u is a preterm of type B,

• or, if A = B−→C, anabstractionλx.t where x is a variable of type B and t is a preterm of type C.

In order to distinguish the abstraction of HRSs from the abstraction ofλΠ-calculus Modulo, we use
the underlined symbolλ instead ofλ . Similarly, we write the applicationt(u) for HRSs (instead oftu).
We use the abbreviationt(u1, . . . ,un) for t(u1) . . . (un). If A is a simple type, we writeA1 for A andAn+1

for A−→ An.
Notice also that HRSs abstractions do not have type annotations because variables are typed.
β -reduction andη-expansion are defined as usual on preterms. We writelη

β t for the longβη-normal
form of t.

Definition 4.2 (Term). A term is a preterm in longβη-normal form.

R. Saillard 95

Definition 4.3 (Pattern). A term t is apatternif every free occurrence of a variable F is in a subterm of
t of the form F~u such that~u is η-equivalent to a list of distinct bound variables.

The crucial result about patterns (due to Miller [11]) is thedecidability of higher-order unification
(unification moduloβη) of patterns. Moreover, if two patterns are unifiable then a most general unifier
exists and is computable.

The notion of rewrite rule for HRSs is the following:

Definition 4.4 (Rewrite Rules). A rewrite rule is a pair of terms(l →֒ r) such that l is a pattern not
η-equivalent to a variable, FV(r) ⊂ FV(l) and l and r have the same base type.

The restriction to patterns for the left-hand side ensures that matching is decidable but also that,
when it exists, the resulting substitution is unique. This way, the situation is very close to first-order (i.e.
syntactic) matching.

Definition 4.5 (Higher-Order Rewriting System (HRS)). A Higher-Order Rewriting Systemis a set R of
rewrite rules.

The rewrite relation→R is the smallest relation on terms closed by subterm rewriting such that, for
any(l →֒ r) ∈R and any well-typed substitutionσ , lη

β σ(l)→Rlη
β σ(r).

The standard example of an HRS is the untypedλ -calculus. The signature involves a single base
typeTerm and two constants:

Lam : (Term−→ Term)−→ Term

App : Term−→ Term−→ Term

and a single rewrite rule forβ -reduction:

(beta) App(Lam(λx.X(x)),Y) →֒ X(Y)

5 An Encoding of the λ Π-calculus Modulo into Higher-Order Rewrite
Systems

5.1 Encoding of Terms

We now mimic the encoding of the untypedλ -calculus as an HRS and encode the terms of theλΠ-
calculus Modulo. First we specify the signature.

Definition 5.1. The signatureSig(λΠ) is composed of a single base typeTerm, the constantsType and
Kind of atomic typeTerm, the constantApp of typeTerm −→ Term −→ Term, the constantsLam and
Pi of typeTerm −→ (Term −→ Term) −→ Term and the constantsc of typeTerm for every constant
c∈ CO∪CT.

Then we define the encoding ofλΠ-terms.

Definition 5.2 (Encoding ofλΠ-term). The function‖.‖ from λΠ-terms to HRS-terms in the signature
Sig(λΠ) is defined as follows:

‖Kind ‖ := Kind ‖Type‖ := Type

‖x‖ := x (variable of typeTerm) ‖c‖ := c

‖uv‖ := App(‖u‖,‖v‖) ‖λx : A.t‖ := Lam(‖A‖,λ x.‖t‖)
‖Πx : A.B‖ := Pi(‖A‖,λ x.‖B‖)

Lemma 5.1. The function‖.‖ is a bijection from theλΠ-terms to HRS-terms of typeTerm.

Note that this is a bijection between the untyped terms of theλΠ-calculus Modulo and well-typed
terms of the corresponding HRS.

96 Rewriting Moduloβ in theλΠ-calculus Modulo

5.2 Higher-Order Rewrite Rules

We have faithfully encoded the terms. The next step is to encode the rewrite rules. The following rule
corresponds toβ -reduction at the HRS level:

(beta) App(Lam(X,λx.Y(x)),Z) →֒Y(Z)

We have the following correspondence:

Lemma 5.2.

• If t1→β t2 then‖t1‖ →(beta) ‖t2‖.
• If t1→(beta) t2 and t1, t2 have typeTerm then‖t1‖−1→β ‖t2‖−1 (where‖.‖−1 is the inverse of‖.‖).
By encoding rewrite rules in the obvious way (translating(u →֒ v) by (‖u‖ →֒ ‖v‖)), we would get

a similar result forΓ-reduction. But, since we want to incorporate rewriting modulo β , we proceed
differently.

First, we introduce the notion of uniform terms. These are terms verifying an arity constraint on their
free variables.

Definition 5.3 (Uniform Terms). A term t isuniform for a set of variables V if all occurrences of a
variable free in t not in V is applied to the same number of arguments.

Now, we define an encoding for uniform terms.

Definition 5.4 (Encoding of uniform terms). Let V be a set of variables and t be a term uniform in V .
The HRS-term‖u‖V of typeTerm is defined as follows:

‖Kind ‖V := Kind

‖Type‖V := Type

‖x‖V := x if x∈V (variable of typeTerm)
‖c‖V := c

‖λx : A.u‖V := Lam(‖A‖V , λx.‖u‖V∪{x})
‖Πx : A.B‖V := Pi(‖A‖V , λx.‖B‖V∪{x})
‖x~v‖V := x(‖~v‖V) if x /∈V (x of typeTermn+1 wheren= |~v|)
‖uv‖V := App(‖u‖V ,‖v‖V) if uv 6= x ~w for x /∈V

Now, we define an equivalent of patterns for theλΠ-calculus Modulo.

Definition 5.5 (λΠ-patterns). Let V0 be a set of variables,A be a function giving an arity to variables
and let V= (V0,A). The subsetPV of λΠ-terms is defined inductively as follows:

• if c is a constant, then c∈PV ;

• if p,q∈PV , then p q∈PV ;

• if x ∈V0, then x∈PV ;

• if p ∈PV , x /∈V0 and~y is a vector of pairwise distinct variables in V0 such that|~y|= A (x), then
p (x~y) ∈PV ;

• if p ∈PV , FV(A)⊂V0 and q∈P(V0∪{x},A), then p(λx : A.q) ∈PV ;

A term t is aλΠ-patternif, for some arity functionA , t ∈P(/0,A).

Remark that the encoding of aλΠ-pattern as a uniform term is a pattern.
We now define the encoding of rewrite rules.

