EPTCS 185

Proceedings of the
Tenth International Wor kshop on

L ogical Frameworksand Meta
L anguages. Theory and Practice

Berlin, Germany, 1 August 2015

Edited by: Iliano Cervesato and Kaustuv Chaudhuri



Published: 27th July 2015
DOI: 10.4204/EPTCS.185
ISSN: 2075-2180

Open Publishing Association



Table of Contents

lliano Cervesato and Kaustuv Chaudhuri

Gluing together Proof Environments. Canonical extensions of LF Type Theories featuring Locks . .
Furio Honsell, Luigi Liquori, Petar Maksimovit¢ and lvan&metto

An Open Challenge Problem Repository for Systems Supporting Binders. .......................
Amy Felty, Alberto Momigliano and Brigitte Pientka

A Case Study on Logical Relationsusing Contextual TYpeS . .......ccvvviiv i i i
Andrew Cave and Brigitte Pientka

Proof-relevant Pi-CalCUIUS. . . . .. ..o e
Roly Perera and James Cheney

Equations for Hereditary Substitution in Leivant’s Predicative System F: A Case Study . ...........
Cyprien Mangin and Matthieu Sozeau

Rewriting Modulo B inthe AM-CalculusModulo. . ... e e
Ronan Saillard

Sequent Calculus and Equational Programming .. .......ueeoinee it it it aiie e nie e,
Nicolas Guenot and Daniel Gustafsson






Preface

This volume constitutes the proceedings of LFMTP 2015 Tdmth | nternational Workshop on Log-
ical Frameworks and Meta-Languages: Theory and Practice, held on August 1st, 2015 in Berlin, Ger-
many. The workshop was a one-day satellite event of CADE525th International Conference on
Automated Deduction.

The program committee selected seven papers for presen&ti FMTP 2015, and inclusion in this
volume. In addition, the program included invited talks gtk Pfenning (Carnegie Mellon University),
Vivek Nigam (Federal University of Paraiba) and Marc Lasfaria).

Logical frameworks and meta-languages form a common saibsior representing, implementing,
and reasoning about a wide variety of deductive systemgerfest in logic and computer science. Their
design and implementation and their use in reasoning tasigrg from the correctness of software to
the properties of formal computational systems have beeridttus of considerable research over the
last two decades. This workshop brought together desigimeptementors, and practitioners to discuss
various aspects impinging on the structure and utility gidal frameworks, including the treatment of
variable binding, inductive and co-inductive reasonirchteques and the expressiveness and lucidity of
the reasoning process.

Many people helped make LFMTP 2015 a success. We wish to tien@rganizers of CADE-25
for their support. We are indebted to the program committembers and the external referees for their
careful and efficient work in the reviewing process. Finally are grateful to the authors, the invited
speakers and the attendees who made this workshop an dejayabfruitful event.

July, 2015 lliano Cervesato
Kaustuv Chaudhuri

I. Cervesato and K. Chaudhuri (Eds.): Tenth Internationatk&hop © 1. Cervesato and K. Chaudhuri
on Logical Frameworks and Meta-Languages: Theory and ieeact This work is licensed under the
EPTCS 185, 2015, pp. 1-2, doi:10.4204/EPTCS.185.0 Creative Commons Attribution License.



2 Preface

Program Committeeof LINEARITY 2014

e Andreas Abel (Chalmers and Gothenburg University)

e David Baelde (LSV, ENS Cachan)

e lliano Cervesato (Carnegie Mellon University — co-chair)

e Kaustuv Chaudhuri (Inria & LIXEcole polytechnique — co-chair)
e Assia Mahboubi (Inria)

e Stefan Monnier (University of Montreal)

e Gopalan Nadathur (University of Minnesota)

e Giselle Reis (Inria)

e Claudio Sacerdoti Coen (University of Bologna)

e Carsten Schurmann (IT University of Copenhagen & Demtech)

Additional Reviewers

Andrew Gacek and Mary Southern.



Gluing together Proof Environments:
Canonical extensions of
LF Type Theories featuring Locks

Furio Honsell Luigi Liquori

Department of Mathematics and Computer Science Inria Sophia Antipolis Méditerranée, France
University of Udine, Italy

furio.honsell@uniud.it

luigi.liquori@inria.fr

Petar Maksimovi€ Ivan Scagnetto
Inria Rennes Bretagne Atlantique, France Department of Mathematics and Computer Science
Mathematical Institute of the Serbian Academy University of Udine, ltaly

of Sciences and Arts, Serbia ivan.scagnetto@uniud.it

petar.maksimovic@inria.fr

We present two extensions of thé& Constructive Type Theory featuring monadiicks A lock

is a monadic type construct that captures the effect ofxaarnal call to an oracle Such calls

are the basic tool fogluing togetherdiverse Type Theories and proof development environments.
The oracle can be invoked either to check that a constraidishar to provide a suitable witness.
The systems are presented in ttamonical styledeveloped by the CMU School. The first system,
CLLF &, is the canonical version of the systéinF 4, presented earlier by the authors. The second
systemCLLF #», features the possibility of invoking the oracle to obtainitness satisfying a given
constraint. We discuss encodings of Fitch-Prawitz Setriheall-by-valueA -calculi, and systems

of Light Linear Logic. Finally, we show how to use Fitch-Piitg\Set Theory to define a type system
that types precisely the strongly normalizing terms.

1 Introduction

In recent years, the authors have introduced in a seriesparpdl8, 16, 21, 20] various extensions of
the Constructive Type TheolyF, with the goal of defining a simpleniversal Meta-languagéhat can
support the effect ofluing togetheri.e. interconnecting, different type systems and proof dgualent
environments.

The basic idea underpinning these logical frameworks idltavefor the user to express explicitly,
in an LF type-theoretic framework thiavocation and uniformrecordingof the effect of external tools
by means of a ne\monadictype-constructoc%,\fg[-], called alock. More specifically, locks permit to
express the fact that, in order to obtain a term of a given, tigpe necessary twerify, first, a constraint
2( ks M : 0), i.e to producesuitableevidence No restrictions are enforced on producing such ev-
idence. It can be supplied by calling amternal proof search toabr anexternal oracle or exploiting
some other epistemic source, such as diagrams, physidatj@® or explicit computations according to
the Poincaté Principle[3]. Thus, by using lock constructors, one dantor-outthe goal, produce pieces
of evidence using different proof environments ahge them back together, using thmlock operator
which releaseghe locked term in the calling framework. Clearly, the taskcloecking the validity of

*The work presented in this paper was partially supportedhéyserbian Ministry of Education, Science, and Technobldgic
Development, projects ON174026 and 11144006.

I. Cervesato and K. Chaudhuri (Eds.): Tenth InternationatkRdhop (© F. Honsell, L. Liquori, P. Maksimovit, . Scagnetto
on Logical Frameworks and Meta-Languages: Theory and ieeact This work is licensed under the
EPTCS 185, 2015, pp. 3-17, doi:10.4204/EPTCS.185.1 Creative Commons Attribution License.



4 Gluing together Proof Environment&LLF 5 & CLLF »-

external evidence rests entirely on the external tool. Infraumework we limit ourselves to recording in
the proof term by means of & -destructor this recourse to an external tool.

One of the original contributions of this paper is that wevghmw locks can delegate to external
tools not only the task of producing suitable evidence bt #hat of exhibiting suitableitnessesto be
further used in the calling environment. This feature isileixdd by CLLF 4 (See Section 3).

Locks subsume differeqroof attitudessuch as proof-irrelevant approaches, where one is ordy-int
ested in knowing that evidence does exist, or approachgagein powerful terminating metalanguages.
Indeed, locks allow for a straightforward accommodatiomany differenfproof cultureswithin a single
Logical Framework; which otherwise can be embedded only #geeply [6, 15] or axiomatically [22].

Differently from our earlier work, we focus in this paper pmn systems presented in tbanonical
formatintroduced by the CMU school [35, 14]. This format is syntiisected and produces a unique
derivation for each derivable judgement. Terms are all inmab form and equality rules are replaced
by hereditary substitutionWe present the systems in canonical form, since this fostneamlines the
proof of adequacy theorems.

First, we present the very expressive systdrhF 4, and discuss the relationship to its non-canonical
counterpart.LF & in [20], where we introducetbck-typedollowing the paradigm of Constructive Type
Theory @ la Martin-Lof), via introduction elimination andequality rules This paradigm needs to
be rephrased for the canonical format used here. Intramluctiles correspond ttype checkingules
of canonical objectswhereas elimination rules correspondtype synthesisules ofatomic objects
Equality rules are rendered via the ruleshefreditary substitution In particular, we introduce bbck
constructorfor building canonical object,%,f’a[M] of typeZ,\f’a [p], via thetype checking rul¢O-Lock).
Correspondingly, we introduce amlock destructqr%,\ff,[M], and amatomic rule(O-U nlock), allowing
elimination, in the hereditary substitution rules, of theKk-type constructor, under the condition that a
specific predicate? is verified, possiblyexternally on a judgement:

M s M M5 N Mz A= 4, sN«<o Z(+sN«<o
5 <;P 5 ;:a (O-Lock s NolP] Zy (M ) (O Unlock
Ms ng[M} = D?N,o[p] Ms %N,O'[A} =P

Capitalizing on the monadic nature of the lock constru@smwe did for the systems in [21, 20], one can
use locked terms without necessarily establishing theiqae provided amutermostock is present.
This increases the expressivity of the system, and allowsefasoning under the assumption that the
verification is successful, as well as for postponing andced) the number of verifications. The rules
which make all this work are:

r,xt szs‘%[p] type s A= gg’%m [%sa[ ]/X] 1)~
b5 Z85(0) type
r X'TI—ZZS'T/Z,[ ]<:$§ff,[p] M A= L1
plu AN, MIZ5 AN =
s .,%S’U[M’] <= 20

(F-NestedJ nlock)

(O-NestedJnlock)

The O-NestedJnlocK)-rule is the counterpart of the elimination rule for monaaisce we realize that
the standard destructor of monads (see, e.g., [Eﬁi}(r#sg)x: Ain N can be replaced, in our context,
by N[QZ/S‘%[A]/X]. And this holds since théfs‘{;[-]-monad satisfies the propettr,, x=M in N — N if

x ¢ Fv(N), providedx occursguardedin N, i.e. within subterms of the appropriate lock-type. The rule
(F-NestedUnlock) takes care of elimination at the level of types.



F. Honsell, L. Liquori, P. Maksimovi¢, |. Scagnetto 5

K e x K type | Mx:o.K Kinds
a € %, a == alaN Atomic Families
o,1,p € % o = o|MNxo.1] XN%;’G[p] Canonical Families
A € 0 A = c|x|AM| %A Atomic Objects
M,.N € 0O M = A|AXO.M |47 M] Canonical Objects
2 e 7 >z = 0|%aK] Z,c:d Signatures
r e « r 0|T,x0o Contexts

Figure 1. Syntax ofCLLF »

We proceed then to introdu€d.LF »-. Syntactically, it might appear as a minor variatiorCal_F »,
but the lock constructor is used here to expressdtfjgestfor a withess satisfying a given property, which
is thenreplacedby the unlock operation. IGLLF 4, the lock acts as binding operatorand the unlock
as anapplication

To illustrate the expressive power GELF ,»» andCLLF 5 we discuss various challenging encodings
of subtle logical systems, as well as some novel applicatiéirst, we encode iGLLF » Fitch-Prawitz
consistent Set-TheorffPST), as presented in [30], and to illustrate its expressivegupwe show, by
way of example, how it can type all strongly normalizing terrilext, we give signatures OLLF 5 of
a strongly normalizingh -calculus and a system of Light Linear Logic [2]. Finally, $®ction 4.5, we
show how to encode functions @LLF 5.

The paper is organized as follows: in Section 2 we presensynéax, the type system and the
metatheory ofCLLF &, whereasCLLF - is introduced in Section 3. Section 4 is devoted to the presen
tation and discussion of case studies. Finally, connestiith related work in the literature appear in
Section 5.

2 The Canonical SystenCLLF »

In this section, we discuss tlvanonicalcounterpart ot LF »»[20], i.e. CLLF », in the style of [35, 14].
This approach amounts to restricting the language onlyrtogén longBn-normal form. These are the
normal forms of the original system which are normal alsatwypedn-like expansion rules, namely

M — Ax:o.Mx andM — A7 [%{%M]] if M is atomic. The added value of canonical systems such
asCLLF is that one can streamline results of adequacy for encodstdrag. Indeed, reductions in
the meta-language of non-canonical terms reflect only tstetyi of how the proof was developed using
lemmata.

2.1 Syntax and Type System foCLLF »

The syntax ofCLLF 4 is presented in Figure 1. The type system@at F o is shown in Figure 2. The
judgements ofLLLF » are the following:

> sig > is a valid signature
Fs T I is a valid context irx
r +s K K is akindinl" andX
I ks Otype o is a canonical family iff andZz
N s a=K K is the kind of the atomic familgr in ' andX
N s M=o M is a canonical term of type in ' andX
N s A=o0o o is the type of the atomic terivin I andx



6 Gluing together Proof Environment&LLF 5 & CLLF »-

Valid signatures

Zsig FxK a¢Dom(Z) Isig Fzotype c¢Dom(Z)

0 sig (SEmpty 2, aKsig (SKind) >.Cosig (STyp9
Kind rules Context rules
Fs T ang
Frstype (< TYPS o (CEMPY
MxoksK . FsT TFksotype X¢&Dom(lN)
s Mxo.K (K-Pi) FsT,x0 (C-Typs
Atomic Family rules Atomic Object rules
FsIT aKeX FsT coex
————— (ACons = »TEC 0
———g ( ) S (O-Const
MNFsa=TxoK; FsIT xoerl
NMN-sM<«<o MNsx=0 (Ovar)
K o _
Kl[M/X](U>" =K AA MN-sA=Tnxo.1n
(AApp) .
N-saM=K FhFeM <=0 nM/Xg- =T
Mz AM= T (O-App)
Canonical Family rules »
MFsa=t FreA= Aol
z yPe N-sN«<o 2Tk N«<=o)
Frsatpe (| AM > (O-Unlock)
MEs UoA =P
[, X.0Fs T type . ’
FrsxoTtype 7V
21 AC-P Canonical Object rules
MN-sptype THFsN<=o0o
y (F-Lock) THA=a (O-Atom)
M s A sl0] type MrMsA<a
F,x:rl—zﬁs’%[p] type rxoksM<rt (O-AbS
Mz A= 22T ] s AXoM < TMxo.T
PN /X - FFsM<p FrsN<o
‘ (F-NestedUnlock) 2 @p 2 7 (O-Lock)
Mks fsa[p] type Ms gN U[M] ¢‘=gNLT[p}
r xrl—z,fs%[ ] <:$§U[p] rsz:g”f[ ]
W/Sa[ ]/X] [%Sa[ ]/X]

; 7 (O-NestedUnlock)
r s -fsa['\/l ] < Z5s10']

Figure 2: TheCLLF » Type System

The judgement sig, and-s I, andl’ s K are as in Section 2.1 of [19], whereas the remaining ones
are peculiar to the canonical style. Informally, the judgime s M < ¢ useso to check the type
of the canonical ternM, while the judgmenf ks A = o uses the type information contained in the
atomic termA andl to synthesizes. Predicates? in CLLF 4 are defined on judgements of the shape
MNk-sM<«<ao.

There are two rules whose conclusion is the lock constru@@ﬁ[-}. But nevertheless, this system
is still syntax directedwhen there are subterms of the fo@rgf; [A] in eitherM’ or p/, the type checking
algorithm always tries to apply tH® - NestedUnlock) rule. If this is not possible, it applies instead the
(O-Lock) rule.

The type system makes use, in the rul&sApp) and(F-App), of the notion ofHereditary Substitu-
tion, which computes the normal form resulting from the substituof one normal form into another.



F. Honsell, L. Liquori, P. Maksimovi¢, |. Scagnetto 7

() =p (0) =p (1) =ps (1 =p
(@ —a (@aM)"=p (Mx0.T)" = p1— p2 (A1) = AslP)

Figure 3: Erasure to simple-types

Substitution in Kinds
a[Mo/xolh, = 0" K[Mo/xoll, =K’

(7" K-Typg (.7-K-Pi)
type[Mo/Xo]l5, = type (Mx:0.K)[Mo/xolfy, = Mx:a./K’
Substitution in Atomic Families
a[Mo/Xolh = o’ M[Mo/%0]S = M’

——— (-F-Cons} [ Joo f[ / ]’jo (.7-F-App)
a[Mo/Xo)p, =@ (aM)[Mo/Xo]p, = a'M
Substitution in Canonical Families

f / F _ F _
alMo/Xolp, = O 01|Mg /X0l = 0y 02|Mg/Xo]5, = O
aMo/Xalg, = o’ ]ﬁ° - (F-Atom) (Mo/Xolpy = 01 F[ / }p‘j 2 (7F-Pi)
a[Mo/Xolp, = O (Mx:01.02)[Mo/Xolp, = Mx:07.0,

01[Mo/Xoh, = 07 Mi1[Mo/Xo]S, =M]  02[Mo/Xo]5, = 0% (

3 <F-Lock)
Litr,0,102][Mo /X0l = f,\'j/;l)’oi[aé]

Figure 4: Hereditary substitution, kinds and familie<Caf_F »

The general form of the hereditary substitution judgemeﬁ't[M/x]}) =T’, whereM is the term being
substitutedx is the variable being substituted fdr,is the term being substituted int®’ is the result of
the substitutionp is thesimple-typeof M, andt denotes the syntactic classd, atomic families/object,
canonical families/objects, etc.) under consideratiore give the rules of the Hereditary Substitution
in the style of [14], where the erasure function to simpleeyjis necessary to simplify the proof of
termination, which we omit.

The simple-typep of M is obtained via the erasure function of [14] (Figure 3), magplepen-
dent into simple-types. The rules for Hereditary Substitutare presented in Figures 4 and 5, using
Barendregt’s hygiene condition.

Notice that, in the rul¢O-Atom) of the type system (Figure 2), the syntactic restrictiorhefclassi-
fier to a atomic ensures that canonical forms kmeg 8n-normal formsfor the suitable notion of long
Bn-normal form, which extends the standard one for lock-tyjp@s one, the judgemertilza.ats X<
Mza.ais not derivable, aglza.a is not atomic, hences Ax:(Mza.a).x < MNx:(Mzaa).MNzaais not
derivable. On the other hands Ax:(Mza.a).Ay.axy < lNx:(Mza.a).Mza.a, wherea is a family con-
stant of kindType is derivable. Analogously, for lock-types, the judgermecﬁ”,\i}a [p] Fs X< D%,fa 0]
is not derivable, sinceZ{;[p] is not atomic. As a consequence, we have that x4, [p].x <
Nx. 45 [p). 4 5[] is not derivable. Howevek. A [0] bs Ao [% 5 [X] < L 5(p] is derivable, if
p is atomic. Hence, the judgment Ax:. 4 (0] A %X < Mx A, 10)-L4 5P is derivable.
Note that the unlock constructor takesatomicterm as its main argument, thus avoiding the creation
of possible.Z-redexes under substitution. Moreover, since unlocks cdy receive locked terms in
their body, no abstractions can ever arise. In Definition ®@eformalize the notion aff-expansion of a
judgement, together with correspondence theorems betldden andCLLF 4.

We presenCLLF » in a fully-typed stylej.e. a la Church, but we could also follow [14] and present
a versiona la Curry, where the canonical formsx.M and.,iﬂ,ﬁ”[N} do not carry type information. The
type rules would then be,g.:



8 Gluing together Proof Environment&LLF 5 & CLLF »-

Substitution in Atomic Objects
. _XEXN
c[Mo/xo]g, =€ Xo[Mo/X0]%, = Mo : Po X[Mo/%o]g, = X
A1[Mo/%0]3, = Axp2.Mi i p2 — o Ma[Mo/X0]S = M5 M{[M5/X|S, = M/
(A1M2)[Mo/Xo]p, =M": p
A1 [Mo/x0]S = Ay M2[Mo/x0]S = M5
[ /(Aijoz)[M;/Xo]go[ = Z\lh}ﬂz * (7:0Ap
o[Mo/xolh, = 0’ M[Mo/xolg =M" AMo/X0l, = L7 o [Mi] : L [P
U 5N Mo/%0], =M1 : p
a[Mo/xolh, =0’ M[Mo/Xol5 =M’ AlMo/xq]3, = A
U5 A Mo %03, = %4 A

M, o

(.7-O-Cons)

(-OVar-H) (-O-Var)

(7-O-AppH)

(7-O-UnlockH)

(.-O-Unlock)

Substitution in Canonical Objects

AlMo/xq]5, = A AlMo /0|3, =M’ p M[Mo/x0] = M’

——— (ZOR) S — (/-O-RH) o - (7-O-Abg
AMo/Xo] g, = A AMo/Xo] gy =M AX:0.M[Mo/Xo|5 = AX:0.M
O']_[Mo/Xo];O = O-:/L Ml[MO/XO]SO = Mi MZ[MO/XO];?O = Mé
> o > ; (.#-O-Lock)
it Ml Mo/X0lS, = 2,77 o, M)

Substitution in Contexts

Xo#X XE€Fv(Mg) T[Mo/%0)S =T o[Mo/xo]5 = 0o’
——————(7"CtxtEmpty) (Mo) 1Mo/ lpo - /[ Sl (7 -Ctxt-Term)
[Mo/Xo]po =0 (Iﬂx:o)[Mo/xo],_.,O =" x0o

Figure 5: Hereditary substitution, objects and contextSIldfF .
ok NMN-sM<o TksN<T
FxokFsM<&T (O-AbS b3 b (O-Lock)

s AXM < Mxo.T M L7 IN] < 47 0lT)
This latter syntax is more suitable in implementations heeat simplifies the notation. Following [18],
we stick to the typeful syntax because it allows for a moreaicomparison with non-canonical sys-
tems. This, however, is technically immaterial. Since prdgnts in canonical systems have unique
derivations, one can show by induction on derivations thgt@ovable judgement in the system where
object terms aré la Curry has auniquetype decoration of its object subterms, which turns it into a
provable judgement in the versi@nla Church. Vice versa, any provable judgement in the version
la Church can forget the types in its object subterms, yieldiqgovable judgement in the versiaria
Curry.

2.2 The Metatheory of CLLF »

For lack of space we omit proofs, but these follow the stashg@atterns in [14, 19]. We start by studying
the basic properties of hereditary substitution and the gystem. First of all, we need to assume that
the predicates arevell-behavedn the sense of [19]. In the context of canonical systems, ttioition
needs to be rephrased as follows:

Definition 2.1 (Well-behaved predicates for canonical systen#s¥inite set of predicate§ % }ic| is
well-behavedf each £ in the set satisfies the following conditions:

1. Closure under signature and context weakening and permiagat
(@) IfZandQ are valid signatures such tHat_ Q andZ(I' bz N < 0), thenZ(I' o N < 0).



F. Honsell, L. Liquori, P. Maksimovi¢, |. Scagnetto 9

(b) If I andA are valid contexts such thetC Aand Z(I' ks N < 0), thenZ (A5 N < 0).
2. Closure under hereditary substitutiontf 22(I",x:0’,[" s N<= ¢) andl’ sz N’ : ¢’, then
2T, r’[N’/x]fa,), s N[N’/x]?a,),<: o[N'/X|{-)-

As canonical systems do not feature reduction, the “claBdigird constraint for well-behaved pred-
icates (closure under reduction) is not needed here. Mergdhe second conditiorclpsure under
substitution becomes “closure under hereditary substitution”.

Lemma 2.1(Decidability of hereditary substitution)
1. Forany T in{#,o/,%,0,%}, and any M, X, ang, it is decidable whether there exists & T
such that TM/x]g' = T’ or there is no such T
2. Forany M, x,0, and A, it is decidable whether there exists dnstich that /[sl\/l/x]g = A, or there
exist M and p’, such that AM /x5 = M’ : p’, or there are no such’Aand M.
Lemma 2.2(Head substitution size)f A[Mo/Xo]g, = M:p, thenp is a subexpression k.
Lemma 2.3(Uniqueness of substitution and synthesis)
1. Itis not possible that Mo /xo]3, = A" and AMo/xolp, = M:p.
2. Forany T, if TMo/xo]% = T', and T[Mo/Xo]py = T", then T =T".
3. ffs o =K, andl s a = K/, then K=K'.
4, IfT s A= o, andl s A= ¢/, theno = o’.
Lemma 2.4(Composition of hereditary substitution).et x# X and x¢ Fv(Mp). Then:
1. Forall T in {#,Za, F, 04, O}, if M2[Mo/X0]S = M5, Ti[M2/X|5) = T4, and & [Mo/Xo]5 = T7',
then there exists a T:{IMo/Xo]f = T, and T'[My/x7) =T.
2. If M2[Mo/X0]S, = M5, A1 [M2/X]3, =M : p, and A[Mo/xo]9, = A, then there exists an'MM [Mo/Xo] 5, =
M’, and AMy/x]3, =M’ : p.
3. If MZ[MO/XO]SO =My, Au[M2/X3, = A, and A[Mo/Xo]g, = M : p, then there exists an MA[Mo/Xo]p, =
M’: p, and MM5/X|S =M.
Theorem 2.5(Transitivity). LetX sig, s I',Xo:00, " andl™ =5 Mg <= po, and assume that all predicates
are well-behaved. Then,
There exists &”: [Mo/X5, =" andts I,
If I, X0:p0," F5 K then there exists a’K[Mo/xo]goK =K andl, " s K'.
If I, X0:p0,[" 5 O type, then there exists a’: [Mo/%o]5,,0 = ¢’ andl",[" b5 0’ type.
If I, X0:00," -5 0 type andl",Xg:p0," Fs M < @, then there exist’ and M [Mo/xo]goa =0
and [Mo/x]9M =M’ andl,I" s M’ < o'

s

Theorem 2.6(Decidability of typing) If predicates inCLLF 4 are decidable, then all of the judgements
of the system are decidable.
We can now precisely state the relationship betw€elF » and thel LF » system of [20]:

Theorem 2.7 (Soundness)For any predicate?? of CLLF », we define a corresponding predicate in
LLF % as follows: Z(I' = M : ) holds if and only iff =5 M : o is derivable inLLF » and (I 5
M < o) holds inCLLF ». Then, we have:

1. If Zsigis derivable inCLLF 4, thenX sig is derivable inLLF 5.

2. Ifs T is derivable inCLLF 4, thents I is derivable inLLF 4.

3. IfI s K is derivable inCLLF 4, thenl” -5 K is derivable inLLF .



10 Gluing together Proof Environment&LLF 5 & CLLF »-

If I s a = K is derivable inCLLF &, thenl” s a : K is derivable inLLF 4.

If I b5 0 type is derivable inCLLF &, thenl -5 0 : type is derivable inLLF .
IfI s A= o is derivable inCLLF 4, thenl" s A: ¢ is derivable inLLF 4.

If ' s M < g is derivable inCLLF 4, thenl” s M : ¢ is derivable inLLF 4.

No oA

Vice versa, allLLF & judgements idong n-normal form(Bn-Inf) are derivable inCLLF »». The
definition of a judgement i#n-Inf is based on the following extension of the standastlile to the lock
constructod x.a.Mx —, M and,ﬁf [% oM]] =4 M.

Definition 2.2. An occurrenceé of a constant or a ) variable in a term of AbF » Judgement isully
applied and unlocked.r.t. its type or kind1X1:01. .,2”1[ .NX,:0n. Xn[ ]. _L Wherezl,ﬁ fn are
vectors of locks, if§_appears only in contexts that are of the fo@m[( (% 1[EM1]) .. )My], where
Ml, Mn, ﬁZ/l, %n have the same arities of the corresponding vectof$¥oand locks.

Definition 2.3 (Judgements in lonn-normal form)
1. AtermT in a judgement is iBn-Inf if T is in normal form and every constant and variable
occurrence ifm is fully applied and unlocked w.r.t. its classifier in the g&inent.
2. Ajudgement is irBn-Inf if all terms appearing in it are ifin-Inf.

Theorem 2.8(Correspondence)Assume that all predicates inLF » are well-behaved, according to
Definition 2.1 [19]. For any predicate? in LLF », we define a corresponding predicate GhLF s
with: Z(I' -z M < o) holds ifl 3 M < o is derivable inCLLF » and (T -5z M : 0) holds inLLF 5.
Then, we have:

1. If Zsigisin Bn-Inf and isLLF »-derivable, therk sig is CLLF »-derivable.

If 5 I is in Bn-Inf and iSLLF g-derivable, then-s I is CLLF »-derivable.

If I s Kis in Bn-Inf, and isLLF ;-derivable, ther” 5 K is CLLF »-derivable.

IfI ks a: Kisin Bn-Inf and isLLF »-derivable, therf s a = K is CLLF »-derivable.
IfI ks o:type is in Bn-Inf and isLLF »-derivable, theri” s o type is CLLF »-derivable.
IfI" s A: aisin Bn-Inf and isLLF »-derivable, thed” s A= a is CLLF »-derivable.
If"' s M : oisinBn-Infand isLLF »-derivable, therl s M < ¢ is CLLF g-derivable.

No o hM~wDdN

Notice that, by the Correspondence Theorem above, anybeblved predicatg”? in LLF » in the
sense of Definition 2.1 [19] induces a well-behaved predidatCLLF . Finally, notice thatnot all
LLF » judgements have a correspondifig-Inf. Namely, the judgementz,\fa [p] Fs X: f,;f’a [p] does
not admit am-expanded normal form when the predicafedoesnot hold onN, as the rulgO-Unlock)
can be applied only when the predicate holds.

3 The Type SystemCLLF 4,

The main idea behin€LLF 4 (see Figures 6, 7, and8)s to “empower” the framework ofLLF

by addingto the lock/unlock mechanism the possibility to receivenfrthe external oracle witness
satisfying suitable constraints. Thus, we can pave the waylfiing together different proof develop-
ment environments beyond proof irrelevance scenarioshisncontext, the lock constructor behaves as
abinder. The new(O-Lock) rule is the following:

IFor lack of space, we present in these figures only the caésgand rules o LLF 4, that differ from theirCLLF 4
counterparts.



F. Honsell, L. Liquori, P. Maksimovi¢, |. Scagnetto 11

o,T,p € % o = a|Mxo.T7] fxﬁ[p] Canonical Families
MNN € 0 M = A|AXOM|ZLLM] Canonical Objects
Figure 6:CLLF », Syntax — changes w.r€LLF »
Canonical Family rules Atomic Object rules
,xoks ptype s A= Z5p] TFsN<o
> (F-Lock) % F ,
s Z5[0] type 2 FzN<=o0) pIN/XE, =p
’ . 5 p (O-Unlock)
Fy:tks gxi;[p] type Mks %N,U[A] =p
P
Mrs ﬁj ‘XXU[ ] Canonical Object rules
KA

(F-NestedJnlock) xobFsM<=p
Mz £56M] = Z5(p)

M 25 [P ]type (O-Lock

rytks LM ]@fxﬁ[p] Mz A= £
IRZAA L ]/Y] M[%?S[A]/y]?r)_ =
r Fs gx{;[M/] = jx%g[p’]

(O-NestedUnlock)

Figure 7: TheCLLF 4, Type System — changes w.rGLLF 5

MxokFsM<=p
Mz £5M] < Z5[0]

where the variabl& is a placeholder bound i andp, which will be replaced by the concrete term that
will be returned by the external oracle call. The intuitiveaning behind théO-Lock) rule is, therefore,
that of recording the need to delegate to the external othelaference of a suitable witness of a given
type. IndeedM can be thought of as an “incomplete” term which needs to bepteted by an inhabitant
of a given typeo satisfying the constrain??. The actual term, possibly synthesized by the externa) tool
will be “released” iInCLLF %, by the unlock constructor in th@®-U nlock) rule as follows:

FsA= Z50] PIN/Xfy-=p" THzN<=0 PN« o0)
rl—ng/,\f%[A]ip’

The term?/N%[M] intuitively means thal is precisely the synthesized term satisfying the congtrain
Z( Fx N < o) that will replace inCLLF 2 all the free occurrences afin p. This replacement is
executed in the.¢”-O-Unlock-H) hereditary substitution rule (Figure 8).

Similarly to CLLF », also inCLLF 4 it is possible to “postpone” or delay the verification of an
external predicate in a lock, provided antermostock is present. Whence, the synthesis of the actual
inhabitantN can be delayed, thanks to tf@-NestedUnlock) rule:

Myths LM < 500 T s A= 2200 pIASIAN =0 MBEIANG, =
B ZAGEEZA

The Metatheory o€LLF 4- follows closely that ofCLLF 4 as far as decidability. We have no correspon-
dence theorem since we did not introduce a non-canonicenadtLLF »,. This could have been done
similarly to LLF 5.



12 Gluing together Proof Environment&LLF 5 & CLLF »-

Substitution in Canonical Families

01[Mo/Xolf, = 01 02[Mo/Xal, = 0% (
L5, 102 Mo /X0l = £, 03]

- /
X,01

Z-F-LockK)

Substitution in Atomic Objects
o(Mo/olp, = 0" MI[Mo/olg, =M MyM'/X|f)- =Mz AlMo/%olg, = £ (M) : £ [p]
Uiy A Mo/%ol% = Mz : p

Substitution in Canonical Objects

(.7-O-UnlockH)

Mo/l = 0 MulMoPoli =M o ) oy
£ M1 [Mo/ ]S, = 2,7, M

Figure 8:CLLF 4, Hereditary Substitution — changes w.CLLF »
4 Case studies

In this section, we discuss the encodings of a collectiongithl systems which illustrate the expressive
power and the flexibility o LLF ;> andCLLF »-. We discuss Fitch-Prawitz Consistent Set theBB5 T
[30], some applications dfPST to normalizingA -calculus, a system of Light Linear Logic {T_LF 5,
and an the encoding ofgartial function in CLLF 4.

The crucial step in encoding a logical systemGhLF or CLLF »- is to define the predicates
involved in locks. Predicates defined on closed terms arallysunproblematic. Difficulties arise in
enforcing the properties of closure under hereditary $witisth and closure under signature and context
extension, when predicates are defined on open terms. Told¢oagtreamline the definition of well-
behaved predicates we introduce the following:

Definition 4.1. Given a signature let As (respectivelyA9) be the set oLLF 5 terms (respectively
closedLLF 5 terms) definable using constants fram A term M has askeletonin Ay if there exists a
termN[xy,...,X)] € Az, whose free variables (calldwlesof the skeleton) are ifxy, ..., X, }, and there
exist termaMy, ..., M, such thaM = N[M1/xq,...,Mn/Xq).

4.1 Fitch Set Theorya la Prawitz - FPST

In this section, we present the encoding of a formal systememfrkable logical as well as historical
significance, namely the system of consist¥aive Set TheoryFPST, introduced by Fitch [11]. This
system was first presented in Natural Deduction style by Pz480]. As Naive Set Theory is inconsis-
tent, to prevent the derivation of inconsistencies fromuthistrictechbstractionrule, only normalizable
deductionsare allowed inFPST. Of course, this side-condition is extremely difficult tqptare using
traditional tools.

In the present context, instead, we can put to use the magloh€LLF » to provide an appropriate
encoding ofFPST where theglobal normalization constraint is enforcéatally by checking the proof-
object. This encoding beautifully illustrates thag of tricksthat CLLF »» supports. Checking that a
proof term is normalizable would be the obvious predicatas®in the corresponding lock-type, but this
would not be a well-behaved predicate if free variablgs,assumptions, are not sterilized. To this end,
We introduce a distinction betwegenericjudgements, which cannot be directly utilized in arguments
but which can be assumed, amgbdicticjudgements, which are directly involved in proof rules. rder
to make use of generic judgements, one has to downgrade thamapodictic one. This is achieved by



F. Honsell, L. Liquori, P. Maksimovi¢, |. Scagnetto 13

a suitable coercion function.

Definition 4.2 (Fitch Prawitz Set TheorysPST). For the lack of space, here we only give the crucial
rules for implication and foset-abstractiorand the corresponding elimination rules of the full system
of Fitch (see [30]), as presented by Prawitz:

[ AlepsT B (51 [FepsTA ThHepsTADB (5 E)
MepsTADB [ epsT B
M+ AT /X
FPST [ /] (/\|) rl—FPSTTE)\X.A(AE)
M rpsT T € AXA [ rpsT A[T/X]

The intended meaning of the terinc.A is the set{x | A}. In Fitch’s systemFPST, conjunction and
universal quantification are defined as usual, while negasiaefined constructively, but it still allows
for the usual definitions of disjunction and existential mfifecation. What make§PST consistents
that not all standard deductions iST are legal. Standard deductions are caliedsi-deductiongn
FPST. A legal deductiornin FPST is defined instead, as a quasi-deduction whiahoignalizablein the
standard sense of Natural Deduction, namely it can be wemsf in a derivation where all elimination
rules occur before introductions.

Definition 4.3 (LLF » signatureXrpst for Fitch Prawitz Set Theory)The following constants are intro-
duced:

o : Type [ : Type

T : o -> Type 0 : MA:o. (V(A) -> T(A))

V : o —-> Type Aintro : MA:1 ->0.Mx:1.T(A x) -> T(€ x (lam A))

lam : (1 => 0)-> 1 A_elim : MA:1 ->0.Mx:1.T(€ x (lam A))->T(A x)

£ Tl > 1 ->o0 D _intro: MA,B:o0.(V(A) -> T(B)) -> (T(A DB))

D :0->0->o0 D _elim : MA,B:o0.Mx:T(A).My:T(ADB) -> ,QQ?;CE(A)”(DB)[T(B)]

whereo is the type of propositions) and the “membership” predicateare the syntactic constructors
for propositions,lam is the “abstraction” operator for building “sets’,is the apodictic judgement;, is

the generic judgemend, is the coercion function, angk,y) denotes the encoding of pairs, whose type
is denoted by x1,e.0. Au:0 - T — p.uxy: (0 — T — p)— p. The predicate in the lock is defined
as follows:

Fitch(l Fspper (x,7) < T(A)XT(ADB))
it holds iff x andy have skeletons ins, ..., all the holes of which have either typeor are guarded by

ad, and hence have typ&4), and, moreover, the proof derived by combining the skeketifix andy
is normalizable in the natural sense. Clearly, this prdditaonly semi-decidable.

For lack of space, we do not spell out the rules concerningother logical operators, because
they are all straightforward provided we use only the apadjadgementT(-), but a few remarks are
mandatory. The notion afiormalizable proofis the standard notion used in natural deduction. The
predicateFitch is well-behaved because it considers terms only up-to hioléee skeleton, which can
have typeo or are generic judgements. Adequacy for this signature eathbieved in the format of [19]:

Theorem 4.1(Adequacy for Fitch-Prawitz Naive Set Thearyj A1, ..., A, are the atomic formulas oc-
curring in By, ...,Bm, A, then B...BnFepsT A iff there exists a normalizablesuch thatd; .o, ..., A, 0,
x1:V(B1),..., % V(By) F5per M <= T(A) (WhereA, andB; represent the encodings of, respectively, A and
Bi in CLLF », for1 <i <m).



14 Gluing together Proof Environment&LLF 5 & CLLF »-

4.2 A Type System for strongly normalizingA -terms

Fitch-Prawitz Set TheorykPST, is a rather intriguing, albeit unexplored, set theoretistam. The
normalizability criterion for accepting a quasi-deduntiprevents the derivation of contradictions and
hence makes the system consistent. Of course, some iatuiti®s are not derivable. For instamoedus
ponensdoes not hold and if € Ax.A then we do not have necessarily thdt/x] holds. Similarly, the
transitivity property does not hold. Howev&PST is a very expressive type system which “encom-
passes” many kinds of quantification, provided normalirats preserved and Fitch has shown, age
[11], that a large portion of ordinary Mathematics can beiedrout inFPST.

In this subsection, we sketch how to USeST to define a type system which can typecisely all
the strongly normalizing\ -terms. Namely, we show that FPST there exists a s&t to which belong
only the strongly normalizing -terms. We speak oftgpe systerbecause the proof iIRPST that a term
belongs toA\ is syntax directedFirst we need to be able to define recursive objectP&T. We adapt,
to FPST, Prop. 4, Appendix A.1 of [13], originally given by J-Y. Gidifor Light Linear Logic, as:
Theorem 4.2(Fixpoint). Let AP, x;...,X,| be a formula offPST with an n-ary predicate variable P.
Then, there exists a formula BBPST, such that there exists a normalizable deductioR% T between
AAX1 ..., Xn0.B[X1,...,X], X1 .., %] @nd B, and viceversa.

Proof. Let equality be Leibniz equality, then, assumimg 1, define\ = Az.3x.3y.z= (X, y) &A[(Aw.(w,
y) €Y),X. Then(x,A\) € Ais equivalent, in the sense BPST, to A[(Aw.(W,A) € A),X]. O

Using the Fixpoint Theorem we define first natural numbersn th concrete representation of the
terms ofA-calculus, say\q. Using again the Fixed Point Theorem, we define a (repretsemtaf) the
substitution function over terms ifig and finally the sei\, such thatx € A is equivalent inFPST to
X € No&Vy.y € Ao C app(x,y) € A. Here,app(x,y) denotes the concrete representation of “applyixg”
toy. One can derive ifPST that (a representation of)/eterm, sayM, belongs to\, only if there is
a normalizable derivation dfl € A\. But then it is straightforward to check that only normalgiterms
can be typed ifrPST with A, i.e. belong toA\. There is indeed a natural reflection of the normalizability
of the FPST derivation of the typing judgememt € A, and the fact that the term represented\bys
indeed normalizable!