R. Saillard 97

Definition 5.6 (Encoding of Rewrite Rules). Let (u →֒ v) be a rewrite rule such that
• u is aλΠ-pattern;

• FV(v)⊂ FV(u);

• all free occurrences of a variable in u and v are applied to thesame number of arguments.
The encoding of(u →֒ v) is ‖u →֒ v‖= ‖u‖ /0 →֒ ‖v‖ /0.

Remark that the first assumption ensures that the left-hand side is a pattern and the third assumption
ensures that the HRS-term is well-typed.
Definition 5.7 (HRS(Γ)). LetΓ a global context whose rewrite rules satisfy the condition of Definition 5.6.
We write HRS(Γ) for the HRS{‖u →֒ v‖ | (u →֒ v) ∈ Γ} and HRS(βΓ) for HRS(Γ)∪{(beta)}.

6 Rewriting Modulo β

6.1 Definition

We are now able to properly define rewriting moduloβ . As for usual rewriting, rewriting moduloβ is
defined on all (untyped) terms.
Definition 6.1 (Rewriting Moduloβ). Let Γ be a global context. We say that t1 rewrites tot2 moduloβ
(written t1→Γb t2) if ‖t1‖ rewrites to‖t2‖ in HRS(Γ). Similarly, we write t1→βΓb t2 if ‖t1‖ rewrites to
‖t2‖ in HRS(βΓ).
Lemma 6.1.
• →βΓb=→Γb ∪→β .

• If t1→Γ t2 then t1→Γb t2.

6.2 Example

Let us look at the example from the introduction. Now we have :

D (λx : R.Exp x)→Γb fMult (D (λx : R.x)) (λx : R.Exp x)

Indeed, forσ = { f 7→ λy.y} we have

‖D (λx : R.Exp x)‖ = App(D,Lam(R,λ x.App(Exp,x))) =lη
β σ(App(D,Lam(R,λx.App(Exp, f (x)))))

and

‖fMult (D (λx : R.x)) (λx : R.Exp x)‖ = App(fMult,App(D,Lam(R,λx.x)),Lam(R,λx.App(Exp,x)))
=lη

β σ(App(fMult,App(D,Lam(R,λ x. f (x))),Lam(R,λx.App(Exp, f (x)))))

Therefore, the peak is now joinable.
D (λx : R.Exp ((λy : R.y) x))

fMult (D (λx : R.(λy : R.y) x)) (λx : R.(Exp ((λy : R.y) x))) D (λx : R.Exp x)

fMult (D (λx : R.x)) (λx : R.Exp x)

D β

Dββ ∗

98 Rewriting Moduloβ in theλΠ-calculus Modulo

In fact the rewriting relation can be shown confluent [15].

6.3 Properties

Rewriting moduloβ also preserves typing.

Theorem 6.1(Subject Reduction for→Γb). Let Γ a well-formed global context and∆ a local context
well-formed forΓ. If Γ;∆ ⊢ t1 : T and t1→Γb t2 thenΓ;∆ ⊢ t2 : T.

It directly follows from the following lemma:

Lemma 6.2. If t1→Γb t2 then, for some t′1 and t′2, we have t1←∗β t ′1→Γ t ′2→∗β t2. Moreover, if t1 is
well-typed then we can choose t′

1 such that it is well-typed in the same context.

Proof. The idea is to lift theβ -reductions that occur at the HRS level to theλΠ-calculus Modulo.
Supposet1→Γb t2. For some rewrite rule(u →֒ v) and (HRS) substitutionσ , we havelη

β σ(u) = ‖t1‖
andlη

β σ(v) = ‖t2‖. We define the (λΠ) substitutionσ̂ as follows: σ̂(x) = ‖σ(x)‖−1 if σ(x) has type

Term; σ̂(x) = λ~x : ~A.‖u‖−1 if σ(x) = λ~x.u has typeTermn −→ Term where theAi are arbitrary types.
We have, at theλΠ level, σ̂(u)→Γ σ̂(v), σ̂(u)→∗β t1 andσ̂(v)→∗β t2. If t1 is well-typed then theAi can
be chosen so that̂σ(u) is also well-typed.

Another consequence of this lemma is that the rewriting modulo β does not modify the congruence.

Theorem 6.2. The congruence generated by→βΓb is equal to≡βΓ.

Proof. Follows from Lemma 6.1 and Lemma 6.2.

6.4 Generalized Criteria for Product Compatibility and Wel l-Typedness of Rewrite Rules

Using our new notion of rewriting moduloβ , we can generalize the criteria of Section 2.5.

Theorem 6.3.LetΓ be a global context. If HRS(βΓ) is confluent, then product compatibility holds forΓ.

Proof. Assume thatΠx : A1.B1 ≡βΓ Πx : A2.B2 then, by Theorem 6.2,Πx : A1.B1 ≡βΓb Πx : A2.B2. By
confluence, there existA0 andB0 such thatA1→∗βΓb A0, A2→∗βΓb A0, B1→∗βΓb B0 andB2→∗βΓb B0. It
follows, by Theorem 6.2, thatA1≡βΓ A2 andB1≡βΓ B2.

To prove the confluence of a HRS, one can use van Oostrom’s development-closed theorem [15].
Theorem 2.5 can also be generalized to deal withλΠ-patterns.

Theorem 6.4. LetΓ be a well-formed global context and(u →֒ v) be a rewrite rule. If u is aλΠ-pattern
and there exist∆ and T such thatΓ ⊢ctx ∆, FV(u) = dom(∆), Γ;∆ ⊢ u : T andΓ;∆ ⊢ v : T then(u →֒ v)
is permanently well-typed forΓ.

This theorem is a corollary of the following lemma.

Lemma 6.3. Let Γ ⊂ Γ2 be two well-formed global contexts. If t∈Pdom(Σ), dom(σ) = dom(∆), for
all (x : A) ∈ Σ, σ(A) = A, Γ;∆Σ ⊢ t : T and Γ2;∆2Σ ⊢ σ(t) : T2 then T2 ≡βΓ2

σ(T) and, for all x∈
FV(t)∩dom(∆), Γ2;∆2 ⊢ σ(x) : Tx for Tx≡βΓ2

σ(∆(x)).

Proof. We proceed by induction ont ∈Pdom(Σ).

• if t = c is a constant, thenFV(t) = /0 and, by inversion onΓ;∆Σ ⊢ t : T, there exists a (closed term)
A such that(c : A) ∈ Γ⊂ Γ2, T ≡βΓ A andT2≡βΓ2

A. SinceA= σ(A), we haveσ(T)≡βΓ2
T2.

R. Saillard 99

• if t = x∈ dom(Σ), then, by inversion, there existsA such that(x : A) ∈ Σ, T ≡βΓ A andT2≡βΓ2
A.

SinceA= σ(A), we haveσ(T)≡βΓ2
T2.

• if t = p q, then, by inversion, on the one hand,Γ;∆Σ ⊢ p : Πx : A.B, Γ;∆Σ⊢ q : A andT ≡βΓ B[x/q].
On the other hand,Γ2;∆2Σ ⊢ σ(p) : Πx : A2.B2, Γ2;∆2Σ ⊢ σ(q) : A2 andT2≡βΓ2

B2[x/σ(q)].

By induction hypothesis onp, we haveσ(Πx : A.B) ≡βΓ2
Πx : A2.B2 and for all x ∈ FV(p)∩

dom(∆), Γ2;∆2 ⊢ σ(x) : Tx with Tx≡βΓ2
σ(∆(x)).

By product-compatibility ofΓ2, σ(A) ≡βΓ2
A2 and σ(B) ≡βΓ2

B2. It follows that σ(T) ≡βΓ2

σ(B[x/q])≡βΓ2
B2[x/σ(q)] ≡βΓ2

T2.

Now, we distinguish three sub-cases:

– eitherq∈Pdom(Σ) and by induction hypothesis onq, for all x∈ FV(q)∩dom(∆), Γ2;∆2 ⊢
σ(x) : Tx with Tx≡βΓ2

σ(∆(x)).
– Or q= λx : A.q0 with FV(A) ∈ dom(Σ) andq0 ∈Pdom(Σ(x:A)) and by induction hypothesis

onq0, for all x∈ FV(q0)∩dom(∆), Γ2;∆2 ⊢ σ(x) : Tx with Tx≡βΓ2
σ(∆(x)).

– Or q= x~y with x /∈ dom(Σ) and~y⊂ dom(Σ). By inversion, on the one hand,∆(x) ≡βΓ Π~y :
Σ(~y).C for C≡βΓ A. On the other hand,Γ2;∆2 ⊢ σ(x) : Π~y : Σ(~y).C2 for C2 ≡βΓ2

A2. Since
σ(A)≡βΓ2

A2, we haveΠ~y : Σ(~y).C2≡βΓ2
Π~y : Σ(~y).σ(C) = σ(∆(x)).

Proof of Theorem 6.4.Let Γ2 be a well-formed extension ofΓ. Suppose thatΓ2;∆2 ⊢ σ(u) : T2.
By Lemma 6.3 andFV(u) = dom(∆), we have, for allx ∈ dom(∆), Γ2;∆2 ⊢ σ(x) : Tx for Tx ≡βΓ2

σ(∆(x)) andT2≡βΓ2
σ(T).

By induction onΓ;∆ ⊢ v : T, we deduceΓ2;∆2 ⊢ σ(v) : T3, for T3≡βΓ2
σ(T)≡βΓ2

T2. It follows, by
conversion, thatΓ2;∆2 ⊢ σ(v) : T2.

7 Applications

7.1 Parsing and Solving Equations

The context declarations and rewrite rules of Figure 6 definea functionto expr which parses a function
of typeNat to Nat into an expression of the forma∗x+b (represented by the termmk expr a b) where
a andb are constants. The left-hand sides of the rewrite rules onto expr areλΠ-patterns. This allows
definingto expr by pattern matching in a way which looks under the binders.

The functionsolve can then be used to solve the linear equationa∗x+b= 0. The answer is either
None if there is no solution, orAll if any x is a solution orOne m n if −m/(n+1) is the only solution.

For instance, we have (writingOne − 1
3 for One 1 2):

solve (to expr(λx : Nat.plus x (plus x (S x))))→∗βΓ One − 1
3
.

By Theorem 6.3 and Theorem 6.4 the global context of Figure 6 is well-formed.

7.2 Universe Reflection

In [1], Assaf defines a version of the calculus of construction with explicit universe subtyping thanks to
an extended notion of conversion generated by a set of rewrite rules. This work can easily be adapted to
fit in the framework of theλΠ-calculus Modulo. However, the confluence of the rewrite system holds
only for rewriting moduloβ .

100 Rewriting Moduloβ in theλΠ-calculus Modulo

expr : Type.
mk expr : Nat−→ Nat−→ expr.
expr S : expr−→ expr.
expr S (mk expr a b) →֒ mk expr a (S b).
expr P : expr−→ expr−→ expr.
expr P (mk expr a1 b1) (mk expr a2 b2) →֒ mk expr (plus a1 a2) (plus b1 b2).

to expr : (Nat−→ Nat)−→ expr.
to expr (λx : Nat.0) →֒ mk expr 0 0.
to expr (λx : Nat.S (f x)) →֒ expr S (to expr (λx : Nat. f x)).
to expr (λx : Nat.x) →֒ mk expr (S 0) 0.
to expr (λx : Nat.plus (f x) (g x)) →֒

expr P (to expr (λx : Nat. f x)) (to expr (λx : Nat.g x)).

Solution : Type.
All : Solution.
One : Nat−→ Nat−→ Solution.
None : Solution.
solve (mk expr 0 0) →֒ All.
solve (mk expr 0 (S n)) →֒ None.
solve (mk expr (S n) m) →֒ One m n.

Figure 6: Parsing and solving linear equations

8 Conclusion

We have defined a notion of rewriting moduloβ for theλΠ-calculus Modulo. We achieved this by en-
coding theλΠ-calculus Modulo into the framework of Higher-Order Rewrite Systems. As a consequence
we also made available for theλΠ-calculus Modulo the confluence criteria designed for the HRSs (see
for instance [14] or [15]). We proved that rewriting moduloβ preserves typing. We generalized the
criterion for product compatibility, by replacing the assumption of confluence by the confluence of the
rewriting relation moduloβ . We also generalized the criterion for well-typedness of rewrite rules to al-
low left-hand to beλΠ-patterns. These generalizations permit proving subject reduction and uniqueness
of types for more systems.