4.3 A Normalizing call-by-value A -calculus

In this section we sketch how to expressdbLF » a call-by-valueA -calculus wherg3-reductions fire
only if the result isnormalizing
Definition 4.4 (Normalizing call-by-value\ -calculus,2, ).

o : Type Eq : o -> o —-> Type app : 0 => 0 > o0
v : Type var : v -> o lam : (v => 0) -> o
o
c_beta : I'IM:o—>o,N:o..,?zf,ﬁ\I>7(o_>o)Xo[Eq (app (lam Ax:v.M(var x)) N) (M N)]

where the predicate?" holds onl F5, , (M,N) < (o->0) xo if both M andN have skeletons iz,
whose holes are guarded byar and, moreove® N “normalizes”, in the intuitive sense, outside terms
guarded by aar.

4.4 Elementary Affine Logic

In this section we give ahallowencoding ofElementary Affine Logias presented in [2]. This example
will exemplify how locks can be used to deal with global sytiaconstraints as in theromotion rule
of Elementary Affine Logic.



F. Honsell, L. Liquori, P. Maksimovi¢, |. Scagnetto 15

Definition 4.5 (Elementary Affine Logic [2]) Elementary Affine Logic can be specified by the following
rules:

rFEALB r,A}_EALB rFEALA AFEALA‘OB
Aread V3 Fareas W P A os AP M AFeaB (App)
MFeallA AIA . J1AFeaL B A, AnFeEALA TilFealdAr o0 ThlFeadAn
FAFeaB (Contr) M1 TnrealA (Prom)
Definition 4.6 (LLF & signature>ga, for Elementary Affine Logic)
o : Type T : o -> Type V : o -> Type — 0 ->0 >0 ' 't 0o->o0
c_appl : MA,B :0. T(A) > T(A — B)-> T(B) cwval : MA:o. V(A) -> T(!A)
cabstr : MA,B :o. Mx:(T(A) > T(B)) -> Zrf)) L1 [T(A —o B)]
cpromV-1 : MA,B :o. Mx:(T(A — B)) -> Z7ored J[T(1A) -> V(B)]

cpromV2 : MA,B :o. Mx:(V(A — B)) -> Z7ered J[T(1A) -> V(B)]
whereo is the type of propositions;o and ! are the obvious syntactic constructdrss the basic judge-

ment, and/(-) is an auxiliary judgement. The predicates involved in thek$oare defined as follows:

o Light(l s, x < T(A) — T(B)) holds iff if A is not of the shapea!then the bound variable af
occurs at most once in the normal form:of

e Closed(l Fs., x < T(A)) holds iff the skeleton of x contains only free variablesygfdo, i.e.no
variables of type'(B), for anyB : o.

A few remarks are mandatory. The promotion rule in [2] is ifeef afamily of natural deduction
rules with a growing number of assumptions. Our encodindeaek this via the auxiliary judgement
V(-), the effect of which is self-explanatory. Adequacy for thignature can be achieved only in the
format of [19], namely:

Theorem 4.3(Adequacy for Elementary Affine Logic)f Ay,...,A, are the atomic formulas occurring
in B1,...,Bm,A, then B...Bn FeaL A iff there existd andA;:o,...,A0,%x1: T(B1),...,%Xn.T(Bn) F3ea,

M < T(A) (whereA, andB; represent the encodings of, respectively, A anthELLF 5, for 1 <i <m)
and all variablesx; ...x, occurring more than once i have type of the shaf®B;) = T(!C;) for some
suitable formulec;.

The check on the context of the Adequacy Theoremxigrnalto the systeniLF 4, but this is in the
nature of results which relaiaternal and externalconcepts. For example, the very conceptbF
context, which appears in any adequacy result, is exteoridlR 5. Of course, this check is internalized
if the term is closed.

4.5 Square roots of natural numbers inCLLF -

It is well-known that logical frameworks based on ConstugcType Theory do not permit definitions
of non-terminating functions.g., all the functions one can encode in such frameworks aad) tdDne
interesting example ofLLF 4, system is the possibility of reasoning about partial fuorei by dele-
gating their computation to external oracles, and gettextklheir possible outputs, via the lock-unlock
mechanism ofCLLF 4.

For instance, we can encode natural numbers and computsdgire roots by means of the follow-
ing signature (x,y) denotes the encoding of pairs, whose type is denoted by, andfst andsnd are
the first and second projections, respectively):
nat: type 0: nat S: nat->nat plus : nat->nat->nat minus : nat->nat->nat
mult : nat->nat->nat sqroot: nat->nat eval : nat->nat->type

sqrt ﬂx:nat.fy?gggxa[(eval (sqroot x) (fst y))]



16 Gluing together Proof Environment&LLF 5 & CLLF »-

whereeval represents the usual evaluation predicate, the variaisi@ pair and
0 = (eval (plus (minus x (mult z z)) (minus (mult z z) x) 0))
andSQRTT ks y < nat x 0) holds if and only if the first projection of is the minimum numbel such
that(x =N« N)+ (N« N=x) = 0, where+ and * are represented Ipus andmult, while = (represented
by minus in our signature) is defined as follows:
x—y ifx>y
0 otherwise
Thus, the specification afgroot is not explicit inCLLF »-, since it is implicit in the definition cSQRT

A
X=-y=

5 Related work

Building a universal framework with the aim of “gluing” défent tools and formalisms together is a long
standing goal that has been extensively explored in théringmwork on Logical Frameworks by [4, 27,
35,31,7,5, 26, 28, 29, 17]. Moreover, the appealing morstdicture and properties of the lock/unlock
mechanism go back to Moggi's notion of computational mor{@8$. Indeed, our system can be seen
as a generalization to a family of dependéamt operators of Moggi'sartial A-calculus [24] and of
the work carried out in [8, 23] (which is also the original smiof the term “lax”). A correspondence
between lax modalities and monads in functional progrargmias pointed out in [1, 12]. On the other
hand, although the connection between constraints and agedndogic programming was considered
in the paste.g., in [26, 10, 9], to our knowledge, our systems are the fitgtnapt to establish a clear
correspondence between side conditions and monadsighar-order dependent-type theoand in
logical frameworks. Of course, there are a lot of intergspioints of contact with other systems in the
literature which should be explored. For instance, in [#6,authors introduce a contextual modal logic,
where the notion of context is rendered by means of monadistnacts. We only point out that, as we
did in our system, they could have also simplified their sysby doing away with th@et construct in
favor of a deeper substitution. Schroder-Heister hasudssd in a number of papers, sg [33, 32],
various restrictions and side conditions on rules and ométare of assumptions that one can add to
logical systems to prevent the arising of paradoxes. Thers@me potential connections between his
work and ours. It would be interesting to compare his requéets on side conditions being “closed
under substitution” to our notion avell-behavedredicate. Similarly, there are commonalities between
his distinction betweespecificand unspecificvariables, and our treatment of free variables in well-
behaved predicates. LFSC, presented in [34], is more ren@nt of our approach as “it extents

to allow side conditions to be expressed using a simpledndér functional programming language”.
Indeed, the author factors the verifications of side-cdmuiit out of the main proof. The task is delegated
to the type checker, which runs the code associated withideecendition, verifying that it yields the
expected output. The proposed machinery is focused ondgingvimprovements for SMT solvers.

References

[1] N. Alechina, M. Mendler, V. De Paiva, E. Ritter. Categmii and Kripke semantics for constructive s4 modal logicCémputer Science
Logic, pp. 292-307. Springer, 200d¢i:10.1007/3-540-44802-0_21.

[2] P. Baillot, P. Coppola, U. Dal Lago. Light logics and aptl reduction: Completeness and complexity.LIES, pp. 421-430. IEEE
Computer Society, 2008,01:10.1016/j.1c.2010.10.002.

[3] H.P. Barendregt, E. Barendsen. Autarkic computatiandormal proofs. Journal of Automated Reasoning@8:321-336, 2002,
doi:10.1.1.39.3551.

[4] G. Barthe, H. Cirstea, C. Kirchner, L. Liquori. Pure Rait Type Systems. IROPL'03 pp. 250-261, ACMdoi:10.1.1.298.4555.



F. Honsell, L. Liquori, P. Maksimovi¢, |. Scagnetto 17

(5]
(6]
(71

[8]
[9]

(10]

(11]
(12]
(13]
(14]
(18]

(16]
(17]
(18]
[19]
[20]
(21]
[22]
(23]

(24]
(25]
(26]
(27]

(28]
[29]

(30]
(31]

(32]
(33]
(34]

(35]

M. Boespflug, Q. Carbonneaux, O. Hermant. THeé-calculus modulo as a universal proof languagePXTP 2012v. 878, pp.28—-43,
2012,d0i:10.1.1.416.1602.

R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. HerbdrtVan Tassel. Experience with embedding hardware déiscrianguages
in HOL. In TPCD, pp. 129-156. North-Holland, 1992i:10.1.1.111.260.

D. Cousineau, G. Dowek. Embedding pure type systemsdriaimbda-pi-calculus modulo. LCA v. 4583 ofLNCS pp. 102-117.
Springer-Verlag, 200@0i:10.1.1.102.4096.

M. Fairtlough, M. Mendler. Propositional lax logi¢nformation and Computatiqri37(1):1-33, 1997doi:10.1.1.22.5812.

M. Fairtlough, M. Mendler, X. Cheng. Abstraction and refiment in higher order logic. fheorem Proving in Higher Order Logics
pp. 201-216. Springer, 200d9i:10.1.1.29.3515.

M Fairtlough, M. Mendler, M. Walton. First-order laxde as a framework for constraint logic programming. Techhreport, 1997,
doi:10.1.1.36.1549.

F. B. Fitch. Symbolic logic - An IntroductianNew York, 1952, ASIN: BO0O07DLS20.

D. Garg, M. C. Tschantz. From indexed lax logic to intuiistic logic. Tech. rep. CMU, 20080i:10.1.1.295.8643.

J.-Y. Girard. Light linear logiclnformation and Computatiqri43(2):175-204, 19980i:10.1.1.134.4420.

R. Harper, D. Licata. Mechanizing metatheory in a lagjitamework.JFP, 17:613-673, 200@0i:10.1017/S0956796807006430.

D. Hirschkoff. Bisimulation proofs for the-calculus in the Calculus of Constructions. TRHOL'97, n. 1275 in LNCS. Springer, 1997,
doi:10.1007/BFb0028392.

F. Honsell. 25 years of formal proof cultures: Some feois, some philosophy, bright future. LFMTP’13, pp. 37-42, ACM, 2013,
doi:10.1145/2503887.2503896.

F. Honsell, M. Lenisa, L. Liquori. A Framework for Defirg Logical FrameworksVolume in Honor of G. Plotkin, ENTC$72:399—
436, 2007d01:10.1016/j.entcs.2007.02.014.

F. Honsell, M. Lenisa, L. Liquori, P. Maksimovic, |. Speetto. LF »: a logical framework with external predicates. ULRMTP, pp.
13-22. ACM, 2012doi:10.1145/2364406.2364409.

F. Honsell, M. Lenisa, L. Liquori, P. Maksimovic, |. Sgreetto. An open logical framework. Accepted for publicatio Journal of
Logic and Computationdoi:10.1093/1logcom/ext028.

F. Honsell, L. Liquori, P. Maksimovic, |. ScagnettbLF 4: A Logical Framework for modeling External Evidence, Siden@itions,
and Proof Irrelevance using Monads. Availablévatp://www.dimi.uniud.it/scagnett/LLFP_LMCS.pdf.

F. Honsell, L. Liquori, I. Scagnettd®F: Side Conditions and External Evidence as MonaddMRCS 2014, Part,lv. 8634 ofLNCS
pp. 327-339, Budapest, Hungary, August 2014. Spririger; 10.1007/978-3-662-44522-8_28.

F. Honsell, M. Miculan, I. Scagnettar-calculus in (Co)Inductive Type TheorieBheoretical Computer Sciencg53(2):239-285, 2001,
doi:10.1016/S0304-3975(00) 00095-5.

M. Mendler. Constrained proofs: A logic for dealing twvibehavioral constraints in formal hardware verificatiamDesigning Correct
Circuits, pp. 1-28. Springer-Verlag, 199d¢i:10.1007/978-1-4471-3544-9_1.

E. Moggi. The partial lambda calculusPhD thesis, University of Edinburgh, 19881:10.1.1.53.8462.
E. Moggi. Computational lambda-calculus and monadd.ICS 1989 pp. 14-23. IEEE Presgpi:10.1.1.26.2787.
A. Nanevski, F. Pfenning, B. Pientka. Contextual Motigbe Theory. ACM TOCL, 9(3), 2008d0i:10.1145/1352582.1352591.

F. Pfenning, C. Schirmann. System description: Twelfmeta-logical framework for deductive systemsCHWDE, v. 1632 ofLNCS
pp. 202-206. Springer-Verlag, 193%i:10.1007/3-540-48660-7_14.

B. Pientka, J. Dunfield. Programming with proofs and liexp contexts. In PPDP'08 pp. 163-173, ACM,
doi:10.1145/1389449.1389469.

B. Pientka, J. Dunfield. Beluga: A framework for progmramg and reasoning with deductive systems (system deiserjptin IJCAR
201Q v. 6173 ofLNCS pp. 15-21. Springer-Verlagoi:10.1007/978-3-642-14203-1_2.

D. Prawitz. Natural Deduction. A Proof Theoretical Studdimqvist Wiksell, Stockholm, 1965, ISBN: 978-0486446554

A. Schack-Nielsen, C. Schirmann. Celf-A logical femork for deductive and concurrent systems (System deserjpin Automated
Reasoningpp. 320-326, Springer, 2008i:10.1007/978-3-540-71070-7_28.

P. Schroeder-Heister. Paradoxes and Structural Rutsslubles and consequences : essays in honor of Stepheh fje&203-211.
College Publications, London, 2012, ISBN 978-1-84890-886

P. Schroeder-Heister. Proof-theoretic semantidé,ceatradiction, and the format of deductive reasonifigpoi 31(1):77-85, 2012,
doi:10.1007/s11245-012-9119-x.

A. Stump. Proof checking technology for satisfiabilitpodulo theories. InLFMTP 2008 v. 228, pp. 121-133, 2009,
doi:10.1.1.219.1459.

K. Watkins, I. Cervesato, F. Pfenning, D. Walker. A Comrent Logical Framework |: Judgments and Properties. .TRep. CMU-CS-
02-101, CMU, 2002d0i:10.1.1.14.5484.



An Open Challenge Problem Repository for Systems
Supporting Binders

Amy Felty Alberto Momigliano Brigitte Pientka
School of Electrical Engineering and Dipartimento di Informatica School of Computer Science
Computer Science Universita degli Studi di Milano McGill University
University of Ottawa Milano, ltaly Montreal, Canada

Ottawa, Canada

afelty@eecs.uottawa.ca

momigliano@di.unimi.it bpientka@cs.mcgill.ca

A variety of logical frameworks support the use of highetterabstract syntax in representing formal
systems; however, each system has its own set of benchniarks.worse, general proof assistants
that provide special libraries for dealing with binderseof very limited evaluation of such libraries,
and the examples given often do not exercise and streskegsaispects that arise in the presence of
binders. In this paper we design an open reposi@RBI (Open challenge problemdpository for
systems supporting reasoning withn8ers). We believe the field of reasoning about languagés wit
binders has matured, and a common set of benchmarks pravidiesportant basis for evaluation
and qualitative comparison of different systems and liesathat support binders, and it will help to
advance the field.

1 Introduction

A variety of logical frameworks support the use of highederabstract syntax (HOAS) in representing
formal systems; however, each system has its own set of bearkk, often encoding the same object
logics with minor differences. Even worse, general prodisiants that provide special libraries for
dealing with binders often offer only a very limited evaloat of such libraries, and the examples given
often do not exercise and stress-test key aspects thairmatlse presence of binders.

The POPLMARK challenge [2] was an important milestone in surveying th&esbf the art in mech-
anizing the meta-theory of programming languages. We basgroposed several specific bench-
marks [8] that arecrafted to highlight the differences between the designs of varimesa-languages
with respect to reasoning with and within a context of asdionp, and we compared their implemen-
tation in four systems: the logical framework Twelf [23]etldependently-typed functional language
Beluga [17, 18], the two-level Hybrid system [6, 15] as immpénted on top of Coq and Isabelle/HOL,
and the Abella system [10]. Finally, several systems thppst reasoning with binders, in particular
systems concentrating on modeling binders using HOAS jatsade a large collection of examples and
case studies. For example, Twelf's wikititp: //twelf .org/wiki/Case_studies), Abella’s library
(http://abella-prover.org/examples), Beluga's distribution, and the Coq implementation of Hy-
brid (http://www.site.uottawa.ca/~afelty/HybridCoq/) contain sets of examples that highlight
the many issues surrounding binders.

As the field matures, we believe it is important to be able &tesyatically and qualitatively evaluate
approaches that support reasoning with binders. HavingHmearks is a first step in this direction.
In this paper, we propose a common infrastructure for reytesy challenge problems and a central,
Open challenge problemdpository for systems supporting reasoning withdidrs (ORBI) for sharing
benchmark problems based on the notation we have developed.

I. Cervesato and K. Chaudhuri (Eds.): Tenth Internationatk&hop © A. Felty, A. Momigliano & B. Pientka
on Logical Frameworks and Meta-Languages: Theory and ieeact This work is licensed under the
EPTCS 185, 2015, pp. 18-32, d0i:10.4204/EPTCS.185.2 Creative Commons Attribution License.



A. Felty, A. Momigliano & B. Pientka 19

ORBI is designed to be a human-readable, easily machirsaiplar, uniform, yet flexible and exten-
sible language for writing specifications of formal systénwduding grammar, inference rules, contexts
and theorems. The language directly upholds HOAS repratsent and is oriented to support the mech-
anization of benchmark problems in Twelf, Beluga, Abellagl élybrid, without hopefully precluding
other existing or future HOAS systems. At the same time, waehbalso is amenable to translations to
systems using other representation techniques such asalamnies.

We structure the language in two parts:

1. the problem description, which includes the grammar efdbject language syntax, inference
rules, context schemas, and context relations

2. the logic language, which includes syntax for expressiaprems and directives to ORBI2X
tools.

We begin in Sect. 2 with a running example. We consider thgpaa lambda-calculus as an object
logic (OL), and present the syntax, some judgments, and Isatimgorems. In Sect. 3, we present ORBI
by giving its grammar and explaining how it is used to encode ronning example; Sect. 3.1 and
Sect. 3.2 present the two parts of this specification as sésthiabove. We discuss related work in
Sect. 4.

We consider the notation that we present here as a first attrdpfining ORBI (Version 0.1), where
the goal is to cover the benchmarks considered in [8]. As reelbmarks are added, we are well aware
that we will need to improve the syntax and increase the sspre power—we discuss limitations and
some possible extensions in Sect. 5.

2 A Running Example

The first question that we face when defining an OL is how toritesavell-formed objects. Consider
the untyped lambda-calculus, defined by the following gramm

M = x| lamx.M | app M1 Ma.

To capture additional information that is often useful ingfis, such as when a given terncissed
it is customary to give inference rules in natural deducstyte for well-formed terms using hypothet-
ical and parametric judgments. However, it is often coreento present hypothetical judgments in a
localizedform, reducing some of the ambiguity of the two-dimensiamatural deduction notation, and
providing more structure. We therefore introducesaplicit context for bookkeeping, since when estab-
lishing properties about a given system, it allows us to id@rshe variable case(s) separately and to state
clearly when considering closed objects, i.e., an objethénempty context. More importantly, while
structural properties of contexts are implicitly presemthie natural deduction presentation of inference
rules (where assumptions are managed informally), theéaiixpbntext presentation makes them more
apparent and highlights their use in reasoning about ctstex

isstmxeTl [ istm X isstm M tm I istm My I is_tm My tm,
I Fis_tm X Ikis_tm (lamx.M) I Fis_tm (app M1 My)

IFollowing TPTP’s nomenclature [25], we call “ORBI2X” anydotaking an ORBI specification as input; for example,
the translator for Hybrid described in [13] turns syntaxemnce rules, and context definitions of ORBI into inputhte €oq
version of Hybrid, and it is designed so that it can be adafatiely directly to output Abella scripts.