A natural extension of this work would be to consider rewriting moduloβη as in Higher-Order
Rewrite Systems. This requires extending the conversion with η-reduction. But, as remarked in [10]
(attributed to Nederpelt),→βη is not confluent on untyped terms as the following example shows:

λy : B.y←η λx : A.(λy : B.y)x→β λx : A.x

Therefore properties such as product compatibility need tobe proved another way. We leave this line of
research for future work.

For theλΠ-calculus a notion of higher-order pattern matching has been proposed [16] based on
Contextual Type Theory (CTT) [13]. This notion is similar toour. However, it is defined using the
notion of meta-variable (which is native in CTT) instead of atranslation into HRSs.

In [3], Blanqui studies the termination of the combination of β -reduction with a set of rewrite rules
with matching moduloβη in the polymorphicλ -calculus. His definition of rewriting moduloβη is

R. Saillard 101

direct and does not use any encoding. This leads to a slightlydifferent notion a rewriting moduloβ . For
instance,D(λ : R.Exp x) would reduce tofMult (D (λx : R.(λy : R.y) x)) (λx : R.Exp ((λy : R.y) x)) in-
stead offMult (D (λx : R.x)) (λx : R.Exp x). It would be interesting to know whether the two definitions
are equivalent with respect to confluence.

We implemented rewriting moduloβ in Dedukti [5], our type-checker for theλΠ-calculus Modulo.

Acknowledgments. The author thanks very much Ali Assaf, Olivier Hermant, Pierre Jouvelot and the
reviewers for their very careful reading and many suggestions.

References

[1] A. Assaf (2015):A calculus of constructions with explicit subtyping. In: The 20th International Conference
on Types for Proofs and Programs (TYPES ’14).

[2] A. Assaf & G. Burel (2014): Translating HOL to Dedukti. Available at
https://hal.archives-ouvertes.fr/hal-01097412.

[3] F. Blanqui (2015):Termination of rewrite relations on lambda-terms based on Girard’s notion of reducibility.
Theoretical Computer Science. To appear.

[4] M. Boespflug & G. Burel (2012):CoqInE : Translating the calculus of inductive constructions into theλ Π-
calculus modulo.In: The Second International Workshop on Proof Exchange for Theorem Proving (PxTP).

[5] M. Boespflug, Q. Carbonneaux, O. Hermant & R. Saillard:Dedukti. Available at
http://dedukti.gforge.inria.fr.

[6] G. Burel (2013):A Shallow Embedding of Resolution and Superposition Proofsinto theλ Π-Calculus Mod-
ulo. In: The Third International Workshop on Proof Exchange for Theorem Proving (PxTP ’13).

[7] R. Cauderlier & C. Dubois (2015):Objects and Subtyping in theλ Π-Calculus Modulo.

[8] D. Cousineau & G. Dowek (2007): Embedding Pure Type Systems inλ Π-Calculus Modulo.
In: The 8th International Conference on Typed Lambda Calculi and Applications (TLCA ’07),
doi:10.1007/978-3-540-73228-09.

[9] A. Dorra: Equivalence de Curry-Howard entre le lambda-Pi calcul et lalogique intuitionniste. Report.

[10] H. Geuvers (1992):The Church-Rosser Property for beta-eta-reduction in Typed lambda-Calculi. In: The
Seventh Annual Symposium on Logic in Computer Science (LICS’92), doi:10.1109/LICS.1992.185556.

[11] D. Miller (1991):A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple
Unification. Journal of Logic and Computation, doi:10.1093/logcom/1.4.497.

[12] F. Müller (1992):Confluence of the Lambda Calculus with Left-Linear Algebraic Rewriting. Information
Processing Letters, doi:10.1016/0020-0190(92)90155-O.

[13] Aleksandar Nanevski, Frank Pfenning & Brigitte Pientka (2008):Contextual modal type theory. ACM Trans.
Comput. Log.9(3), doi:10.1145/1352582.1352591.

[14] T. Nipkow (1991):Higher-Order Critical Pairs. In: The Sixth Annual Symposium on Logic in Computer
Science (LICS ’91), doi:10.1109/LICS.1991.151658.

[15] V. van Oostrom (1995):Development Closed Critical Pairs. In: The Second International Workshop on
Higher-Order Algebra, Logic, and Term Rewriting, (HOA ’95), doi:10.1007/3-540-61254-826.

[16] Brigitte Pientka (2008):A type-theoretic foundation for programming with higher-order abstract syn-
tax and first-class substitutions. In: Symposium on Principles of Programming Languages, (POPL ’08),
doi:10.1145/1328438.1328483.

[17] R. Saillard (2013):Towards explicit rewrite rules in theλ Π-calculus modulo. In: The 10th International
Workshop on the Implementation of Logics (IWIL ’13).

I. Cervesato and K. Chaudhuri (Eds.): Tenth International Workshop
on Logical Frameworks and Meta-Languages: Theory and Practice
EPTCS 185, 2015, pp. 102–109, doi:10.4204/EPTCS.185.7

This work is licensed under the
Creative Commons Attribution License.

Sequent Calculus and Equational Programming
(work in progress)

Nicolas Guenot and Daniel Gustafsson
IT University of Copenhagen

{ngue,dagu}@itu.dk

Proof assistants and programming languages based on type theories usually come in two flavours:
one is based on the standard natural deduction presentation of type theory and involves eliminators,
while the other provides a syntax in equational style. We show here that the equational approach
corresponds to the use of a focused presentation of a type theory expressed as a sequent calculus. A
typed functional language is presented, based on a sequent calculus, that we relate to the syntax and
internal language of Agda. In particular, we discuss the use of patterns and case splittings, as well as
rules implementing inductive reasoning and dependent products and sums.

1 Programming with Equations

Functional programming has proved extremely useful in making the task of writing correct software
more abstract and thus less tied to the specific, and complex, architecture of modern computers. This,
is in a large part, due to its extensive use of types as an abstraction mechanism, specifying in a crisp
way the intended behaviour of a program, but it also relies on its declarative style, as a mathematical
approach to functions and data structures. However, the vast gain in expressivity obtained through the
development of dependent types makes the programming task more challenging, as it amounts to the
question of proving complex theorems — as illustrated by the double nature of proof assistants such as
Coq [11] and Agda [18]. Keeping this task as simple as possible is then of the highest importance, and it
requires the use of a clear declarative style.