20 ORBI

Traditionally, a context of assumptions is characterizedaagsequence of formulas,A,... A,
listing its elements separated by commas [12, 19]. In [7],angie that this is not expressive enough
to capture the structure present in contexts, especialgnwhechanizing object logics, and we define
contextschemasgo introduce the required extra structure:

Atom A
Block of declarations D := A|D;A
Context ' == -|I',D
Schema S = Dg|Ds+S

A context is a sequence of declaratidhsvhere a declaration is a block of individual atomic assuonsi
separated by ;2 The ’; binds tighter than,’. We treat contexts as ordered, i.e., later assumptiortsain t
context may depend on earlier ones, but not vice versa—ttluigritrast to viewing contexts as multi-sets.
Just as types classify termssehemawill classify meaningful structured sequences. A schenmsists

of declarationdg, where we use the subscripto indicate that the declaration occurring in a concrete
context having schem&may be arninstanceof Ds. We use+ to denote the alternatives in a context
schema. For well-formed terms, contexts have a simpletsteievhere each block contains a single
atom, expressed as the following schema declaration:

S :=istm X

We write @y to represent a contegatisfyingschemas, (and similarly for other context schemas appear-
ing in this paper). Informally, this means th@j has the forms_tm Xxq,...,is_tm X, wheren > 0 and
X1,...,X%n are distinct variables. (See [7] for a more formal account.)

For our running example, we consider two more simple judgmerhe first isalgorithmic equality
for the untyped lambda-calculus, writtémeq M N). We say that two terms are algorithmically equal
provided they have the same structure with respect to thetremtors.

aegxxerl [, is_tm X;aeq X X-aeq M N a MFaeqMi N7y T'FaeqMz Ny

- ae,
I aeq X X I aeq (lamx.M) (lamx.N) I+ aeq (app M1 My) (app N1 Np)

The second isleclarative equalitywvritten (deq M N), which includes versions of the above three rules
calledde,, dg, andde,, whereaeq is replaced byleq everywhere, plus reflexivity, symmetry and tran-
sitivity shown below?

Fl—deqNMd NdeqgML TFdegLN
NdegM M & N=degM N s NdegMN

de

These judgments give rise to the following schema dectarsti

Sa = is_tmX;aeq XX
Sy = is.tm X;deq X X
Sja = is_tm X;deq X X, aeq X X

2Thisisan oversimplification, since there are well-knowadfications where contexts have more structure, see théaol
to the PPPLMARK challenge in [16] and the examples in [26]. In fact, thoseadmeady legal ORBI specs.

3We acknowledge that this definition of declarative equalig a degree of redundancy: the assumptienx xin rule dg
is not needed, since rutby plays the variable role. However, this formulation extibisues, such amntext subsumption
that would otherwise require more complex benchmarks.



A. Felty, A. Momigliano & B. Pientka 21

The first two come directly from thag anddgq rules where declaration blocks come in pairs. The third
combines the two, and is used below in stating one of the eleathporems.

When stating properties, we often need to relate two judgsmeneach other, where each one has
its own context. For example, we may want to prove statensrl as “ifd, - J; then®dy, - 1" The
proofs in [8] use two approachédn the first, the statement is reinterpreted in $hneallestcontext that
collects all relevant assumptions; we call this gemeralized contexdpproach (G). The above statement
becomes “if®y, - J; thend,, - J,.” As an example theorem, we consider the completeness Erdéce
equality with respect to algorithmic equality, of which wayshow the interesting left-to-right direction.

Theorem 2.1 (Completeness, G Version )

Admissibility of Reflexivity If @y, is.tm M then®y, - aeq M M.

Admissibility of Symmetry If ®y;F aeq M N then®y,+ aeqg N M.

Admissibility of Transitivity If ®y, - aeq M N and®y, - aeq N L then®y, - aeq M L.
Main Theorem If @y, deqg M N then®y, - aeq M N.

In the second approach, we state how two (or more) contegtsetated via context relations. For
example, the following relation captures the fact flhaim x will occur in ®y in sync with an assumption
block containings_tm X; aeq X Xin ®yg.

CDX ~ q)xa
L~ Dy, is_tm X ~ Dyg,is_tm X; aeq X X
Similarly, we can defin@®y, ~ @yq.
Dyq ~ Dyg
L~ Dya,is_tm X; aeq X X~ Dyg, is_tm X;deq X X

We call this thecontext relationapproach (R). The theorems are then typically stated a€,if J; and
D, ~ Dy, thendy, - Jo.” We can then revisit the completeness theorem for algwiittequality together
with the necessary lemmas as follows.

Theorem 2.2 (Completeness, R Version)

Admissibility of Reflexivity Assumeaby ~ @y,. If Oy is.tm M then®y, - aeqg M M.
Admissibility of Symmetry If @y, aeq M N then®y,, - aeq N M.

Admissibility of Transitivity If ®ya+ aeq M N and®y, - aeq N L then®,, - aeq M L.
Main Theorem Assum@by, ~ Pyq. If Dyq - deq M N then®dy, - aeqg M N.

3 ORSBI

ORBI aims to provide a common framework for systems that sttpreasoning with binders. Cur-
rently, our design is geared towards systems supporting $iQ#here there are (currently) two main
approaches. On one side of the spectrum we have systemsniiatrient various dependently-typed

4In proofs on paper, the differences between the two appesackually do not appear; they are present in the details that
are left implicit, but must be made explicit when mechargzomoofs. For example, on-paper versions of the admistilufi
reflexivity that make these distinctions explicit appedi7ihas proofs of Theorems 7 and 8.



22 ORBI

calculi. Such systems include Twelf, Beluga, and Delphbi.[All these systems also provide, to var-
ious degrees, built-in support for reasoning modulo stmattproperties of a context of assumptions.
These systems support inductive reasoning over terms asswelles. Often it is more elegant in these
systems to state theorems using the G-version [8].

On the other side there are systems based on a proof-thefetidation, which typically follow a
two-level approach: they implement a specification logic)(fBside a higher-order logic or type the-
ory. Hypothetical judgments of object languages are madedéng implication in the SL and parametric
judgments are handled via (generic) universal quantiioatContexts are commonly represented explic-
itly as lists or sets in the SL, and structural propertiesestablished separately as lemmas. For example
substituting for an assumption is justified by appealinchedut-admissibility lemma of the SL. These
lemmas are not directly and intrinsically supported thiotige SL, but may be integrated into a system’s
automated proving procedures, usually via tactics. Indnds usually only supported on derivations,
but not on terms. Systems following this philosophy inclitidrid and Abella. Often these systems are
better suited to proving R-versions of theorems.

The desire for ORBI to cater to both type and proof theoretimmeworks requires an almost impossi-
ble balancing act between the two views. For example, cthger first-class and part of the specification
language in Beluga; in Twelf, schemas for contexts are datieospecification language, which is an
extension of LF, but users cannot explicitly quantify oventexts and manipulate them as first-class ob-
jects; in Abella and Hybrid, contexts are (pre)defined usnictive definitions on the reasoning level.
We will describe next our common infrastructure desigredtives, and guidelines that allow us to cater
to existing systems supporting HOAS.

3.1 Problem Description in ORBI

ORBI's language for defining the grammar of an object languagether with inference rules is based
on the logical framework LF; pragmatically, we have adoptesl concrete syntax of LF specifications
in Beluga, which is almost identical to Twelf's. The advaggas that specifications can be directly
parsed and more importantly type checked by Beluga, theskmynating many syntactically correct but
meaningless expressions.

Object languages are written according to the EBNF grammBrg. 1, which uses certain standard
conventions: {a} means repeat a production zero or more times, and commetitg igrammar are
enclosed betweef* andx*). The tokenid refers to identifiers starting with a lower or upper casesfett
These grammar rules are basically the standard ones ugenhHotelf and Beluga and we do not discuss
them in detail here. We only note that while the presentechgrar permits general dependent types up
to level n, ORBI specifications will only use level 0 and level 1. Iniwély, specifications at level 0
define the syntax of a given object language, while spedificatat level 1 (i.e., type families that are
indexed by terms of level 0) describe the judgments and fatesgiven OL. We exemplify the grammar
relative to the example of algorithmic vs. declarative diggia=or more example specifications, we refer
the reader to our survey paper [8] omiotps: //github.com/pientka/0RBI.’

Syntax An ORBI file starts in theSyntax section with the declaration of the constants used to encode
the syntax of the OL in question, here untyped lambda-tewhigh are introduced with the declarations:

5The observant reader will have noticed that ORBI's concgteax for schemas differs from the one that we have predente
in Sect. 2, in so much that blocks are separated by commasoiihg semi-colons. This is forced on us by our choice to re-use
Beluga'’s parsing and checking tools.



A. Felty, A. Momigliano & B. Pientka 23

sig ::= {decl (* declaration *)
| s_decl} (* schema declaration *)
decl pi=did ":" tp "." (* constant declaration *)
| id ":" kind "." (* type declaration *)
op_arrow ::= "->" | "<-" (* A <- B same as B -> A *)
kind 1= type
| tp op_arrow kind (x A -> K %)
[ *{" id ":" tp "}" kind (* Pi x:A.K %)
tp ::= id {term} (x a ML ... M2 %)
| tp op_arrow tp
| ||{|| id ||:|| tp II}ll tp (* Pl X:A.B *)
term 1= id (* constants, variables *)
[ "\" id "." term (* lambda x. M *)
| term term (* M N *)
s_decl = schema s_id "=" alt_blk ";"
s_id 1= 1id
alt_blk = blk {"+" blk}
blk = block id ":" tp {"," id ":" tp}
Figure 1: ORBI grammar for syntax, judgments, inferencesu&nd context schemas
%% Syntax
tm: type.

app: tm -> tm -> tm.

lam: (tm -> tm) -> tm.

The declaration introducing typen along with those of the constructosapp andlam fully specify the
syntax of OL terms. We represent binders in the OL using bsaethe HOAS meta-language. Hence
the constructot am takes in a function of typem -> tm. For example, the OL terflamx.lamy.app xy)
isrepresented dam (\x. lam (\y. app x y)),where\”isthe binder of the metalanguage. Bound
variables found in the object language are not explicitiresented in the meta-language.

Judgments and Rules These are introduced as LF type families (predicates) injtligments sec-
tion followed by object-level inference rules for thesegutents in theRules section. In our running
example, we have two judgments:

%% Judgments
aeq: tm -> tm -> type.



24 ORBI

deq: tm -> tm —-> type.
Consider first the inference rule for algorithmic equaliy &pplication, where the ORBI text is a straight-
forward encoding of the rule:

ae_a: aeq M1 N1 -> aeq M2 N2 aeqMi Ny 'aeqM2 Ny
-> aeq (app M1 M2) (app N1 N2). I Faeq (app M1 M2) (app N1 Np)

Uppercase letters such s denote schematic variables, which are implicitly quardifiethe outermost
level, namely{M1:tm}, as is commonly done for readability purposes in Twelf antli§z
The binder case is more interesting:

ae_l: ({x:tm} aeq x x -> aeq (M x) (N x)) I,is_tm X;aeq X XI-aeq M N
-> aeq (lam (\x. M %)) (lam (\x. N x)). I aeq (lamx.M) (lamx.N)

ag

We view theis_tm x assumption as the parametric assumptioam, while the hypothesiaeq x x (and
its scoping) is encoded within the embedded implicatien x x -> aeq (M x) (N x) in the cur-
rent (informal) signature augmented with the dynamic datilen forx. As is well known, parametric
assumptions and embedded implication are unified in thettyperetic view. Note that the “variable”
case, namely rulag,, is folded inside the binder case. We list here the rest oktties section:

%% Rules
de_a: deq M1 N1 -> deq M2 N2 -> deq (app M1 M2) (app N1 N2).
de_1: ({x:tm} deq x x -> deq (M x) (N x))
-> deq (lam (\x. M x)) (lam (\x. N x)).
de_r: deq M M.
de_s: deq N M -> deq M N.
de_t: deq ML -> deq L N -> deq M N.

Schemas A schema declaratioa_decl is introduced using the keyworgthema. A blk consists of
one or more declarations aadt_blk describeslternatingschemas. For example, schemas mentioned
in Sect. 2 appear in th&chemas section as:

%% Schemas

schema xG = block (x:tm);

schema xaG = block (x:tm, u:aeq x x);

schema xdG = block (x:tm, u:deq x x);

schema daG = block (x:tm, u:deq x X, v:aeq X X);

To illustrate alternatives in contexts, consider extegdianr OL to the polymorphically typed lambda-
calculus, which includes a new type in the Syntax section, and a new judgment:
atp: tp -> tp -> type.

representing equality of types in tdedgments section (as well as type constructors and rules for well-
formed types and type equality, omitted here). With thigesion, the following two examples replace
the first two schemas in tt8chemas section.

schema xG
schema xaG

block (x:tm) + block (a:tp);
block (x:tm, u:aeq x x) + block (a:tp, v:atp a a);



A. Felty, A. Momigliano & B. Pientka 25

While we type-check the schema definitions using an extansidhe LF type checker (as imple-
mented in Beluga), we do not verify that the given schema itiefinis meaningful with respect to the
specification of the syntax and inference rules; in otherdspwe do not perform “world checking” in
Twelf lingo.

Definitions So far we have considered the specification language fordamgdormal systems. ORBI
also supports declaring inductive definitions for speadycontext relations. We start with the gram-
mar for inductive definitions (Fig. 2). Although we plan taopide syntax for specifying more general
inductive definitions, in this version of ORBI wanly definecontext relationsnductively, that isn-ary
predicates between contexts of some given schemas. Hanbagb predicate is of the fortd {ctx}
relating different contexts. For example, thefinitions section defines the relation, ~ @4, and

def_dec ::= "inductive" id ":" r_kind "=" def_body ";"
r_kind = "prop"
[ "{" id ":" s_id "}" r_kind
def_body ::= "|" id ":" def_prp {def_body}
def_prp ::= id {ctx}

| def_prp "->" def_prp

ctx c:= [0 | [dd] | etx "," id ":" blk

Figure 2: ORBI grammar for inductive definitions describoantext relations

Dyq ~ Dyq. To illustrate, only the former is shown below.

%% Definitions
inductive Rxa : {g:xG} {h:xaG} prop =
| Rxa_nl: Rxa []1 []
| Rxa_cs: Rxa [g] [h]
-> Rxa [g, b:block (x:tm)] [h, b: block (x:tm, u:aeq x x)];

This kind of relation can be translated fairly directly taluctive n-ary predicates in systems support-
ing the proof-theoretic view. In the type-theoretic franogkvunderlying Beluga, inductive predicates
relating contexts correspond to recursive data types gulby contexts; in fact ORBI adopts Beluga'’s
concrete syntax, so as to directly type-check those defirstas well. Twelf's type theoretic framework,

however, is not rich enough to support inductive definitions

3.2 Theorems and Directives in ORBI

While the elements of an ORBI specification detailed in thevijmus subsection were relatively easy to
define in a manner that is well understood by all the diffesyistems we are targeting, we illustrate in
this subsection those elements that are harder to desarifieraly due to the different treatment and
meaning of contexts in the different systems.



26 ORBI

Theorems We list the grammar for theorems in Fig. 3. Our reasoninguagg includes a categopyp
that specifies the logical formulas we support. The baseqatd includefalse, true, term equality,
atomic predicates of the forrd {ctx}, which are used to express context relations, and predicéite
the form[ctx |- JI, which represent judgments of an object language withiverngtontext. Connec-
tives and quantifiers include implication, conjunctiorsjdiction, universal and existential quantification
over terms, and universal quantification over context e

thm ::= "theorem" id ":" prp ";"
prp ::= id {ctx} (* Context relation *)
[ "[" ctx "|-" id {term} "]" (* Judgment in a context *)
| term "=" term (* Term equality *)
| false (* Falsehood *)
| true (* Truth *)
| prp "&" prp (* Conjunction *)
| prp "II" prp (* Disjunction *)
| prp "->" prp (* Implication *)
| quantif prp (* Quantification *)
quantif = "{" id ":" s_id "}" (* universal over contexts *)
[ "{" iq ":" tp "}" (* universal over terms *)
[ "< id ":" tp ">" (* existential over terms x*)

Figure 3: ORBI grammar for theorems

To illustrate, the reflexivity lemmas and completeness riéves for both the G and R versions as
they appear in th&€heorems section are shown below. These theorems are a straightimsvecoding
of those stated in Sect. 2.

%% Theorems
theorem reflG: {h:xaG}{M:tm} [h |- aeq M M];
theorem ceqG: {g:daGHHM:tm}{N:tm} [g |- deq M N] -> [g |- aeq M NJ;

theorem reflR: {g:xG}{h:xaG}{M:tm} Rxa [g] [h] -> [h |- aeq M M];
theorem ceqR: {g:xdG}{h:xaG}{M:tm}{N:tm} Rda [g] [h] ->
[g |- deq M N] -> [h |- aeq M NJ;

As mentioned, we do not type-check theorems; in particar,do not define the meaning of
[ctx |- J], since several interpretations are possible. In BelugeryejudgmentJ must be mean-
ingful within the given contexttx; in particular,termsoccurring in the judgment must be meaningful
in ctx. As a consequence, both parametric and hypothetical assummpelevant for establishing the
proof of J must be contained iatx. Instead of the local context view adopted in Beluga, Twek h
one global ambient context containing all relevant paraimeind hypothetical assumptions. Systems
based on proof-theory such as Hybrid and Abella distingbestiveen assumptions denoting eigenvari-
ables (i.e., parametric assumptions), which live in a dlaibabient context and proof assumptions (i.e.,
hypothetical assumptions), which live in the contexk. While users of different systems understand
how to interpretlctx |- J], reconciling these different perspectives in ORBI is bel/tme scope of



A. Felty, A. Momigliano & B. Pientka 27

this paper. Thus for the time being, we view theorem statésriarORBI as a kind oEommentwhere it
is up to the user of a particular system to determine how testate them.

Directives In ORBI, directivesare comments that help the ORBI2X tools to generate targe¢sen-
tations of the ORBI specifications. The idea is reminiscdnmat Ott [24] does to customize certain
declarations, e.g., the representation of variables, éadifierent programming languages/proof assis-
tants it supports. The grammar for directives is listed o Bi

dir ::= %’ sy_set what decl {"," decl} {dest} .’
| >%%° sepr °.°
sy_id = hy | ab | bel | tw
sy_set = [ sy_id {’,’ sy_id} ’1°’
what = wf | explicit | implicit
dest = ’in’ ctx | ’in’ s_id | ’in’ id
sepr = Syntax | Judgments | Rules | Schemas | Definitions

| Directives | Theorems

Figure 4: ORBI grammar for directives

The sepr directives, such aSyntax, are simply means to structure ORBI specifications. Most
of the other directives that we consider in this version ofBDBre dedicated to help the translations
into proof-theoretical systems, although we also incluntaesto facilitate the translation of theorems to
Beluga. The set of directives is not intended to be completethe meaning of directives is system-
specific. The directivegsf andexplicit are concerned with the asymmetry in the proof-theoretia vie
between declarations that give typing information, ecgj:,type, and those expressing judgments, e.g.,
aeq:tm -> tm -> type. In Abella and Hybrid, the former may need to be reified in agjuént, in
order to show that judgments preserve the well-formednéfised constituents, as well as to provide
induction on the structure of terms; yet, in order to keepofgsaompact and modular, we want to
minimize this reification and only include them where neaggsTheDirectives section of our sample
specification includes, for example,

% [hy,ab] wf tm.

which refers to the first line of theyntax section wherem is introduced, and indicates that we need
a predicate (e.g.is_tm) to express well-formedness of terms of type Formulas expressing the
definition of this predicate are automatically generatedhfthe declarations of the constructaggp and
lam with their types.

The keywordexplicit indicates when such well-formedness predicates shoulddbeded in the
translation of the declarations in tReles section. For example, the following formulas both représen
possible translations of thee_1 rule to proof-theoretic systems. We use Abella’s concrgtdax to
exemplify:
aeq (lam M) (lam N) :- pi x\ is_tm x => aeq x x => aeq (M x) (N x).
aeq (lam M) (lam N) :- pi x\ aeq x x => aeq (M x) (N x).



28 ORBI

where the typing information is explicit in the first and ingi in the second. By default, we choose the
latter, that is well-formed judgments are assumed targaicit, and require a directive if the former is
desired. Consider, for example, that we want to concludenthanever a judgment is provable, the terms
in it are well-formed, e.g., ikeq M N is provable, then so ares_tm M andis_tm N. Such a lemma
is indeed provable in Abella and Hybrid from tlhmplicit translation of the rules foaeq. Proving

a similar lemma for theleq judgment, on the other hand, requires some strategicadigepl explicit
well-formedness information. In particular, the two direes:

% [hy,ab] explicit (x : tm) in de_l.
% [hy,ab] explicit (M : tm) in de_r.

require the clausede_1 andde_r to be translated to the following formulas:

deq (lam M) (lam N) :- pi x\ is_tm x => deq x x => deq (M x) (N x).
deq M M :- is_tm M.