There are two main avenues for specifying a language of proofs, or programs, that is abstract enough
to support complex developments involving dependent types. The first approach, chosen by the Coq
project, is to have a language of tactics that partially automate the construction of proofs — that is, to
mechanically construct complex programs based on the composition of a few generic commands. While
this takes the development task closer to the usual idea of proving a mathematical theorem, the second
approach is to take the programming viewpoint: although Coq allows to directly write proof terms, this is
better illustrated by Agda, where a syntax inspired by Haskell [1] provides a clear equational style.

Our goal here is to investigate the relations between the equational style of dependently-typed
functional programming as found in Agda to the proof-theoretical description of intuitionistic logic
given in the sequent calculus. In particular, we claim that a focused sequent calculus, akin to the LJF
system of Liang and Miller [15], offers a logical foundation of choice for the development of a practical
dependently-typed language. We intend to support this claim by showing how the equational syntax of
Agda and the internal structure of its implementation correspond to a computational interpretation of
such a calculus — for an extended for of intuitionistic logic including dependencies and (co)induction.
As it turns out, the use of left rules rather than eliminations for positive connectives such as disjunction,
in sequent calculus, yields a simpler syntax. In general, beyond the use of spines in applications, as
in LJT [13] and quite common in the implementation of functional programming languages or proof

N.Guenot and D. Gustafsson 103

assistants, the structure of the sequent calculus is much closer to the equational style of programming than
natural deduction, the standard formalism in which type theory is usually expressed [16]. Using a focused
system rather than a plain sequent calculus based on LJ provides a stronger structure, and emphasizes the
importance of polarities, already observed in type theory [2].

Beyond the definition of a logical foundation for a functional language in equational style, giving a
proof-theoretical explanation for the way Agda is implemented requires to accomodate in the sequent
calculus both dependent types and a notion of inductive definition. This is not an easy task, although there
has been some work on dependent types in the sequent calculus [14] and there is a number of approaches
to inductive definitions in proof theory, including focused systems [5]. For example, the system found
in [14] is based on LJT but is limited to Π and does not support Σ, while [12] has both, but requires an
intricate mixture of natural deduction and sequent calculus to handle Σ. Induction is even more complex to
handle, since there are several approaches, including definitions [19] or direct least and greatest fixpoints
as found in µMALL [5] and µLJ [4]. From the viewpoint of proof-theory, the least fixpoint operator µ
seems to be well-suited, as it embodies the essence of induction, while the greatest fixpoint ν allows to
represent coinduction. However, these operators are not used the same way as inductive definitions found
in Agda or other languages or proof assistants — they seem more primitive, but the encoding of usual
constructs in terms of fixpoints is not obvious. Even more complicated is the question of using fixpoints
in the presence of dependent types, and this has only been studied from the type-theoretic viewpoint
in complex systems such as the Calculus of Inductive Constructions [10]. In the end, what we would
like to obtain is a proof-theoretical understanding of the equational style of dependent and (co)inductive
programming, related to the goals of the Epigram project. In particular, we consider that the sequent
calculus, with its use of left rules, provides access to the “left” of equations in a sense similar to what is
described in [17].

Here, we will describe the foundamental ideas for using a variant of LJF as the basis for the design of
a dependently-typed programming language. We start in Section 2 by considering a propositional system
and show how the shape of sequent calculus rules allows to type terms in equational style. This is made
even more obvious by the use of pattern in the binding structure of the calculus. Then, in Section 3 we
discuss the extension of this system to support dependent types and induction, problems related to patterns
in this setting, as well as the question of which proof-theoretical approach to induction and coinduction is
better suited for use in a such a language. Finally, we conclude by the review of some research problems
opened by this investigation, and an evaluation of the possible practical applications to languages and
proofs assistants.

2 Focusing and Polarities in the Sequent Calculus

We start our investigation with a propositional intuitionistic system presented as a focused sequent calculus.
It is a variant of LJF [15] to which we assign a term language extending the λ -calculus of Herbelin [13].
Unlike the calculus based on LJT, this system has positive disjunctions and conjunctions ∨ and ×, but it
has no positive atoms. We use the following grammar of formulas:

N,M ::= a | ↑P | P→ N | N∧M P,Q ::= ↓N | P∨Q | P×Q

where ↑ and ↓ are called polarity shifts and are meant to maintain an explicit distinction between the
two categories of formulas, negatives and positives. This is not absolutely necessary, but it clarifies the
definition of a focused system by linking the focus and blur rules to actual connectives. Note that this was
also used in the presentation of a computational interpretation of the full LJF system [7].

104 Sequent Calculus and Equational Programming

−−−−−−−−−−−−−−−−
Ψ, [N] � ε : N

Ψ � d : [P]
−−−−−−−−−−−−−−−−−−−
Ψ | · ` . d : ↑P

Ψ | · ` t : N
−−−−−−−−−−−−−−−−
Ψ � / t : [↓N]

Ψ,x : ↓N, [N] � k : M
−−−−−−−−−−−−−−−−−−−−−−−−−−
Ψ,x : ↓N | · ` x k : M

Ψ,x : ↓N | Γ ` t : M
−−−−−−−−−−−−−−−−−−−−−−−−
Ψ | Γ,x : ↓N ` t : M

Ψ | p : P ` t : N
−−−−−−−−−−−−−−−−−−−−−
Ψ, [↑P] � κ p.t : N

Ψ | Γ, p : P ` t : N
−−−−−−−−−−−−−−−−−−−−−−−−−−−
Ψ | Γ ` λ p. t : P→ N

Ψ, [N] � k : L
−−−−−−−−−−−−−−−−−−−−−−−−−−−
Ψ, [N∧M] � prl k : L

Ψ, [M] � k : L
−−−−−−−−−−−−−−−−−−−−−−−−−−−
Ψ, [N∧M] � prr k : L

Ψ � d : [P] Ψ, [N] � k : M
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ψ, [P→ N] � d :: k : M

Ψ | Γ ` t : N Ψ | Γ ` u : M
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ψ | Γ ` 〈t,u 〉 : N∧M

Γ � d : [P] Γ � e : [Q]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ � (d,e) : [P× Q]

Γ � d : [P]
−−−−−−−−−−−−−−−−−−−−−−−
Γ � inl d : [P ∨ Q]

Γ � d : [Q]
−−−−−−−−−−−−−−−−−−−−−−−
Γ � inr d : [P ∨ Q]

Ψ | Γ, p : P,q : Q ` t : N
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Ψ | Γ,(p,q) : P× Q ` t : N

Ψ | Γ, p : P ` t : N Ψ | Γ,q : Q ` u : N
−−

Ψ | Γ,x[p | q] : P ∨ Q ` x[t | u] : N

Figure 1: Typing rules for a pattern-based λ -calculus based on λ

The rules we use in this system are shown in Figure 1, where the term assignment is indicated in
red and several turnstiles are used to distinguish an inversion phase ` from a focused phase �. In this
syntax, brackets are used to pinpoint the precise formula under focus. The extended λ -calculus we use to
represent proofs is based on the following grammar:

t,u ::= . d | λ p.t | x k | 〈t,u〉 | x[t | u]
p,q ::= x | (p,q) | x[p | q]
d,e ::= / t | (d,e) | inl d | inr d
k,m ::= ε | t :: k | prl k | prr k | κ p.t

where t denotes a term, p a binding pattern, d a data structure and k an application context. In terms of
programming, terms are describing computation, mostly by means of functions, while data structures
implement pairs and constructors. Note that computations can use case splittings x[t | u] to choose between
the subterms t or u depending on the contents of the data bound to x. The use of patterns rather than plain
variables to annotate formulas in the context of typing judgement is taken from [8] and allows to express
more directly the equational style found in Agda. For example, we could write:

f : (N × N)] N → N
f (inl (x,y)) = x + y

f (inr z) = z

to define a function f that uses pattern-matching on its argument and computes the result based on the
components of the data structure it received. Such a function can be written in our calculus as the following

N.Guenot and D. Gustafsson 105

term: λw[(x,y) | z].w[add ((x ε) :: (y ε) :: ε) | z ε], where add is the name of the addition function. This
makes the compilation of the code written above to the adequate representation in our calculus relatively
easy, since different parts of a definition can be aggregated into a term with a pattern and a case splitting.
This is very much related to the question of compiling pattern-matching into a specific splitting tree where
case constructs are used [3].

The idea of the logical approach is that cut elimination in this system yields a reduction system
implementing the dynamics of computation in the corresponding calculus. In such a focused calculus, a
number of cut rules are needed to complete the proof of completeness of the cut-free fragment, but only
two of them really need to be considered as rules — the other cuts can simply be stated as principles, and
their reduction will correspond to a big step of computation. These two rules are:

Ψ � d : [P] Ψ | Γ, p : P ` t : N
−−

Ψ | Γ ` p = d in t : N

Ψ | Γ ` t : N Ψ, [N] � k : M
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ψ | Γ ` t k : M

the first one being the binding of a data structure to a matching pattern, and the second a simple application
of a term to a list of arguments. The latter is already part of the LJT system [13], but the former is specific
to LJF in the sense that it appears only when formulas can be focused on the right of a sequent. The main
reduction rule extracted from cut elimination is the λ variant of β -reduction:

(λ p.t) (d :: k) → (p = d in t) k

but there are a number of other reduction rules generated by the use of other connectives than implication.
In particular, conjunction yields a form of pairing where a term 〈t,u〉 has to be applied to a list prl k
to reduction to t k. The binding cut is simpler in a certain sense, since its reduction corresponds to a
decomposition of the data structure d according to the shape of the pattern p, and a simple substitution
when p is just a variable. Moreover, other cuts encountered during reduction usually amount to a form of
substitution, except for the one, already present in LJT, that yields lists concatenation in the argument of
an application.

Note that the . d construct is present in the internal language of Agda, but the constructs / t and κ p.t
are not, although they can be obtained indirectly using a cut. While / t should simply be understood as
a thunk, which is a term made into data, the list κ p.t is slightly more complex. This construct, already
present in [6], is more a context than a list in the sense that it stops the application of a term to κ p.t and
enforces the execution of t, where the original term applied is bound to p. This can be understood by
considering the reduction extracted from cut elimination:

(. d) (κ p.t) → p = d in t

Finally, note that we could have an explicit contraction rule in the system, that would appear in terms
under the form of a pattern p@ q indicating that p and q will be the patterns associated to two copies of the
same assumption P. The associated typing rule is:

Ψ | Γ, p : P,q : P ` t : N
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Ψ | Γ, p@ q : P ` t : N

and it is reminiscent of the pattern using the same syntax in Haskell — which is meant to exist in Agda as
well, but this not yet implemented. However, in Haskell, this is restricted to the form x @ p so that it can
only serve to name an assumption before decomposing it, and we could allow for such a use by avoiding
maximal inversion, which is not strictly necessary in a focused system [7]. This rule is not necessary for
the completeness of the calculus, and there are other ways to obtain the same result. Of course, in a very
similar way, the pattern _ can be associated to the weakening rule, also admissible.

106 Sequent Calculus and Equational Programming

−−−−−−−−−−−−−−−−
Ψ, [N] � ε : N

Ψ � d : [P]
−−−−−−−−−−−−−−−−−−−
Ψ | · ` . d : ↑P

Ψ | · ` t : N
−−−−−−−−−−−−−−−−
Ψ � / t : [↓N]

Ψ, [N] � k : L
−−−−−−−−−−−−−−−−−−−−−−−−−−−
Ψ, [N∧M] � prl k : L

Ψ,x : ↓N, [N] � k : M
−−−−−−−−−−−−−−−−−−−−−−−−−−
Ψ,x : ↓N | · ` x k : M

Ψ,x : ↓N | Γ ` t : M
−−−−−−−−−−−−−−−−−−−−−−−−
Ψ | Γ,x : ↓N ` t : M

Ψ | x : P ` t : N
−−−−−−−−−−−−−−−−−−−−−
Ψ, [↑P] � κx.t : N

Ψ, [M] � k : L
−−−−−−−−−−−−−−−−−−−−−−−−−−−
Ψ, [N∧M] � prr k : L

Ψ | Γ,x : P ` t : N
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Ψ | Γ ` λx. t : Π(x : P).N

Ψ � d : [P] Ψ, [N{d/x}] � k : M
−−

Ψ, [Π(x : P).N] � d :: k : M

Ψ | Γ ` t : N Ψ | Γ ` u : M
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ψ | Γ ` 〈t,u 〉 : N∧M

Ψ | Γ,y : P,z : Q ` t : N{(y,z)/x}
−−−
Ψ | Γ,x : Σ(y : P).Q ` y,z = x in t : N

Γ � d : [P] Γ � e : [Q{d/x}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ � (d,e) : [Σ(x : P).Q]

Γ � d : [P]
−−−−−−−−−−−−−−−−−−−−−−−
Γ � inl d : [P ∨ Q]

Ψ | Γ,y : P ` t : N{inl y/x} Ψ | Γ,z : Q ` u : N{inr z/x}
−−

Ψ | Γ,x : P ∨ Q ` x[y.t | z.u] : N

Γ � d : [Q]
−−−−−−−−−−−−−−−−−−−−−−−
Γ � inr d : [P ∨ Q]

. .