The case for schemas is analogous. In the systems based afrttgroretic approaches, contexts
are typically represented using lists and schemas arddtadgo unary inductive predicates that verify
that these lists have a particular regular structure. Weéndgave typing information implicit in the
translation unless a directive is included. For examplex#tt schema with no associated directive will
be translated to the following inductive definition in Akzell

Define aG : olist -> prop by
xaG nil;
nabla x, xaG (aeq x x :: As) := xaG As.

The directive), [hy,ab] explicit (x : tm) in daG will yield this Hybrid definition:

Inductive daG : list atm -> Prop :=
| nil_da : daG nil
| cns_da : forall (Gamma:list atm) (x:uexp),
proper x -> daG Gamma -> daG (is_tm x :: deq x X :: aeq x x :: Gamma).

Similarly, directives in context relations, such as:
% [hy,ab] explicit (x : tm) in g in Rxa.

also state which well-formedness annotations to make ak|ohi the translated version. In this case,
when translating the definition @ka in theDefinitions section, they are to be kept ¢ but skipped
in h.

Keeping in mind that we consider the notion of directbjgento cover other benchmarks and differ-
ent systems, we offer some speculation about directivasmbanay need to translate theorems for the
examples and systems that we are considering. For exameteemref1G is proven by induction over
M. As a consequenc#, must be explicit.

% [hy,ab,bel] explicit (M : tm) in h in reflG.

The ORBI2Hybrid and ORBI2Abella tools will interpret therelctive by adding an explicit assumption,
as illustrated by the result of the ORBI2Abella translation

forall HM, xaG H -> {H |- is_tm M} -> {H |- aeq M M}.
In Beluga, the directive is interpreted as:
{h:xaG} {M:[h |- tm]} [h |- aeq M M].



A. Felty, A. Momigliano & B. Pientka 29

whereM will have typetm in the contexth. Moreover, since the term is used in the judgmerdeq
within the contexth, we associat® with an identity substitution, which is not displayed. Irosh the
directive allows us to lift the type specified in ORBI to a aaxttial type that is meaningful in Beluga. In
fact, Beluga always needs additional information on hownterpret terms—are they closed or can they
depend on a given context? For translati#ygG for example, we use the following directive to indicate
the dependence on the context:

% [bel] implicit (M : tm), (N : tm) in h in symG.

3.3 Guidelines

In addition, we introduce a set guidelinesfor ORBI specification writers, with the goal of helping
translators generate output that is more likely to be aeckpy a specific system. ORBI 0.1 includes
four such guidelines, which are motivated by the desire wdaputting too many constraints in the
grammar rules. First, as we have seen in our examples, weswseanvention that free variables which
denote schematic variables in rules are written using upgese identifiers; we use lower case identifiers
for eigenvariables in rules and for context variables. Sdcavhile the grammar does not restrict what
types we can quantify over, the intention is that we quardifgr types of level-0, i.e., objects of the
syntax level, only. Third, in order to more easily accommtedsystems without dependent types,
should not be used when writing non-dependent types; awahould be used instead. (In LF, for
example,A -> B is an abbreviation fopi x:A.B for the case wher does not occur iB. Following
this guideline means favoring this abbreviation whenetvepplies.) Fourth, when writing a context
(grammarctx), distinct variable names should be used in different tdock

4 Related Work

Our approach to structuring contexts of assumptions takasspiration from Martin-Lof's theory of
judgments, especially in the way it has been realized inlitdgh LF. However, our formulation owes
more to Beluga’s type theory, where contexts are first-aldaggens, than to the notion eégular world
in Twelf.

The creation and sharing of a library of benchmarks has préwebe very beneficial to the field
it represents. The brightest exampleTBTP [25], whose influence on the development, testing and
evaluation of automated theorem provers cannot be undaetstl. Clearly our ambitions are much
more limited. We have also taken some inspiration from gééi-order extensioRHFO[3], in particular
in its construction in stages.

The success of TPTP has spurred other benchmark suiteatedasiubjects, see for exam@ATLIB
[14]; however, the only one concerned with induction is tha@uction Challenge Problem@&ttp://
www.cs.nott.ac.uk/~lad/research/challenges), a collection of examples geared to gn¢oma-
tion of inductive proof. The benchmarks are taken from arithopgiuzzles, functional programming
specifications, etc. and as such have little connection @dthendeavor. On the other hand, the exam-
ples mentioned earlier coming from Twelf's wiki, Abellaibdary, Beluga’s distribution, and Hybrid's
web page contain a set of examples that highlight the isstmmd binders. As such they are prime
candidates to be included in ORBI.

Other projects have put forward LF as a common ground: theajdaogosphers (http://www.
logosphere.org) was the design of a representation language for logicaidbsms, individual theo-
ries, and proofs, with an interface to other theorem progiygjems that were somewhat connected, but



30 ORBI

the project never materialize@ASyLH1] originated as a tool to teach programming language theor
the user specifies the syntax, judgments, theoramaigproofs thereof (albeit limited tolosedobjects)

in a paper-and-pencil HOAS-friendly way and the system easvthem to totality-checked Twelf code.
The capability to express and share proofs is of obviousésatdo us, although such proofs, being a lit-
eral proof verbalization of the corresponding Twelf typmity, are irremediably verbose. Finally, work
on modularity in LF specifications [21] is of critical intesteto give more structure to ORBI files.

Why3(http://why3.1ri.fr) is a software verification platform that intends to provaléront-
end to third-party theorem provers, from proof assistanthsas Coq to SMT-solvers. To this end
Why3 provides a first-order logic with rank-1 polymorphismacursive definitions, algebraic data types
and inductive predicates [9], whose specifications are ttarslated to the several systems that Why3
supports. Typically, those translations are forgetful, gsmmetimes, e.g., with respect to Coq, they add
some annotations, for example to ensure non-emptinesped tyA\lthough we are really not in the same
business as Why3, there are several ideas that are reléwarame one, the notion ofdxiver, that is,

a configuration file to drive transformations specific to aeys Moreover, Why3 provides an API for
users to write and implement their own drivers and transftions.

Ott [24] is a highly engineered tool for “working semanticistd|owing them to write programming
language definitions in a style very close to paper-and-pegifications; then those are compiled into
IATEX and, more interestingly, into proof assistant code, aulyesupporting Coq, Isabelle/HOL, and
HOL. Ott's metalanguage is endowed with a rich theory of bisd but at the moment it favors the
“concrete” (nona-quotiented) representation, while providing supporttfer nameless representation
for a single binder. Conceptually, it would be natural toeext Ott to generate ORBI code, as a bridge
for Ott to support HOAS-based systems. Conversely, an OR&1 would benefit from having Ott as a
front-end, since the latter view of grammar and judgmeninseat first sight general enough to support
the notion of schema and context relation.

In the category of environments for programming languageiigtions, we mentioPLT-Redex5]
and also the&K framework [22]. In both, several large-scale language rifggans have been specified
and tested. However, none of those systems has any suppbimdiers, let alone context specifications,
nor can any meta-theory be formally verified.

Finally, there is a whole research area dedicated to thelihngrahd sharing of mathematical con-
tent MMK http://www.mkm-ig.org) and its representatiorOMDochttps://trac.omdoc.org/
OMDoc), which is only very loosely connected to our project.

5 Conclusion

We have presented the preliminary design of a language, anelgenerally, of a common infrastructure
for representing challenge problems for HOAS-based lofiammeworks. The common notation allows
us to express the syntax of object languages that we wislasoneabout, as well as the context schemas,
the judgments and inference rules, and the statements ofitvemk theorems.

We strongly believe that the field has matured enough to keinefn the availability of a set of
benchmarks on which qualitative and hopefully quantiattemparison can be carried out. We hope
that ORBI will foster sharing of examples in the communityl gmovide a common set of examples. We
also see our benchmark repository as a place to collect apbge “open” challenge problems to push
the development of meta-reasoning systems.

The challenge problems also play a role in allowing us, agdess and developers of logical frame-
works, to highlight and explain how the design decisionsefach individual system lead to differences



A. Felty, A. Momigliano & B. Pientka 31

in using them in practice. Additionally, our benchmarks amprovide a better understanding of what
practitioners should be looking for, as well as help themagee what kind of problems can be solved el-
egantly and easily in a given system, and more importanthy, this is the case. Therefore the challenge
problems provide guidance for users and developers inrlmetteprehending differences and limitations.
Finally, they serve as an excellent regression suite.

The description of ORBI presented here is best thought obteging stone towards a more compre-
hensive specification language, muchlad-0[3] has been extended to the more expressive formalism
THHR, adding for instance, rank-1 polymorphism. Many are théufes that we plan to provide in the
near future, starting from general (monoto(m))inductivedefinitions; currently we only relate contexts,
while it is clearly desirable to relate arbitrary well-typgerms, as shown for example in [4] and [11] with
respect to normalization proofs. Further, it is only nattwasupport infinite objects and behavior. How-
ever, full support for (co)induction is a complex matter,tasssentially entails fully understanding the
relationship between the proof-theory behind Abella andvridyand the type theory of Beluga. Once
this is in place, we can “rescue” ORBI theorems from theirentr status as comments and even include
proof sketches in ORBI.

Clearly, there is a significant amount of implementation kvanead, mainly on the ORBI2X tools
side, but also on the practicalities of the benchmark skiteally, we would like to open up the repository
to other styles of formalization such as nominal, locallynedess, etc.

References

[1] Jonathan Aldrich, Robert J. Simmons & Key Shin (2008ASyLF: An Educational Proof Assistant for
Language Theory In: International Workshop on Functional and Declarative Paogning in Education
ACM Press, pp. 31-40, ddio . 1145/1411260.1411266.

[2] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, Nathan Foster, Benjamin C. Pierce, Peter
Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stepl@aiVeirich & Steve Zdancewic (2005Mecha-
nized Metatheory for the Masses: TRePLMARK Challenge In: Eighteenth International Conference on
Theorem Proving in Higher Order LogidsNCS 3603, Springer, pp. 50-65, dbf. 1007/11541868_4.

[3] Christoph Benzmiiller, Florian Rabe & Geoff Sutcliff2008): THFO—The Core of the TPTP Language
for Higher-Order Logic In: Fourth International Joint Conference on Automated RaagphNCS 5195,
Springer, pp. 491-506, daid.1007/978-3-540-71070-7_41.

[4] Andrew Cave & Brigitte Pientka (2012Programming with Binders and Indexed Data-Typés. Thirty-
Ninth Annual ACM SIGPLAN-SIGACT Symposium on Principles®fogramming LanguageSCM Press,
pp. 413-424, doi0.1145/2103656.2103705.

[5] Matthias Felleisen, Robert Bruce Findler & Matthew EI&009): Semantics Engineering with PLT Redex
The MIT Press.

[6] Amy P. Felty & Alberto Momigliano (2012):Hybrid: A Definitional Two-Level Approach to Reasoning
with Higher-Order Abstract SyntaxJournal of Automated Reasonid@(1), pp. 43-105, dain.1007/
s10817-010-9194-x

[7] Amy P. Felty, Alberto Momigliano & Brigitte Pientka (2®&): The Next 700 Challenge Problems for Reason-
ing with Higher-Order Abstract Syntax Representationgt Ba—A Common Infrastructure for Benchmarks
CoRRabs/1503.06095. Available Attp://arxiv.org/abs/1503.06095.

[8] Amy P. Felty, Alberto Momigliano & Brigitte Pientka (2&): The Next 700 Challenge Problems for Reason-
ing with Higher-Order Abstract Syntax Representationgt Ra—A SurveyJournal of Automated Reasoning
(to appear).



32 ORBI

[9] Jean-Christophe Filliatre (2013Pne Logic To Use Them Alln: Twenty-Fourth International Conference
on Automated Deductig. NCS 7898, Springer, pp. 1-20, dod.1007/978-3-642-38574-2_1.

[10] Andrew Gacek (2008)The Abella Interactive Theorem Prover (System Descriptioim: Fourth Inter-
national Joint Conference on Automated ReasoniigCS 5195, Springer, pp. 154-161, duoi:.. 1007/
978-3-540-71070-7_13.

[11] Andrew Gacek, Dale Miller & Gopalan Nadathur (2012)Two-Level Logic Approach to Reasoning About
ComputationsJournal of Automated Reasonidg§(2), pp. 241-273, ddi0.1007/s10817-011-9218-1.

[12] J.-Y. Girard, Y. Lafont & P. Tayor (1990Proofs and TypesCambridge University Press.

[13] Nada Habli & Amy P. Felty (2013)Translating Higher-Order Specifications to Coq Librariespporting
Hybrid Proofs In: Third International Workshop on Proof Exchange for TheoRmaving EasyChair Pro-
ceedings in Computing4, pp. 67-76.

[14] Holger H. Hoos & Thomas Stitzle (200BATLIB: An Online Resource for Research on SATSAT 2000:
Highlights of Satisfiability Research in the Year 2Q0B€ontiers in Atrtificial Intelligence and Applicatios,
I0S Press, pp. 283-292.

[15] Alberto Momigliano, Alan J. Martin & Amy P. Felty (2008)Two-Level Hybrid: A System for Reasoning
Using Higher-Order Abstract Syntain: Second International Workshop on Logical Frameworks antaMe
Languages: Theory and Practice, LFMTP 20BKITCS196, Elsevier, pp. 85-93, daD.1016/j.entcs.
2007.09.019.

[16] Brigitte Pientka (2007)Proof Pearl: The Power of Higher-Order Encodings in the LeadiFramework LF
In: Twentieth International Conference on Theorem Proving ighdr-Order LogicsLNCS, Springer, pp.
246-261, doit0.1007/978-3-540-74591-4_19.

[17] Brigitte Pientka & Andrew Cave (2015)nductive Beluga:Programming Proofs (System Descriptidn:
Twenty-Fifth International Conference on Automated Dettur; Springer.

[18] Brigitte Pientka & Joshua Dunfield (2010Beluga: A Framework for Programming and Reasoning with
Deductive Systems (System Descriptidn) Fifth International Joint Conference on Automated Reasgni
LNCS6173, Springer, pp. 15-21, db{i. 1007/978-3-642-14203-1_2.

[19] Benjamin C. Pierce (2002Jypes and Programming LanguagesIT Press.

[20] Adam Poswolsky & Carsten Schirmann (2008ystem Description: Delphin—A Functional Programming
Language for Deductive System#n: Third International Workshop on Logical Frameworks and &4et
Languages: Theory and Practice (LFMTP 2Q0BNTCS 228, Elsevier, pp. 113-120, do@. 1016/ .
entcs.2008.12.120

[21] Florian Rabe & Carsten Schirmann (2008)Practical Module System for LFIn: Fourth International
Workshop on Logical Frameworks and Meta-Languages: Theaady Practice ACM Press, pp. 40-48,
doi:10.1145/1577824.1577831.

[22] Grigore Rosu & Traian Florin Serbanuta (201@n Overview of the K Semantic Frameworournal of
Logic and Algebraic Programmirgp(6), pp. 397—434, ddi0.1016/j . jlap.2010.03.012.

[23] Carsten Schirmann (2009)The Twelf Proof Assistant In: Twenty-Second International Confer-
ence on Theorem Proving in Higher Order Logi¢SNCS 5674, Springer, pp. 79-83, dod. 1007/
978-3-642-03359-9_7.

[24] Peter Sewell, Francesco Zappa Nardelli, Scott Oweilgs3d?eskine, Thomas Ridge, Susmit Sarkar & Rok

StrniSa (2010)Ott: Effective Tool Support for the Working Semanticikiurnal of Functional Programming
20(1), pp. 71-122, dqin.1017/S0956796809990293.

[25] Geoff Sutcliffe (2009):The TPTP Problem Library and Associated Infrastructug®urnal of Automated
Reasoning3(4), pp. 337-362, ddi0 .1007/s10817-009-9143-8.

[26] Yuting Wang, Kaustuv Chaudhuri, Andrew Gacek & Gopahadathur (2013)Reasoning About Higher-
Order Relational Specificationsn: Fifteenth International ACM SIGPLAN Symposium on Prineipland
Practice of Declarative ProgrammirfgCM Press, pp. 157-168, doD.1145/2505879.2505889.



A Case Study on Logical Relations using Contextual Types

Andrew Cave Brigitte Pientka
McGill University McGill University
Montreal QC, Canada Montreal QC, Canada
acavel@cs.mcgill.ca bpientka@cs.mcgill.ca

Proofs by logical relations play a key role to establish pecbperties such as normalization or con-
textual equivalence. They are also challenging to meckahizthis paper, we describe the complete-
ness proof of algorithmic equality for simply typed lambgams by Crary where we reason about
logically equivalent terms in the proof environment Belugehere are three key aspects we rely
upon: 1) we encode lambda-terms together with their opmratisemantics and algorithmic equal-
ity using higher-order abstract syntax 2) we directly erectite corresponding logical equivalence
of well-typed lambda-terms using recursive types and higinéer functions 3) we exploit Beluga'’s

support for contexts and the equational theory of simultasesubstitutions. This leads to a direct
and compact mechanization, demonstrating Beluga’s dtiexrtgormalizing logical relations proofs.

1 Introduction

Proofs by logical relations play a fundamental role to dighlvich properties such as contextual equiva-
lence or normalization. This proof technigue goes back tb(Zé) and was later refined by Girard (12).
The central idea of logical relations is to specify relasiam well-typed terms via structural induction
on the syntax of types instead of directly on the syntax ahtethemselves. Thus, for instance, logically
related functions take logically related arguments toteelaesults, while logically related pairs consist
of components that are related pairwise.

Mechanizing logical relations proofs is challenging: firspecifying logical relations themselves
typically requires a logic which allows arbitrary nestinfquantification and implications; second, to
establish soundness of a logical relation, one must prav&timdamental Property which says that any
well-typed term under a closing simultaneous substituisom the relation. This latter part requires
some notion of simultaneous substitution together withaibyeropriate equational theory of composing
substitutions. As Altenkirch (1) remarked,

“l discovered that the core part of the proof (here provingiigas about CR) is fairly
straightforward and only requires a good understandincghefpgaper version. However,
in completing the proof | observed that in certain placesd twminvest much more work
than expected, e.g. proving lemmas about substitution aakening.”

While logical normalization proofs often are not large ytlage conceptually intricate and mechaniz-
ing them has become a challenging benchmark for proof emviemts. There are several key questions,
when we attempt to formalize such proofs: How should we mrethe abstract syntax tree for lambda-
terms and enforce the scope of bound variables? How shoulgpvesent well-typed terms or typing
derivations? How should we deal with substitution? How candefine the logical relation on closed
terms?

Early work (1; 2; 5) represented lambda-terms using (wadlgd) de Bruijn indices which leads
to a substantial amount of overhead to prove propertiestadstitutions such as substitution lemmas

I. Cervesato and K. Chaudhuri (Eds.): Tenth Internationatk&hop © A. Cave & B. Pientka
on Logical Frameworks and Meta-Languages: Theory and ieeact This work is licensed under the
EPTCS 185, 2015, pp. 33-45, doi:10.4204/EPTCS.185.3 Creative Commons Attribution License.



34 A Case Study on Logical Relations using Contextual Types

and composition of substitution. To improve readabilitg generally better support such meta-theoretic
reasoning, nominal approaches supporenaming but substitution and properties about them are-sp
ified separately; the Isabelle Nominal package has beeninsadsariety of logical relations proofs
from proving strong normalization for Moggi’'s modal lambdalculus (7) to mechanically verifying the
meta-theory of LF itself including the completeness of egl@nce checking (16; 27).

Approaches representing lambda-terms using higher-atoitract syntax (HOAS) trees (also called
A-tree syntax) model binders in the object language (i.euincase the simply typed lambda-calculus)
as binders in the meta language (i.e. in our case the logmaldwork LF (13)). Such encodings inherit
not only a-renaming and substitution from the meta-language, botwésakening and substitution lem-
mas. However, direct encodings of logical relations prasfeeyond the logical strength supported in
systems such as Twelf (17). In this paper, we demonstratpdiver and elegance of logical relations
proofs within the proof environment Beluga (22) which islboin top of the logical framework LF.
Beluga allows programmers to pair LF objects together widirtsurrounding context and this notion is
internalized as a contextual typ¢ — A] which is inhabited by ternM of type A in the context¥ (15).
Proofs about contexts and contextual LF objects are thefeimgnted as dependently-typed recursive
functions via pattern matching (18; 21). Beluga’s functiblanguage supports higher-order functions
and indexed recursive data-types (3) which we use to endwéogical relation. As such it does not
impose any restrictions as for example found in Twelf (17)clidoes not support arbitrary quantifier
alternation or Delphin (23) which lacks recursive dataetypRecently, Beluga has been extended to first-
class simultaneous substitutions allowing abstractiar eubstitutions and supporting a rich equational
theory about them (4; 20).

In this paper, we describe the completeness proof of algoiit equality for simply typed lambda-
terms by Crary (6) where we reason about logically equivaiemms in the proof environment Beluga.
There are three key aspects we rely upon: 1) we encode latebua-together with their operational
semantics together with algorithmic equality using highketer abstract syntax 2) we directly encode
the corresponding logical equivalence of well-typed lambelms using recursive types and higher-
order functions 3) we exploit Beluga’s support for contexisl the equational theory of simultaneous
substitutions. This leads to a direct and compact mechi@mizand allows us to demonstrate Beluga’s
strength at formalizing logical relations proofs. Basedtls case study we also draw some general
lessons.

2 Proof Overview: Completeness of Algorithmic Equality

In this section we give a brief overview of the motivation drigh level structure of the completeness
proof of algorithmic equality. For more detail, we refer tteader to (6) and (14). Extensions of this
proof are important for the metatheory of dependently typesiems such as LF and varieties of Martin-
Lof Type Theory, where they are used to establish decithalaf typechecking. The proof concerns
three judgements, the first of which is declarative equivede

r’EFM=N:A terms M and N are declaratively equivalent at type

Declarative equivalence includes convenient but nonasydirected rules such as transitivity and
symmetry, among rules for congruence, extensionality@edntraction. We will see the full definition
in Sec. 3. In particular, it may include apparently typesdied rules such as extensionality at unit type:

F=M:Unit TFN:Unit
MM =N:Unit




A. Cave & B. Pientka 35

This rule relies crucially on type information, so the commumtyped rewriting strategy for deciding
equivalence no longer applies. Instead, one can define anithlgic notion of equivalence which is
directed by the syntax of types. This is the path we folloneh&Ve define algorithmic term equivalence
mutually with path equivalence, which is the syntactic eglence of terms headed by variables, i.e.
terms of the fornrxM; ... M.

NN-M< N:A terms M and N are algorithmically equivalent at tyfpe
=M<+ N:A paths M and N are algorithmically equivalent at type

In what follows, we sketch the proof of completeness of atgoric equivalence for declarative
equivalence. A direct proof by induction over derivatiomdsf unfortunately in the application case
where we need to show that applying equivalent terms to atgriv arguments yields equivalent results,
which is not so easy. Instead, one can proceed by proving a geeral statement that declaratively
equivalent terms aregically equivalentand so in turn algorithmically equivalent. Logical equérece
is a relation defined directly on the structure of the types.Wiite it as follows:

NN-M~N:A Terms M and N are logically equivalent at type

The key case is at function type, which directly defines lal)yjcequivalent terms at function type as
taking logically equivalent arguments to logically equévra results. Crary defines:

MrEMi=~Mo: A= B iff forall A>T andNj, N,
IfAl—N]_%NzA
thenAFM;N;~M>N>: B

A key complication is the quantification over all extensidnsf the context™. This is essential to
show completeness of the algorithmic rule for function gpehich states that that to compare two terms
M < N: A= Bitsuffices to compare their applicationsfiteshvariables:T ,x: A-Mx< Nx: B. The
generalization tall extensionsA of I' then arises naturally. This Kripke-style monotonicity diion
is one of the reasons that this proof is more challenging timmalization proofs for simply typed
lambda-terms, where this quantification can often be adoigeng other technical tricks.

For our formalization, we take a slightly different apprbaghich better exploits the features of
Beluga available to us. We instead quantify over an arlyitcantextA together with a simultaneous
substitutionrt which provides for eack:T in ', a pathM satisfyingA+ M «> M : T. We will call such
a substitution gath substitutiorand write this condition a8+ 1: I". In the course of the completeness
proof, rwill actually only ever be instantiated by substitutionsiefhsimply perform weakening. That is,
A will be of the formI™, " wherell = x3:Aq, ..., X,:An andrwill be of the forml, " F X3 /Xq, ..., Xn /%0 i T
However, the extra generality of path substitutions saipgly does no harm to the proof, and fits well
within Beluga.

NN-Mi1=M,:A=B iff forall A, path substitutionA + 77: ", andNz, N
if AFN;~Ny: A
thenA Ml[lﬂ N ~ Mz[T[] N, : B

The high level goal is to establish that declaratively eal@rt terms are logically equivalent, and
that logically equivalent terms are algorithmically eqi@ant. The proof requires establishing a few key
properties of logical equivalence. The first is monotogjaithich is crucially used for weakening logical
equivalence. This is used when applying terms to fresh bimsa

Lemma 2.1 (Monotonicity)
Ifr-M~N:AandA+ m:T is a path substitution, thefs - M[r] ~ N[} : A



36 A Case Study on Logical Relations using Contextual Types

The second key property is (backward) closure of logicaivadence under weak head reduction.
This is proved by induction on the typge

Lemma 2.2 (Logical weak head closure)
IfF'=Ni~Ny:Aand M, —, Ny and M —, Na thenl =M1~ Mz : A

In order to escape logical equivalence to obtain algorithetjuivalence in the end, we need the
main lemma, which is a mutually inductive proof showing tpath equivalence is included in logical
equivalence, and logical equivalence is included in atgoric equivalence:

Lemma 2.3 (Main lemma)
1. frEFM«< N:AthenfTFMaN:A
2. fTEM~N:AthenflFM < N:A

Also required are symmetry and transitivity of logical eglénce, which in turn require symmetry
and transitivity of algorithmic equivalence, determinatyveak head reduction, and uniqueness of types
for path equivalence. We will not go into detail about themarhas, as they are relatively mundane, but
refer the reader to the discussion in (6).

What remains is to show that declarative equivalence immptigical equivalence. This requires a
standard technique to generalize the statement to allniisti@ns of open terms by related substitu-
tions. If oy is of the formMj/x1,...,Mn /Xy and oz is of the formN;y /1, ...,Nn /%, and[ is of the form
X1:A1, ..., %n:An, We writeA F 01 = 0, . T to mean thah = M; = N; : A for all i.

Theorem 2.4 (Fundamental theorem)
Ifr-M=N:AandAF gy~ 02 :T thenAF Mo = N[oy] : A

The proof goes by induction on the derivationfoF M = N : A. We show one interesting case in
order to demonstrate some sources of complexity.
Nx:AFM;1=M>:B
Proof Casel FAXM;i=AxMs:A=B

1. Suppose we are givexi, a path substitutiod’ - 77: A andNz, N, with A= Ny ~ Np : A

2. We havel' - g1[m] ~ oo[m] : T (by monotonicity)
3. Hence' + (o1[m,N1/X) = (02[m],Na/x) : T, x: A (by definition)
4. Henced' + Mq[01[m],N1/X] = Mg[o2[m],N2/X] : B (by induction hypothesis)
5. Hencel - My [01[m], x/X][N1/X] &~ Mz[02[m1],x/X|[N2/X] : B (by substitution properties)
6. Hence' F (Ax.Mq[o1[m],x/X]) N1 ~ (AX.Mz[02[m],x/X]) N2 : B (by weak head closure)
7. Hencel\ - ((Ax.Mz)[o1])[m N1 = ((Ax-M2)[02])[r] N2: B (by substitution properties)
8. HenceAF (Ax.Mj)[01] = (Ax.M3)[02] :A=B (by definition of logical equivalence)

We observe that this proof relies heavily on equational ertigs of substitutions. Some of this com-
plexity appears to be due to our choice of quantifying ovéssitutionsA - m: " instead of extensions
A > T'. However, we would argue that reasoning instead about sixtesA > [T does not remove this
complexity, but only rephrases it.

Finally, by establishing the relatedness of the identityssitution to itself, i.el’ Hid ~id : I we can
combine the fundamental theorem with the main lemma to olatanpleteness.

Corollary 2.5 (Completeness)f T FM=N:AthenlT FM < N: A



A. Cave & B. Pientka 37

3 Mechanization

We mechanize the development of the declarative and ahgaidt equivalence together with its com-
pleteness proof in Beluga, a dependently typed proof lagyumuilt on top of the logical framework
LF. The central idea is to specify lambda-terms, small-stemantics, and type-directed algorithmic
equivalence in the logical framework LF. This allows us tod®lobindings uniformly using the LF
function space and obviates the need to model and manages rexpiecitly. Beluga’s proof language
allows programmers to encapsulate LF objects together thélr surrounding context as contextual
objects and provides support for higher-order functiondexed recursive types, and pattern matching
on contexts and contextual objects. We define logical etgriea and (for technical reasons) declara-
tive equivalence using indexed recursive types. All ourofgovill then be implemented as recursive
functions using pattern matching and pass the totality kdvecThe complete source code for our de-
velopment can be found in the directamamples/1ogrel of the Beluga distribution which is available at
https://github.com/Beluga-lang/Beluga.

3.1 Encoding lambda-terms, typing and reduction in the logtal framework LF

Our proof is about a simply-typed lambda calculus with oreeltsipei. Extending the proof to support
a unit type and products is straightforward. We describaytpes and terms in LF as follows, employing
HOAS for the representation of lambda abstraction. Thatvésexpress the body of the lambda expres-
sion as an LF functionn — tm. There is no explicit case for variables; they are impljciiandled by
LF. We show side by side the corresponding grammar.

LF tp : type = Types T,S == i|T=S

| i: tp
| = : tp = tp — tp % infix

LF tm : type = Terms M,N == x|lamx.M |appMN
| app : tm — tm — tm

| lam : (tm — tm) — tm;

Finally, we describe also weak head reduction for our tefdudice here that the substitutionwinto
M in the B-reduction case is accomplished using LF application. e ttescribe multi-step reductions
as a sequence of single step reductions. All free varialdesrdng in the LF signature are reconstructed
and bound implicitly at the outside.

LF step : tm — tm — type =
| beta : step (app (lam M) N) (M N)
| stepapp : step M M’ — step (app M N) (app M’ N);

LF mstep : tm — tm — type =
| refl : mstep M M
| transl : step M M’ — mstep M’ M’’ — mstep M M’’;

3.2 Encoding algorithmic equivalence

We now describe the algorithmic equality of terms. This iiragl as two mutually recursive LF specifi-
cations. We writeiigeqtmn M n T for algorithmic equivalence of termsandny at typeT andalgeqP P Q T

for algorithmic path equivalence at type- these are terms whose head is a variable, not a lambda ab-
straction. Term equality is directed by the type, while peqluality is directed by the syntax. Two terms

M andn at base type are equivalent if they weak head reduce to weak head normmas teandq which

are path equivalent. Two termsndy are equivalent at type = s if applying them to a fresh variable



38 A Case Study on Logical Relations using Contextual Types

of typer yields equivalent terms. Variables are only path equivatiethemselves, and applications are
path equivalent if the terms at function position are pathivedent, and the terms at argument positions
are term equivalent.

LF algeqTm: tm — tm — tp — type =

| algbase: mstep M P — mstep N Q — algeqP P Q i — algeqTm M N 1i.

| algarr : ({x:tm} algeqP x x T — algeqTm (app M x) (app N x) S) — algeqTm M N (arr T S)
and algegP : tm — tm — tp — type

| algapp : algeqP M1 M2 (arr T S) — algeqTm N1 N2 T — algeqP (app M1 N1) (app M2 N2) S;

By describing algorithmic equality in LF, we gain structuypeoperties and substitution for free. For
this particular proof, only weakening is important.

A handful of different forms of contexts are relevant forstiproof. We describe these witkhema

definitions in Beluga. Schemas classify contexts in a similay as LF types classify LF objects.

Although schemas are similar to Twelf's world declaratisthema checking does not involve verifying
that a given LF type family only introduces the assumptigec#ied in the schema; instead schemas will
be used by the computation language to guarantee that weaaniputating contexts of a certain shape.
Below, we define the schematx, which enforces that term variables come paired with anrikgoic
equality assumptionigeqP x x t for some type:.

schema actx = some [t:tp] block x:tm, ax:algeqP x x t;

3.3 Encoding logical equivalence

To define logical equivalence, we need the notion of pathtdutisn mentioned in Sec. 2. For this
purpose, we use Beluga’s built-in notion of simultaneoussstutions. We writefs + y1 for the built-in
type of simultaneous substitutions which provide for eaatiable in the contexy a corresponding term
in the contextd. Wheny is of schemawctx, such a substitution consists of blocks of the fanm,p/ax
whereu is a term anc is a derivation okigeqp M M T, just as we need.

To achieve nice notation, we define an LF type of pairs of temere the infix operator simply
constructs a pair of terms:

LF tmpair : type =
| = : tm — tm — tmpair 7% infix;

Logical equivalence, writtemog [y - M ~ N] [A], expresses that andn are logically related in
contexty at typeA. We embed contextual objects into computations and re®utgpes wrapping them
inside [ 1. Sincem andn are used in the context by default, they can depend gn Formally, each of
these meta-variables is associated with an identity gubeti which can be omitted.

We defineLog [y - M ~ N1 [A] in Beluga as atratifiedtype, which is a form of recursive type which
is defined by structural recursion on one of its indices, aalt@nnative to an inductive (strictly positive)
definition. Beluga verifies that this stratification conalitiis satisfied. In this case, the definition is
structurally recursive on the type
stratified Log : (y:actx) [y F tmpair] — [tp] — ctype =
| LogBase : [y I algeqTm M N i] — Log [y F M ~ N] [i]
| LogArr : ({0:actx}{m:[0 F yl}N1:[d F tm]}{N2:[d F tml}

Log [0 F N1 =~ N2] [T] — Log [0 + app Mi[m] N1 = app M2[m] N2] [S])
— Log [y - M1 ~ M2] [T = SI];

At base type, two terms are logically equivalent if they dgoathmically equivalent. At arrow type
we employ the monotonicity condition mentioned in Seau2is related tas2 in I if, for any contextA,
path substitutiod\ - 77: ', andn1 , w2 related inA, we have thatpp M1[7] N1 is related toapp M2[m] N2



A. Cave & B. Pientka 39

in A. We quantify overy:actx) in round parentheses, which indicates that it is implici a&covered
during reconstruction. Variables quantified in curly bsasech ags:actx} are passed explicitly. As
in LF specifications, all free variables occurring in couastor definitions are reconstructed and bound
implicitly at the outside. They are passed implicitly andaeered during reconstruction.

Crucially, logical equality is monotonic under path sutosibns.
rec log_monotone : {d:actx}{m:[d F y1} Log [y - M1 ~ M2] [A] — Log [d F Mi[m] ~ M2[m]] [A]

We show below the mechanized proof of this lemma only totitate the general structure of Beluga
proofs. The proof is simply by case analysis on the logicaivedence. In the base case, we obtain a
proof P of y I- algeqtm M N i, which we can weaken for free by simply applyingo P. Here we benefit
significantly from Beluga’s built-in support for simultamgs substitutions; we gain not just weakening
by a single variable for free as we would in Twelf, but arbigraimultaneous weakening. The proof
proceeds in the arrow case by simply composing the two gutistis. We use as the introduction
form for universal quantifications over metavariables {ewtual objects), for which we use uppercase
and Greek letters, arial with lowercase letters for computation-level functiongggimplications).
rec log_monotone : {0:actx}{m:[d F yl} Log [y + M1 ~ M2] [A] — Log [d + Mi[m] ~ M2[m]] [A] =
A d,mT+— fn e — casee of

| LogBase [y - P] — LogBase [0 F P[m]]
| LogArr £ — LogArr (A &’,m — £ [8°] [0’ + mlm1D)

The main lemma is mutually recursive, expressing that patifivalence is included in logical equiv-
alence, and logical equivalence is included in algorithieien equivalence. This enables “escaping”
from the logical relation to obtain an algorithmic equalitythe end. They are structurally recursive
on the type. Crucially, in the arrow case,ify instantiates the path substitutienwith a weakening
substitution in order to create a fresh variable.
rec reflect : {A:[tp]l} [y F algeqP M1 M2 A] — Log [y F M1 = M2] [A]
and reify : {A:[tp]} Log [y - M1 =~ M2] [A] — [y algeqTm M1 M2 A]

We can state weak head closure directly as follows. The psostfucturally recursive on the type,
which is implicit.
rec closed : [y - mstep N1 M1] — [y - mstep N2 M2] — Log [y - M1 ~ M2] [T]

— Log [y F N1 =~ N2] [T]

3.4 Encoding declarative equivalence

We now define declarative equality of terms, which includes-algorithmic rules such as transitivity
and symmetry. Declarative equality makes use of a schemehwisis only term variables, which we
write ctx.

schema ctx = tm;

For technical reasons which we will go into more detail ordatve resort to a different treatment of
typing contexts. We explicitly represent typing contexdsx as a list of types, and declarative equality
as a computation-level inductive datatype, instead of aspdeification.

LF dctx : type =
| nil : dectx
| & : dectx — tp — dctx % infix ;

We describe next the result of looking up the type of a vagiabin y in typing contextl” by its
position. Ifx is the top variable of, then its type i is the type of the top variable &f. Otherwise, if
looking up the type ok in y yields T, then looking it up in an extended context also yietd$dere we



40 A Case Study on Logical Relations using Contextual Types

write [y + tm] for the contextual type of terms of typa in contexty, and [tp] for (closed) types. We
uses#p for a meta-variable standing for an object-level variabbafy (as opposed to a general term).

inductive  Lookup : {[:[dctx]}(y:ctx)[y F tm] — [tp] — ctype =
| Top : Lookup [ & T] [y,x:tm F x] [T]
| Pop : Lookup [[] [yt #p] [T] — Lookup [ & S] [y,x:tm - #p] [T];

We writepec1 [I1 [y - M ~ N] [T] for declarative equivalence efandy at typet. We employ the
convention thal andA stand for typing contexts (of typctx]), while y andd stand for corresponding
term contexts.
inductive  Decl : {l:[dctx]}(y:ctx) [y F tmpair] — [tp] — ctype =

| DecBeta : Decl [[ & T] [y,x:tm F M2 ~ N2] [S] — Decl [I] [y F M1 =~ N1i] [T]
— Decl [ [y F app (lam (\x. M2)) M1 =~ N2[.., N1]] [S]

| DecLam : Decl [ & T] [y,x:tm - M =~ N] [S]
— Decl [ [yF lam (\x. M) = 1lam (\x. M] [T = 8]

| DecExt : Decl [ & T] [y,x:tm - app M x =~ app N x] [S]
— Decl [] [y+ M ~ N] [T = 8]

| DecVar : Lookup [[] [y - #p] [T] — Decl [I] [y F #p ~ #p] [T]

| DecApp : Decl [I1 [y F M1 ~ M2] [T = S] — Decl [I'1 [y F N1 ~ N2] [T]
— Decl [] [y F app M1 N1 ~ app M2 N2] [S]

| DecSym : Decl [] [y = M~ N] [T] — Decl [l [y N =~ M] [T]

| DecTrans : Decl [] [y F M N] [T] — Decl [I]1 [y N ~ 0] [T]
— Decl [] [y M~ 0] [T];

~
~

~

~

Declarative equality includes @ rule, as well as an extensionality rule, which states thatvio
termsm andn to be equal at type = s, it suffices for them to be equal when applied to a fresh viiab
of type 1. We again remind the reader that all meta-variables aratlsilassociated with the identity
substitution; in particular iy F 1am (\x.M) ~ 1am (\x.N)], the meta-variables andn are associated
with the identity substitution on the context x:tm. Note that every meta-variable is associated with a
simultaneous substitutions in Beluga. If this substituti® the identity, then it can be omitted. Hence,
[y - lam (\x.M) ~ lam (\x.N)] iS equivalent to writingly + 1am (\x.M[.., x]) ~ lam (\x.N[..,x])].
Written in n-contracted form this is equivalent toy - 1am M ~ 1am N] Or making the identity substitu-
tion explicit [y + 1am M[..] ~ lam N[..]].

Note that meta-variables associated with simultaneoustitutions do not exist other systems. For
example in LF and its implementation in Twelf (17) the contebassumptions is ambient and we cannot
express dependencies of LF-variables on them. In Twelfingrian M is equivalent to itg7-expanded
form lam \x. M x.