Ψ � d : [A] Ψ | Γ,x : A,∆ ` t : B
−−
Ψ | Γ,∆{d/x} ` x = d in t : B{d/x}

Ψ | Γ ` t : A Ψ, [A] � k : B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ψ | Γ ` t k : B

Figure 2: Typing rules for a dependent λ -calculus based on λ

3 Adding Dependent Types and Induction

We continue our investigation by adapting our variant of LJF to dependent types, but this unveils
some issues that we will now discuss. On problem we immediately encounter is the adaptation of the
pattern machinery to the dependent setting, mostly due to the substitutions involved in the types, where
patterns should have appeared. For the dependent implication Π(x : P).N, using a pattern p rather than
a binding variable x yields the question of substituting a data structure d for p: this becomes a much
more complicated operation than the traditional substitution. Moreover, keeping the patterns and variables
synchronised between their use in terms and in types is a challenging task, that would probably require
heavy syntactic mechanisms. For this reason, the system shown above in Figure 2 has no patterns, but
rather falls back to the traditional style of typing using only variables to label assumptions. The language
used in this variant can still be related to the equational approach to functional programming, but the
translation between equations and terms is more involved.

The generalisation of the implication into the dependent product Π(x : P).N is a straightforward
operation, and the rules we use are essentially the ones found in [14] — except that it involves a data
structure, corresponding to a focus on the right-hand side of a sequent. Now, the case of Σ is more
complicated, as it is a priori unclear whether it should be obtained as a generalisation of the negative
conjunction ∧ or of the positive product × and both solutions might even be possible. But a generalisation
of the negative disjunction seems to be problematic, when it comes to the specification of the second left
rule, typing the prroperation. Indeed, when focusing on Σ(x : N).M we would need to plug a term of type
N for x in M, but this would require to maintain some “natural deduction version” of the term currently

N.Guenot and D. Gustafsson 107

being transformed, and to plug at adequate locations some translation between natural deduction style and
our sequent calculus syntax — as done in [12]. This is quite unsatisfactory and will not help us build a
proper understanding of dependent types in a pure sequent calculus setting. The solution we adopt here is
to obtain Σ(x : P).Q as a generalisation of the positive product × and simply update the corresponding
rules as shown in Figure 2. The left rule is simple to define in this case, because the decomposition of the
Σ in the context preserves the binding of y in the type Q.

There is a particularly interesting benefit to the use of the sequent calculus to handle splitting as done
in the left Σ rule. Consider the elimination rule in natural deduction:

Γ,x : A∨B `C : type Γ ` t : A∨B Γ,y : A ` u : C{inly/x} Γ,z : B ` v : C{inr z/x}
∨e −−

Γ ` match [x.C] (t ; y.u ; z.v) : C{t/x}
and observe that it is necessary to be explicit about the return type, since obtaining C from C{t/x} is a
complicated process, that reverses a substitution. This makes the term syntax heavy, while the problem is
avoided in the sequent calculus, where no substitution is needed in the conclusion. Note that in Coq, the
natural deduction style is used for the proof language, but tactics are written in a style that is much closer
to the sequent calculus — as this is the framework of choice for proof search — so that tactics have to
perform some kind of translation between the two formalisms.

At the level of dependent types, there is a number of tricks used in the Agda implementation that
diverge from the proof-theoretical viewpoint. For example, substitutions in types are treated in a complex
way and may be grouped together. Although some of the design choices can be justified by a similarity
to the focused sequent calculus, there is probably a number of implementation techniques that have no
proof-theoretical foundation. Moreover, we have chosen here a particularly precise framework where
formulas are explicitly polarised, but in practice types in a programming language should not always
require these annotations: the question of the presence of specific terms corresponding to shifts is therefore
not obvious, as it depends if some interesting programming constructs require their presence or their
absence. One can observe, for example, that in the system proposed here, dependencies are subject to the
presence of delays, because of the contraction present in the left focus rule and of the treatment of names
in the κx.t operation.

The problem of generalising the equational style of programming associated to the focused sequent
calculus at the propositional level to the level of dependent types is parametrised by a choice: using patterns
seems to require a complex tracking mechanism, but provides a relatively direct logical representation
of equations, while using simple variables leads to a translation overhead. Notice however that one
could think of an implementation based on variables in which equations are easily obtained, since the
language would already be expressed in the style of the sequent calculus — this is the approach suggested
by Epigram, where equations are meant to clarify the meaning of programs but are not their internal
representation. But we now turn to the most challenging task of our whole enterprise: the accomodation
of induction in the framework of a focused sequent calculus in a form that can be exploited to design
declarative programs.

Induction can be expressed in Agda in a concise manner and enjoys the benefits of the equational
presentation. Consider for example the following inductive scheme for natural numbers:

indN : P zero → (Π(x : N). P x → P (suc x)) → Π(n : N). P n
indN base ih zero = base

indN base ih (suc n) = ih n (indN base ih n)

where the code essentially relies on the matching of a natural number, that can be either zero or the
successor of another number. It is not obvious to see through this program and select a particular approach

108 Sequent Calculus and Equational Programming

to induction that would be a good candidate for a proof-theoretical description. The natural candidate for a
representation of induction in the sequent calculus would be the µ operator as studied in [4] in the setting
of intuitionistic logic. The unfocused rules for this operator would be, from a purely logical viewpoint:

Γ ` B{µa.B/a}
−−−−−−−−−−−−−−−−−−−

Γ ` µa.B

B{C/a} `C
−−−−−−−−−−−−−−−
Γ,µa.B `C

but the presence of fixpoints has consequences for cut elimination, as it prevents some cuts to be reduced.
The usual technique applied to avoid this problem is to build the cut rule into the left rule for µ and to
consider the result as cut free. This way, all the cuts that cannot be reduced further are explicitly attached
to the blocking rule instance. However, the use of these rules in terms of computation is not obvious
to specify, in part because of the complexity of the associated cut reduction, that involves the creation
of several other cuts and appeals to the functoriality of the body B of any fixpoint µa.B — ensured by
a positivity condition. In addition, these rules seem to interact poorly with dependent types, as dealing
with fixpoints will require a complex handling of terms appearing inside types. It is unclear as of now
if fixpoints as expressed by µ — and ν in the case of induction — can fit our scheme of explaining the
implementation of a language such as Agda, but at the same time there is no obvious proof-theoretical
approach that accounts in a straightforward way for the pervasive nature of inductive definitions in the
internal language of Agda, where they are handled by expansion of names with the body of the definition.