3.5 Fundamental theorem

The fundamental theorem requires us to speak of all insti@ois of open terms by related substitutions.
We express here the notion of related substitutions usiehgctive types. Trivially, empty substitutions,
written as, are related at empty domain.df ando, are related dt andv1 anduz2 are related at, theno;

,M1 ando,,M2 are related at & T. The technical reason we use the schemaf term assumptions only
is that we would like the substitutiorss ando, to carry only terms, butnotderivationsaigeqp M M T (Or
declarative equality assumptions). If we had used the sahetn or a schema with declarative equality
assumptions, the proof of the fundamental theorem woulddligaied to construct these derivations,
which would be more cumbersome.

inductive ~ LogSub : (y:ctx)(d:actx){01:[0 F y1}{02: [0 F yl1}{I:[dctx]} ctype =
| Nil : LogSub [d + -1 [d F -1 [mill



A. Cave & B. Pientka 41

| Dot : LogSub [h F 01] [h + 02] [[1 — Log [0 F M1 =~ M2] [T]
— LogSub [0 o1, M1] [0 F 02, M2] [ & TI]

We have a monotonicity lemma for logically equivalent sitbgbons which is similar to the mono-
tonicity lemma for logically equivalent terms:

rec wknLogSub : {m:[d’ F 01} LogSub [d F o01] [0 F o2] I[I]
— LogSub [0’ F o1[ml] [6’ F oplml] [I]

The fundamental theorem requires a proof thaandm2 are declaratively equal, together with log-
ically related substitutions; ando,, and produces a proof thet[o;] andm2[o,] are logically related.
In the transitivity and symmetry cases, we appeal to tramtgiand symmetry of logical equivalence, the
proofs of which can be found in the accompanying Beluga code.

rec thm : Decl [[] [y M1 =~ M2] [T]
— LogSub [0 F 01] [0 0] [I]
— Log [0 F Mi[o1]l =~ M2[02]]1 I[T] =

We show thelam case of the proof term only to make a high-level comparisothéohand-written
proof in Sec. 2. Below, one can see that we appeal to mondptficnrogsub), weak head closure
(c10sed), and the induction hypothesis on the subderivatinrHowever, remarkably, there is no explicit
eqguational reasoning about substitutions, since aplitabf substitutions are automatically simplified.
We refer the reader to (4) for the technical details of tmsgification.

fn d, s — case d of
| DecLam di —

Loghrr (A &', m, N1, N2 — fn rn —
let ih = thm d1 (Dot (wknLogSub [d'] [d] [d' F m] s) rn) in
closed [0’ F transl beta refl] [&' F transl beta refl] ih
)

Completeness is a corollary of the fundamental theorem .s@tement of the completeness theorem
is slightly complicated by the fact that declarative egyadind algorithmic equality live in different
context schemas. To overcome this, we describe a predigedesub [ [yl [y’ - 1 which states
that 1 is a simple weakening substitution which performs the wdrknoving from term contexy:
ctx to the corresponding (larger) algorithmic equality cobtexactx with added algorithmic equality
assumptions at the types listedrinfactx]. Morally, this substitution plays the role of the identity
substitution mentioned in Sec. 2.

inductive ~ EmbedSub : {[:[dctx]}y:ctx}(y’:actx){1:[y’ - yl1} ctype =
| INil : EmbedSub [nill [] [-]
| ISnoc : EmbedSub [[] [yl [y’ F 1]
— EmbedSub [ & T] [y,x:tm] [y’,b:block x:tm,ax:algeqP x x T - 1, b.1]
It is then straightforward to show that embedding substitigt! are logically related to themselves

using the main lemma.
rec embed_log : EmbedSub [[] [y] [y’ F (] — LogSub [1 [yl [y’ + 11 [y’ F 1]

The completeness theorem is stated below, and followsligMby composing the fundamental the-
orem withembed_log and the main lemma to escape the logical relation.
rec completeness : EmbedSub [l [yl [y’ F 1] — Decl [I] [y F M1 =~ M2] [T]
— [y’ F algeqTm M1[1] M2[i] T]
Itis unfortunate that this transportation frarto y is required by the current framework of contextual
types, since intuitively the algorithmic equality assuiops iny> are completely irrelevant for the terms
M1 andm2. It's an open problem how to improve on this.



42 A Case Study on Logical Relations using Contextual Types

3.6 Remarks

The proof passes Beluga's typechecking and totality cimgckiAs part of the totality checker, Bel-
uga performs a strict positivity check for inductive typ&9;(20), and a stratification check for logical
relation-style definitions.

Beluga’s built-in support for simultaneous substitutiasms big win for this proof. The proof of the
monotonicity lemma is very simple, since the (simultangeusakening of algorithmic equality comes
for free, and there is no need for explicit reasoning abobsswtion equations in the fundamental
theorem or elsewhere. We also found that the technique oftifgiag over path substitutions as op-
posed to quantifying over all extensions of a context to warkprisingly well. However, it seems to
be non-obvious when this technique will work. In an earliersion of this proof, we had resorted to
explicitly enforcing that the substitutiort contained onlyariables limiting its capabilities to weaken-
ing, exchange, and contraction. This was done with an ingudatatype like the following, where the
contextual type:[5 I tm] contains onlyariablesof type tm:
datatype IsRenaming : {y:ctx}(d:ctx) {m:[d0 + yl} ctype =

| Nil : IsRenaming [] [d F -]
| Cons : A{#p:#[0 I tml} IsRenaming [y] [0 F m] — IsRenaming [y,x:tm] [d F m, #p]

We were surprised to learn that in fact this restriction waisacessary, and we could instead simply
directly quantify over path substitutions, as the schama we rely on in our proof already effectively
restricts the substitutions we can build. However, we stisiat the technique of explicitly restricting
to renaming substitutions may still be necessary in somescasd that it might be convenient to have a
built-in type of these renaming-only substitutions.

We remark that the completeness theorem can in fact be exkaiewing it as an algorithm for nor-
malizing derivations in the declarative system to derosadiin the algorithmic system. The extension to
a proof of decidability would be a correct-by-constructfanctional algorithm for the decision problem.
This is a unique feature of carrying out the proof in a typestietic setting like Beluga, where the proof
language also serves as a computation language.

Some aspects of this proof could still be improved. In palé our treatment of the different context
schemas and the relationship between them seems undatigfatle had to do a bit of work in order to
move terms frony:ctx t0 y’ :actx, and this polluted the final statement of the completenessrém. It
can also be difficult to know when to resort to using an exptiontext and a computation-level datatype,
like we did for declarative equality. This suggests theno@n for improvement in Beluga's treatment
of contexts, and we are exploring possible approaches.

Furthermore, one might argue that having to explicitly ggpke path substitutions to terms like
MI[m] is somewhat unsatisfactory, so one might wish for the abitit directly perform the bounded
quantificationvA > I and a notion of subtyping which permits for exampte- tm] < [A F tm]. This
is also a possibility we are exploring.

Overall, we found that that the tools provided by Beluga,eesdly its support for simultaneous
substitutions, worked remarkably well to express this panod to obviate the need for bureaucratic
lemmas about substitutions and contexts, and we are ofitirthiat these techniques can scale to many
other varieties of logical relations proofs.

4 Related Work

Mechanizing proofs by logical relations is an excellentdienark to evaluate the power and elegance of
a given proof development. Because it requires nested ifjaatibn and recursive definitions, encoding



A. Cave & B. Pientka 43

logical relations has been particularly challening fortegss supporting HOAS encodings.

There are two main approaches to support reasoning aboutSH&odings: 1) In the proof-
theoretic approaches, we adopt a two-level system wheranpkeiment a specification logic (similar
to LF) inside a higher-order logic supporting (co)induetidefinitions, the approach taken in Abella (9),
or type theory, the aproach taken in Hybrid (8). To distisuin the proof theory between quan-
tification over variables and quantification over terms,) (broduce a new quantifief], to describe
nominal abstraction logically. To encode logical relai@ne uses recursive definitions which are part
of the reasoning logic (11). Induction in these systems cally supported by reasoning about the
height of a proof tree; this reduces reasoning to inductier aatural numbers, although much of this
complexity can be hidden in Abella. Compared to our develamnin Beluga, Abella lacks support
for modelling a context of assumptions and simultanoustgubens. As a consequence, some of the
tedious basic infrastructure to reason about open andcttesms and substitutions still needs to be built
and maintained. Moreover, Abella’s inductive proofs carmmexecuted and do not yield a program for
normalizing derivations. It is also not clear what is the tredfective way to perform the quantification
over allextension®f a context in Abella.

2) The type-theoretic approaches fall into two categoreseither remain within the logical frame-
work and encode proofs as relations as advocated in Twelfqidwe build a dependently typed func-
tional language on top of LF to support reasoning about LEifipations as done in Beluga. The former
approach lacks logical strength; the function space in LWwéak” and only represents binding structures
instead of computations. To circumvent these limitatig@5) proposes to implement a reasoning logic
within LF and then use it to encode logical relation argureerithis approach scales to richer calculi
(24) and avoids reasoning about contexts, open terms andtaimous substitutions explicitly. However,
one might argue that it not only requires additional work tddup a reasoning logic within LF and
prove its consistency, but is also conceptually differeotrf what one is used to from on-paper proofs. It
is also less clear whether the approach scales easily ttngrosmpleteness of algorithmic equality due
to the need to talk about context extensions in the definiidogical equivalence of terms of function
type.

Outside the world of HOAS, (16) have carried out essentidilly same proof in Nominal Isabelle,
and later (27) tackle the extension from the simply-typedldda calculus to LF. Relative to their ap-
proach, Beluga gains substitution for free, but more ingoaly, equations on substitutions are silently
discharged by Beluga’s built-in support for their equadiiatheory, so they do not even appear in proofs.
In contrast, proving these equations manually requireghiyua dozen intricate lemmas.

5 Conclusion

Our implementation of completeness of algorithmic equaikes advantage of key infrastructure pro-
vided by Beluga: it utilizes first-class simultaneous silsbns, contexts, contextual objects and the
power of recursive types. This yields a direct and compagiémentation of all the necessary proofs
which directly correspond to their on-paper developmehtareover, our proof yields an executable
program. While more work on Beluga’s frontend will improvedamake simpler such developments,
we have demonstrated that the core language is not onlyoRuitar standard structural induction proofs
such as type safety, but also proofs by logical relations.



44

A Case Study on Logical Relations using Contextual Types

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

[14]

Thorsten Altenkirch (1993)A Formalization of the Strong Normalization Proof for SystE in
LEGO. In Marc Bezem & Jan Friso Groote, editorgiternational Conference on Typed Lambda
Calculi and Applications (TLCA '93)Lecture Notes in Computer Sciené&4, Springer, pp. 13—
28, d0i:10.1007/BFb0037095.

Stefano Berardi (1990)Girard Normalization Proof in LEGOIn: Proceedings of the First Work-
shop on Logical Frameworkpp. 67—78.

Andrew Cave & Brigitte Pientka (2012)Programming with binders and indexed data-typés:
39th Annual ACM SIGPLAN-SIGACT Symposium on Principles ofo§ramming Languages
(POPL’12) ACM Press, pp. 413—-424, doi:10.1145/2103656.2103705.

Andrew Cave & Brigitte Pientka (2013):First-class substitutions in contextual type the-
ory. In: Proceedings of the Eighth ACM SIGPLAN International Worbghon Logical
Frameworks and Meta-Languages: Theory and Practice (LFABJPACM Press, pp. 15-24,
doi:10.1145/2503887.2503889.

Catarina Coquand (1992A proof of normalization for simply typed lambda calculustivrg in
ALF. In: Informal Proceedings of Workshop on Types for Proofs angfaras Dept. of Comput-
ing Science, Chalmers Univ. of Technology and GoteborgyUpp. 80-87.

Karl Crary (2005): Logical Relations and a Case Study in Equivalence Checkindg@ejamin C.
Pierce, editorAdvanced Topics in Types and Programming Languagies MIT Press.

Christian Doczkal & Jan Schwinghammer (2008rmalizing a Strong Normalization Proof for
Moggi’'s Computational Metalanguage: A Case Study in IdefiléDL-nominal In: Proceedings
of the Fourth International Workshop on Logical Framewaaksl Meta-Languages: Theory and
Practice (LFMTP’09)ACM, pp. 57-63, doi:10.1145/1577824.1577834.

Amy Felty & Alberto Momigliano (2012): Hybrid - A Definitional Two-Level Approach to
Reasoning with Higher-Order Abstract Syntax J. Autom. Reasoningt8(1), pp. 43-105,
doi:10.1007/s10817-010-9194-x.

Andrew Gacek (2008):The Abella Interactive Theorem Prover (System Descrijtiom: 4th
International Joint Conference on Automated Reasgriiegture Notes in Atrtificial Intelligence
5195, Springer, pp. 154-161, doi:10.1007/978-3-540-810173.

Andrew Gacek, Dale Miller & Gopalan Nadathur (2008ombining generic judgments with re-
cursive definitions In F. Pfenning, editor23rd Symposium on Logic in Computer ScienteEE
Computer Society Press, pp. 33—44, doi:10.1109/LICS.23308

Andrew Gacek, Dale Miller & Gopalan Nadathur (200easoning in Abella about Structural
Operational Semantics Specification®: Proceedings of the International Workshop on Logical
Frameworks and Metalanguages: Theory and Practice (LFMIDB)2Electronic Notes in Theo-
retical Computer Science (ENTC328, Elsevier, pp. 85 — 100, doi:10.1016/j.entcs.200812.

J.-Y. Girard, Y. Lafont & P. Tayor (1990Proofs and typesCambridge University Press.

Robert Harper, Furio Honsell & Gordon Plotkin (1998)Framework for Defining LogicsJournal
of the ACM40(1), pp. 143-184, doi:10.1145/138027.138060.

Robert Harper & Frank Pfenning (200%)n Equivalence and Canonical Forms in the LF Type The-
ory. ACM Transactions on Computational Logi€l), pp. 61-101, doi:10.1145/1042038.1042041.



A. Cave & B. Pientka 45

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Aleksandar Nanevski, Frank Pfenning & Brigitte Pieni2008): Contextual modal type theary
ACM Transactions on Computational Lodi¢3), pp. 1-49, doi:10.1145/1352582.1352591.

Julien Narboux & Christian Urban (2008)Formalising in Nominal Isabelle Crary’s Com-
pleteness Proof for Equivalence Checkindtlectr. Notes Theor. Comput. Sdi96, pp. 3-18,
doi:10.1016/j.entcs.2007.09.014.

Frank Pfenning & Carsten Schiurmann (199%ystem Description: Twelf — A Meta-Logical
Framework for Deductive Systemsn H. Ganzinger, editor:16th International Conference on
Automated Deduction (CADE-16)ecture Notes in Artificial Intelligence (LNAI 1632), Spder,
pp. 202—-206, doi:10.1007/3-540-48660L4.

Brigitte Pientka (2008): A type-theoretic foundation for programming with higheder ab-
stract syntax and first-class substitutionsin: 35th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL'OSCM Press, pp. 371-382,
doi:10.1145/1328438.1328483.

Brigitte Pientka & Andreas Abel (20158tructural Recursion over Contextual ObjedtsThorsten
Altenkirch, editor: 13th International Conference on Typed Lambda Calculi apgliéations
(TLCA'15), Leibniz International Proceedings in Informatics (LI®Iof Schloss Dagstuhl, pp.
273-287, d0i:10.4230/LIPIcs.TLCA.2015.273.

Brigitte Pientka & Andrew Cave (2015)nductive Beluga:Programming Proofs (System descrip-
tion). In: 25th International Conference on Automated Deduction (EAT3) Springer.

Brigitte Pientka & Joshua Dunfield (2008Rrogramming with proofs and explicit context#n:
ACM SIGPLAN Symposium on Principles and Practice of DedlaeaProgramming (PPDP’08)
ACM Press, pp. 163-173, doi:10.1145/1389449.1389469.

Brigitte Pientka & Joshua Dunfield (201®eluga: a Framework for Programming and Reasoning
with Deductive Systems (System Descriptiofr) Jurgen Giesl & Reiner Haehnle, editorsth
International Joint Conference on Automated ReasoningARI'10), Lecture Notes in Artificial
Intelligence (LNAI 6173), Springer-Verlag, pp. 15-21, d6.1007/978-3-642-14203-2.

Adam B. Poswolsky & Carsten Schirmann (2008)actical programming with higher-order en-
codings and dependent typds: 17th European Symposium on Programming (ESOP, 9330,
Springer, pp. 93-107, doi:10.1007/978-3-540-7873B-6

Ulrik Rasmussen & Andrzej Filinski (2013Btructural Logical Relations with Case Analysis and
Equality Reasoning In: Proceedings of the Eighth ACM SIGPLAN International Worégion
Logical Frameworks and Meta-languages: Theory and Pea(tiEMTP’'13) ACM Press, pp. 43—
54, doi:10.1145/2503887.2503891.

Carsten Schiurmann & Jeffrey Sarnat (2008iructural Logical RelationsIn: 23rd Annual Sym-
posium on Logic in Computer Science (LICS), Pittsburgh, BSA, IEEE Computer Society, pp.
69-80, doi:10.1109/LICS.2008.44.

William Tait (1967): Intensional Interpretations of Functionals of Finite TypeJ. Symb. Log.
32(2), pp. 198-212, doi:10.2307/2271658.

Christian Urban, James Cheney & Stefan Berghofer (ROMechanizing the metatheory of LF
ACM Trans. Comput. Logl2(2), p. 15, doi:10.1145/1877714.1877721.



Proof-relevant sr-calculus

Roly Perera James Cheney
University of Glasgow University of Edinburgh
Glasgow, UK Edinburgh, UK
roly.perera@glasgow.ac.uk jcheney@inf.ed.ac.uk

Formalising the sr-calculus is an illuminating test of the expressiveness of logical frameworks and
mechanised metatheory systems, because of the presence of name binding, labelled transitions with
name extrusion, bisimulation, and structural congruence. Formalisations have been undertaken in
a variety of systems, primarily focusing on well-studied (and challenging) properties such as the
theory of process bisimulation. We present a formalisation in Agda that instead explores the theory
of concurrent transitions, residuation, and causal equivalence of traces, which has not previously
been formalised for the sr-calculus. Our formalisation employs de Bruijn indices and dependently-
typed syntax, and aligns the “proved transitions” proposed by Boudol and Castellani in the context
of CCS with the proof terms naturally present in Agda’s representation of the labelled transition
relation. Our main contributions are proofs of the “diamond lemma” for residuation of concurrent
transitions and a formal definition of equivalence of traces up to permutation of transitions.

1 Introduction

The sm-calculus [18, 19] is an expressive model of concurrent and mobile processes. It has been
investigated extensively and many variations, extensions and refinements have been proposed, including
the asynchronous, polyadic, and applied sr-calculus (among many others). The m-calculus has also
attracted considerable attention from the logical frameworks and meta-languages community, and
formalisations of its syntax and semantics have been performed using most of the extant mechanised
metatheory techniques, including (among others) Coq [13, 12, 15], Nominal Isabelle [2], Abella [1]
(building on Miller and Tiu [26]), CLF [6], and Agda [21]. These formalisations have overcome challenges
that tested the limits of these systems (at least at the time), particularly relating to the encoding of name
binding, scope extrusion and structural congruence. Indeed, some early formalisations motivated or led
to important contributions to the understanding of these issues in different systems, such as the Theory
of Contexts, or CLF’s support for monadic encapsulation of concurrent executions.

Prior formalisations have typically considered the syntax, semantics (usually via a variation on
labelled transitions), and bisimulation theory of the ;-calculus. However, as indicated above, while
these aspects of the s-calculus are essential, they only scratch the surface of the properties that could
be investigated. Most of these developments have been carried out using informal paper proofs, and
formalising them may reveal challenges or motivate further research on logical frameworks.

One interesting aspect of the s-calculus that has not been formally investigated, and remains to
some extent ill-understood informally, is its theory of causal equivalence. Two transitions t1, t, that can
be taken from a process term p are said to be concurrent (t; — t,) if they could be performed “in either
order” — that is, if after performing t1, there is a natural way to transform the other transition ¢, so that
its effect is performed on the result of t1, and vice versa. The translation of the second transition is said
to be the residual of t, after t;, written t/t1. The key property of this operation, called the “diamond
lemma?”, is that the two residuals ¢ /t, and t,/t1 of transitions t; ~— t, result in the same process. Finally,

L. Cervesato and K. Chaudhuri (Eds.): Tenth International Workshop (© R. Perera and J. Cheney
on Logical Frameworks and Meta-Languages: Theory and Practice This work is licensed under the
EPTCS ??, 2015, pp. 4670, d0i:10.4204/EPTCS.??.4 Creative Commons Attribution License.



R. Perera and J. Cheney 47

permutation of concurrent transitions induces a causal equivalence relation on pairs of traces. This is the
standard notion of permutation-equivalence from the theory of traces over concurrent alphabets [17].

Our interest in this area stems from previous work on provenance, slicing and explanation (e.g. [22]),
which we wish to adapt to concurrent settings. Ultimately, we would like to formalise the relationship
between informal “provenance graphs” often used informally to represent causal relationships [7] and
the semantics of concurrent languages and traces. The sr-calculus is a natural starting point for this
study. We wish to understand how to represent, manipulate, and reason about m-calculus execution
traces safely: that is, respecting well-formedness and causality.