4 Conclusion and Future Work

As we have seen here, the λ -calculus proposed by Herbelin as an interpretation of the LJT focused
sequent calculus can be extended beyond its original scope to include positive connectives, leading to a
full-fledged intuitionistic system where we can focus on the right-hand side of sequents to decompose
positives. The language we obtain is well-suited to represent programs written in the kind of equational
style found in Haskell or Agda, the relation to equations can be made even tighter by using patterns
as labels for assumptions in the type system. The opens up the possibility to select focused sequent
calculus as a logical framework of choice for the implementation of such languages — as evidenced by the
current state of the implementation of Agda, containing many elements that can be explained as sequent
calculus constructs. The benefit could not only be a simplication of such an implication, but possibly an
improvement in terms of efficiency if advanced techniques from proof theory are transferred and made
practical. Moreover, one of the strength of the logical approach is that generalisations and extensions of
all kinds are usually made simpler by the strong principles at work: any kind of progress made on the
side of proof theory could translate into more expressive languages using the clear equational style of
Haskell and Agda — that could be modalities, linearity or many other elements studied in the field of
computational logic.

The generalisation of this idea to handle dependent types has already been partially investigated, but
some question are left unresolved as to the specific rules used in such a system, and the possibility of
making the system more equational by exploiting patterns. But the most difficult task at hand is the
explanation of the various treatments of induction available in language and proofs assistants in terms
of the sequent calculus. As observed previously [2], the notion of polarity seems to be important in the
understanding of this question, but unfortunately the proper polarised handling of fixpoints in proof theory
has yet to be found — a number of choices are left open when it comes to the definition of a focused
system using fixpoints [5]. Note that our enterprise also yields the question of the treatment of the identity
type in proof theory, as it makes dependent pattern matching admit the axiom K. This axiom is undesirable

N.Guenot and D. Gustafsson 109

in homotopy type theory, and thus the restriction of dependent pattern matching has been studied [9]. But
this was achieved by restricting unification in the splitting rules, and as Agda has no explicit calculus for
splitting, this was somewhat hidden. The framework we want to develop provides a calculus and could
thus help making this restriction simpler.

Acknowledgements. This work was funded by the grant number 10-092309 from the Danish Council
for Strategic Research to the Demtech project.

References
[1] Haskell, an advanced purely-functional programming language: http://www.haskell.org.

[2] Andreas Abel, Brigitte Pientka, David Thibodeau & Anton Setzer (2013): Copatterns: programming infinite
structures by observations. In: POPL’13, pp. 27–38, doi:10.1145/2429069.2429075.

[3] Lennart Augustsson (1985): Compiling Pattern Matching. In: FPCA’85, pp. 368–381,
doi:10.1007/3-540-15975-4_48.

[4] David Baelde (2008): A linear approach to the proof-theory of least and greatest fixed points. Ph.D. thesis,
Ecole Polytechnique.

[5] David Baelde (2012): Least and Greatest Fixed Points in Linear Logic. ACM Transactions on Computational
Logic 13(1), p. 2, doi:10.1145/2071368.2071370.

[6] Henk Barendregt & Silvia Ghilezan (2000): Lambda-terms for natural deduction, sequent calculus and cut
elimination. Journal of Functional Programming 10(1), pp. 121–134.

[7] Taus Brock-Nannestad, Nicolas Guenot & Daniel Gustfasson (2015): Computation in Focused Intuitionistic
Logic. In: PPDP’15, pp. 43–54, doi:10.1145/2790449.2790528.

[8] Serenella Cerrito & Delia Kesner (1999): Pattern Matching as Cut Elimination. In: LICS’99, pp. 98–108,
doi:10.1109/LICS.1999.782596.

[9] Jesper Cockx, Dominique Devriese & Frank Piessens (2014): Pattern Matching Without K. In: ICFP’14, pp.
257–268, doi:10.1145/2628136.2628139.

[10] Thierry Coquand & Christine Paulin (1988): Inductively defined types. In: Conference on Computer Logic,
LNCS 417, pp. 50–66, doi:10.1007/3-540-52335-9_47.

[11] Gilles Dowek, Amy Felty, Gérard Huet, Hugo Herbelin, Chet Murthy, Catherine Parent, Christine
Paulin-Mohring & Benjamin Werner (1993): The Coq proof assistant user’s guide. Technical Report, INRIA.

[12] Roy Dyckhoff & Luís Pinto (1998): Sequent Calculi for the Normal Terms of the λΠ- and λΠΣ-Calculi.
Electronic Notes in Theoretical Computer Science 17, pp. 1–14, doi:10.1016/S1571-0661(05)01182-5.

[13] Hugo Herbelin (1994): A λ -Calculus Structure Isomorphic to Gentzen-Style Sequent Calculus Structure. In
L. Pacholski & J. Tiuryn, editors: CSL’94, LNCS 933, pp. 61–75, doi:10.1007/BFb0022247.

[14] Stéphane Lengrand, Roy Dyckhoff & James McKinna (2011): A Focused Sequent Calculus Framework for
Proof Search in Pure Type Systems. Logical Methods in Computer Science 7(1),
doi:10.2168/LMCS-7(1:6)2011.

[15] Chuck Liang & Dale Miller (2009): Focusing and Polarization in Linear, Intuitionistic, and Classical Logics.
Theoretical Computer Science 410(46), pp. 4747–4768, doi:10.1016/j.tcs.2009.07.041.

[16] Per Martin-Löf (1984): Intuitionistic Type Theory. Studies in Proof Theory, Bibliopolis.

[17] Conor McBride & James McKinna (2004): The view from the left. Journal of Functional Programming 14(1),
pp. 69–111, doi:10.1017/S0956796803004829.

[18] Ulf Norell (2007): Towards a practical programming language based on dependent type theory. Ph.D. thesis,
Chalmers University of Technology.

[19] Peter Schroeder-Heister (1993): Rules of Definitional Reflection. In M. Vardi, editor: LICS’93, pp. 222–232,
doi:10.1109/LICS.1993.287585.