In classical treatments, starting with Lévy [16], a transition is usually considered to be a triple
(e,t,e’) where e and e’ are the terms and t is some information about the step performed. Boudol and
Castellani [4] introduced the proved transitions approach for CCS in which the labels of transitions
are enriched with more information about the transition performed. Boreale and Sangiorgi [3] and
Degano and Priami [11] developed theories of causal equivalence for the s-calculus, building indirectly
on the proved transition approach; Danos and Krivine [10] and Cristescu, Krivine and Varacca [8]
developed notions of causality in the context of reversible CCS and sr-calculus respectively. However,
there does not appear to be a consensus about the correct definition of causal equivalence for the
mt-calculus. For example, Cristescu et al. [8] write “[in] the absence of an indisputable definition of
permutation equivalence for [labelled transition system] semantics of the sr-calculus it is hard to assert
the correctness of one definition over another” In their work on reversible sr-calculus, they noted that
some previous treatments of causality in the sr-calculus did not allow permuting transitions within the
scope of a v-binder, and showed how their approach would allow this. Moreover, none of the above
approaches has been formalised.

In this paper, we report on a new formalisation of the sr-calculus carried out in the dependently-
typed programming language Agda [20]. Our main contributions include formalisations of concurrency,
residuation, the diamond lemma, and causal equivalence. We do not attempt to formalise the above
approaches directly, any one of which seems to be a formidable challenge. Instead, we have chosen
to adapt the ideas of Boudol and Castellani to the sm-calculus as directly as we can, guided by the
hypothesis that their notion of proved transitions can be aligned with the proof terms for transition
steps that arise naturally in a constructive setting. For example, we define the concurrency relation
on (compatibly-typed) transition proof terms, and we define residuation as a total function taking two
transitions along with a proof that the transitions are concurrent, rather than having to deal with a
partial operation.

Our formalisation employs de Bruijn indices [5], an approach with well-known strengths and
weaknesses compared, for example, to higher-order or nominal abstract syntax techniques employed in
existing formalisations. For convenience, we employ a restricted form of structural congruence called
braiding congruence, and we have not formalised as many of the classical results on the m-calculus as
others have, but we do not believe there are major obstacles to filling these gaps. To the best of our
knowledge, ours is the first mechanised proof of the diamond lemma for any process calculus.

The rest of the paper is organised as follows. §2 presents our variant of the (synchronous) s-
calculus, including syntax, renamings, transitions and braiding congruence. §3 presents our definitions
of concurrency and residuation for transitions, and discusses the diamond lemma. §4 presents our
definition of causal equivalence. §5 discusses related work in greater detail and §6 concludes and
discusses prospects for future work. Appendix A summarises the Agda module structure; the source
code can be found at https://github.com/rolyp/proof-relevant-pi, release 0.1. Appendix B contains
graphical proof-sketches for some lemmas, and Appendix C some further examples of residuation.



48 Proof-relevant st-calculus

2 Synchronous m-calculus

We present our formalisation in the setting of a first-order, synchronous, monadic w-calculus with
recursion and internal choice, using a labelled transition semantics. The syntax of the calculus is
conventional (using de Bruijn indices) and is given below.

Name x,y,z == 0]1]--- Process P,0Q,R,S := 0 inactive
Action a = x input x.P input
x(y) output x(y).P output
X bound output P+0Q choice
T silent PlQ parallel
vP restriction
P replication

Names are ranged over by x, y and z. An input action is written x. Output actions are written X(y)
if y is in scope and Xx if the action represents the output of a name whose scope is extruding, in which
case we say the action is a bound output. Bound outputs do not appear in user code but arise during
execution.

To illustrate, the conventional s-calculus term (vx) x(z).y(z).0 | X(c).0 would be represented using
de Bruijn indices as v(0.n + 1(0).0 | 0(m +1).0), provided that y and c are associated with indices n
and m. Here, the first 0 represents the bound variable x, the second 0 the bound variable z, and the
third refers to x again. Note that the symbol O denotes the inactive process term, not a de Bruijn index.

Let ' and A range over contexts, which are finite initial segments of the natural numbers. The
function which extends a context with a new element is written as a postfix - +1. A context [ closes P
if [ contains the free variables of P. We denote by Proc [ the set of processes closed by ', as defined
below. We write [ - P to mean P € Proc ['. Similarly, actions are well-formed only in closing contexts;
we write @ : Action [ to mean that [ is closing for a, as defined below.

=P
F+1-P M-pP r-P TrO r-P  rHOQ
xel — x,y el
r-o Mk x.P M+ x(y).P r-P+0Q r-P|o
Fr+1+-P repP
M- vP M-IP
a : Action [
—— x€el —— xel —— x,y el _
X Action " * X:Actionl X{y) : Action " Xy T : Action [

To specify the labelled transition semantics, it is convenient to distinguish bound actions b from
non-bound actions ¢. A bound action b : Action I is of the form x or X, and shifts a process from ' to a
target context [ + 1, freeing the index 0. A non-bound action c : Action " is of the form X(y) or 7, and
has a target context which is also ['. Meta-variable a ranges over all actions, bound and non-bound.



R. Perera and J. Cheney 49

2.1 Renamings

A de Bruijn indices formulation of sr-calculus makes extensive use of renamings. A renamingp:[' — A
is any function (injective or otherwise) from I to A. The labelled transition semantics makes use of
the lifting of the successor function - +1 on natural numbers to renamings, which we call push to
avoid confusion with the - + 1 operation on contexts; pop y which undoes the effect of push, replacing
0 by y; and swap, which transposes the roles of 0 and 1. This de Bruijn treatment of s-calculus is
similar to that of Hirschkoff’s asynchronous us calculus [14], except that we give a late rather than
early semantics; other differences are discussed in §5 below.

pushp: [ — T 41 popr: [ — T +1—1T swapr: [ +2 — 142
push x = x +1 popyO0=y swap 0 =1
pop y (x+1)=x swap1=0

swap (x+2) =x+2

The [" subscripts that appear on pushp, popr x and swap are shown in grey to indicate that they may
be omitted when their value is obvious or irrelevant; this is a convention we use throughout the paper.

2.1.1 Lifting renamings to processes and actions

The functorial extension p* : Proc T — Proc A of a renaming p : [T — A to processes is defined in the
usual way. Renaming under a binder utilises the action of - +1 on renamings, which is also functorial.
Syntactically, p* binds tighter than any process constructor.

*: (T — A) — ProcI' — Proc A # (T — A) — Action T — Action A
p0=0 p*x=px
P (x.P)=px.(p+1)*P pEX =px
p*(x(y).P) = px{py).p"P prr=1
P(P+Q) pP+p"Q p*x(y) = px(py)
p (P Q)=p"P|p*Q
p (vP)=v(p+1)*P
p (IP)=1p"P

+1: (Il —A) —T+1—A+1

(p+1)0=0
(p+1) (x+1)=px+1

2.1.2 Properties of renamings

Several equational properties of renamings are used throughout the development; here we present
the ones mentioned elsewhere in the paper. Diagrammatic versions of the lemmas, along with string
diagrams that offer a graphical intuition for why the lemmas hold, are given in Appendix B.



50 Proof-relevant st-calculus

Lemma 1. pop x o push = id

Freeing the index 0 and then immediately substituting x for it is a no-op.
Lemma 2. pop Qopush+1=id

Lemma 3. swap +1oswaposwap+1 = swap o swap + 10 swap

The above are two equivalent ways of swapping indices 0 and 2.
Lemma 4. pop 0oswap = pop 0

Lemma 5. swap o push+1 = push, swap o push = push +1

Lemma 6. pushop = p+1o0opush

Lemma 7. popop x = pop pxop+1

Lemma 8. swapop+2 = p+2oswap

These last two lemmas assert various naturality properties of push, pop x and swap.

2.2 Labelled transition semantics

An important feature of our semantics is that each transition rule has an explicit constructor name. This
allow derivations to be written in a compact, expression-like form, similar to the proven transitions used
by Boudol and Castellani to define notions of concurrency and residuation for CCS [4]. However, rather
than giving an additional inductive definition describing the structure of a “proof” that P —— R,
we simply treat the inductive definition of ——— as a data type. This is a natural approach in a
dependently-typed setting.

The rule names are summarised below, and have been chosen to reflect, where possible, the structure
of the process triggering the rule. The corresponding relation P —~—— R is defined in Figure 1, for
any process [ - P, any a : Action I" with target A € {I',[" + 1}, and any A+ R.

Transition E,F := x.P input on x
x(y).P output y on x
E+Q P+ F choose left or right branch
EYQ P|°F propagate a through parallel composition on the left or right
E|;F E|F rendezvous (receiving y on the left or right)

vE initiate name extrusion

E|,F E|F extrusion rendezvous (receiving 0 on the left or right)
vE propagate a through binder

lE replicate

The constructor name for each rule is shown to the left of the rule. There is an argument position,
indicated by -, for each premise of the rule. Note that there are two forms of the transition constructors
-] - and v“- distinguished by whether they are indexed by a bound action b or by a non-bound action
c. Moreover there are additional (but symmetric) rules of the form P 4 -, P |- and P |” - where the
sub-transition occurs on the opposite side of the operator, and similarly - /|- and ;| - rules in which
the positions of sender and receiver are transposed. These are all straightforward variants of the
rules shown, and are omitted from Figure 1 for brevity. Meta-variables £ and F range over transition
derivations; if £ : P —>— R then src(E) denotes P and tgt(E) denotes R.

Although a de Bruijn formulation of pi calculus requires a certain amount of housekeeping, one
pleasing consequence is that the usual side-conditions associated with the sr-calculus transition rules
are either subsumed by syntactic constraints on actions, or “operationalised” using the renamings above.
In particular:



R. Perera and J. Cheney 51

% P———R
x.P _ *(y).P ) S —
xP———P x(y).Pp ———— P P+Q0—2 >R
o P——R b0 P—t R ’ P> R 0.5
PIQ——R|0 P|Q —"— R|push*Q ’ PlO——(pop y)'R|S
(x+1)(0 X x ush*c
V p (x+1)(0) R : p X R 0 5 P push R
' X vt T v c
vP — >R P|Q ———v(R|S) vP ——— VR
push*b a
. P——R L PIP—"—R
v —2 v(swap*R) P—2 >R

Figure 1: Labelled transition rules (P +-, P |-, P|-,-T| - and -y |- variants omitted)

1. The use of push in the - °| Q rule corresponds to the usual side-condition asserting that the binder
being propagated by P is not free in Q. In the de Bruijn setting every binder “locally” has the
name 0, and so this requirement can be operationalised by rewiring Q so that the name 0 is
reserved. The push will be matched by a later pop which substitutes for 0, in the event that the
action has a successful rendezvous.

2. The V- rule requires an extrusion to be initiated by an output of the form x 4+ 1(0), capturing the
usual side-condition that the name being extruded on is distinct from the name being extruded.

3. The rules of the form v require that the action being propagated has the form push*a, ensuring
that it contains no uses of index 0. This corresponds to the usual requirement that an action can
only propagate through a binder that it does not mention.

The use of swap in the v’ case follows Hirschkoff [14] and has no counterpart outside of the de
Bruijn setting. As a propagating binder passes through another binder, their local names are 0 and 1.
Propagation transposes the binders, and so to preserve naming we rewire R with a “braid” that swaps 0
and 1. Since binders are also reordered by permutations that relate causally equivalent executions, the
swap renaming will also play an important role when we consider concurrent transitions (§3).

The following schematic derivation shows how the compact notation works. Suppose E : P
R takes place immediately under a v-binder, causing the scope of the binder to be extruded. Then
suppose the resulting bound output propagates through another binder, giving the partial derivation on
the left:

z+2(0)

2+2(0)
—_

_ P R _
ve——m——— vE —
wp 2 . p - vp 2 . p -
v = v = vvE —44mM8M8H ——————
vwP —2 5 VR vwP —2 5 R vwP —2 R

with E standing in for the rest of the derivation. The blue constructors annotating the left-hand side of
the derivation tree can be thought of as a partially unrolled “transition term” representing the proof.



52 Proof-relevant st-calculus

The - placeholders associated with each constructor are conceptually filled by the transition terms
annotating the premises of that step. We can “roll up” the derivation by a single step, by moving the
premises into their corresponding placeholders, as shown in the middle figure.

By repeating this process, we can write the whole derivation compactly as v’VE, as shown on the
right. Thus the compact form is simply a flattened transition derivation: similar to a simply-typed
lambda calculus term written as a conventional expression, in a (Church-style) setting where a term is,
strictly speaking, a typing derivation.

2.2.1 Residuals of transitions and renamings

A transition survives any suitably-typed renaming. As alluded to already, this will be essential to
formalising causal equivalence. First we define the (rather trivial) residual of a renaming p: [ — A
after an action a : Action [.

Definition 1 (Residual of p after a).

def

plb=p+1

ple=p
The complementary residual a/p is also defined and is simply the renamed action p*a defined earlier in
§2.1.1. We use the latter notation.

Lemma 9. Suppose E : P — 5 Qandp:T —> A, whereT + P. Then there exists a transition E |
p:p*P —L25 (p/a)* Q such that tgt(E[p) = p/a*Q.

P Q
P*J J(p/a)*
p*P > (pla)*Q

Elp

The proof is the obvious lifting of a renaming to a transition, and is given in Appendix C.

We would not expect £E/p to be derivable for arbitrary p in all extensions of the sr-calculus. In
particular, the mismatch operator [x # y|P that steps to P if x and y are distinct names is only stable
under injective renamings.

2.2.2 Structural congruences

We believe our semantics to be closed under the usual w-calculus congruences, but have not attempted
to formalise this. The “braiding” congruence % introduced in §3.2.1 is in fact a standard s-calculus
congruence, which we use to track changes in the relative position of binders under permutations
of traces. This could be generalised to include more congruences, but at a corresponding cost in
formalisation complexity.

3 Concurrency and residuals

We now use the compact notation for derivations to define a notion of concurrency for transitions with
the same source state, following the work of Boudol and Castellani for CCS [4]. Concurrent transitions
are independent, or causally unordered: they can execute in either order without significant interference.
Permutation of concurrent transitions induces a congruence on traces, which is the topic of §4.



R. Perera and J. Cheney 53

3.1 Concurrent transitions

Transitions P ——— R and Q — % 'S are coinitial iff P = Q. We now define a symmetric and
irreflexive relation — over coinitial transitions. If £ — E’ we say E and E’ are concurrent. The relation
is defined as the symmetric closure of the rules given in Figure 2, again with trivial variants of the rules
omitted. For the transition constructors of the form - “| Q and v?- which come in bound and non-bound
variants, we abuse notation a little and write a single — rule quantified over a to mean that there are
two separate (but otherwise identical) cases.

E—F'

E—F F—F E—FE F—F
PIF—E”|Q ElQ—E'[[F PI'F—E|; F' E\Q—E'|lF PI°F —E|}F

E—F F—F E—F E—E  F—F
m P|aE\_/P|g’E/ EG|Q\_/E/0/|Q El;FVEIEF,
E—E  F—F E—E  F—F E—E  F—F E—E  F<—F
ElfF —EI|F ElLF—E,F ElLF—E[|F ElLF—ELF
E—E  F—F E—FE E—FE E—F E—FE
E|TF—ET|F VE — VE' VE — V'E’ VIE — V' E’ IE — 1E’

Figure 2: Concurrent coinitial transitions (P + -, and some - | - and - || - variants omitted)

The first rule, P | F — E ”,| Q, says that two transitions £ and F are concurrent if they take
place on opposite sides of the same parallel composition. The remaining rules propagate concurrent
sub-transitions up through v, choice, parallel composition, and replication. Note that there are no
rules allowing us to conclude that a left-choice step is concurrent with a right-choice step: choices
are mutually exclusive. Likewise, there are no rules allowing us to conclude that an input or output
transition is concurrent with any other transition; since both £ and E are required to be coinitial, if
one of them is an input or output step then they are equal and hence not concurrent.

The E | F — E'|] F’ rule says that a rendezvous is concurrent with another rendezvous under the
same parallel composition, as long as the two inputs are concurrent on the left, and the two outputs
are concurrent on the right. The E || F — E' ]| F’ variant is similar, but permits concurrent input and
output on the left, with their rendezvous partners concurrent on the right. The E |j F — E' | F' rule
and variants permit a regular rendezvous and an extrusion-rendezvous to be concurrent.

3.2 Residuals of concurrent transitions

Intuitively, if £ — E’ then E and E’ are “parallel moves” in the sense of Curry and Feys [9]: if either
execution step is taken, the other remains valid, and if both are taken, one ends up in (essentially) the
same state, regardless of which step is taken first.

However, concurrent transitions are not completely independent: the location and nature of the
redex identified by one transition may change as a consequence of the earlier transition. This intuition
is captured by the notion of the residual £/E’, explored notably by Lévy in the lambda calculus [16],



54 Proof-relevant st-calculus

and later considered by Stark for concurrent transition systems [25] and in the specific setting of CCS
by Boudol and Castellani [4]. The residual specifies how E must be adjusted to take into account the
fact that £ has taken place.

Definition 2 (Residual). Suppose E — E’. Then the residual of E after E’, written E/E’, is given by
the least function satisfying the equations in Figure 3.

The operator -/- has higher precedence than any transition constructor. The definition makes use
of the renaming lemmas in §2.1.2, and is rather tricky; Appendix C.1 gives several examples which
illustrate some of the subtleties that arise in the m-calculus setting, in particular relating to name
extrusion.

E/E'
(P F)/(E°| Q) =tgt(E)|" F (P|” F)/(P|* F') = push* P|bF/F’
(P|”F)I(E"| Q) = tgt(E Iapush*F (PI*F)/(P|" F'y = push*P|** 1O F/F’
(E“lQPI F)=E" Itgt (P|“F)/(P|"F') = push*P | F|F’
(E?|Q)/(P|° F) = push*E® |tgt (P F)(P|°F'y=P|"F|F’
(E"IQ/(E’ y F)=(pop y)"(E/E) Itgt (EX|Q)/(E'"| Q) = E/E'*| push*Q
(P )/(Elg ) = (pop y) tgt( E)IUF/F’ (E)Q)/(E'*| Q) = E/E'b|push 0
(E Ly F)(E""| Q) = EJE | push*F (EX| Q)IE'| Q) = EJE" %) push*Q
(Ely FE"1Q)=EJE"|} F (E| Q)/(E""| Q) = E/E'“| push*Q
(Ey F)I(P|" F')=push*E |} FIF’ (E“ IQ)/ E’C|Q) EIE'“|Q
(Ely,F)I(PI°F)=E|, FIF' (EIL E'IF)= (POPZ) (EIE") |y FIF'
(EX|Q)/(E'|} F) = v* (E/E’X+1|tgt (E]] ) E’| F')=v'(EIE'|] FIF')
(EX|Q)I(E' |} F) = v(EJE"*+1(0) |tgt (E]5 ) /Iz )= (POPZ)/E/E )|y FIF’
ETOUET - e gy ELAIETE ey o)
(PIEFUELS ) = v aE) 2 FIF) WENE) =] ,

x i (0 (vE)/(v E)—vswap (E/E")

(P FYIE |} F) = witgt(E) ) FIF) VEV(E) = v EJE"
(PI°F)IE|LF') = ve(tgt(E) [P FIF) (v E)I(VE)) = EIE/
(E |, F)I(E'"| Q) = EJE"|| push*F (VE)/(VE')=E|E’
(E|, F)E'“|Q)=EIE'|,F (VPE)(V’E") = vEE’
(E: F)/(P:XF) push* E:TF/F’ (VE(E) = v° swap*(E/E')
(E|5F)/[(P|" F'y=push*E |5 F|F’ b, ,
e 7B e E) - eI
(E+Q)/(E Q)=EJE , (EVI(E) = EJE’
(P[*F)/(P|" F"y = push*P |* F|F

Figure 3: Residual of E after £’, omitting - |- and - J| - cases

3.2.1 Cofinality of residuals

The idea that one ends up in the same state regardless of whether £ or E’ is taken first is called
cofinality. In CCS, where actions never involve binders, and in the lambda calculus, where binders do
not move around, cofinality simply means the target states are equivalent. Things are not quite so
simple in late-style m-calculus, because binders propagate during execution, as bound actions. Consider



R. Perera and J. Cheney 55

the process x.P | z.Q with two concurrent input actions. Initiating one of the inputs (say x) starts
propagating a binder. As this binder passes through the parallel composition, the transition rules use
push to “reserve” the free variable 0 in the right half of the process for potential use by a subsequent

pop:
o FExP———-T+1FP
z
FFx.P|z.Q ——>T+1FP|z+1.(push+1)*Q

>

When the action (z 4+ 1) is performed, a push on the left leaves the final state with both 0 and 1 reserved:

z+1

MN+1Fz+1.(push+1)*Q ——— T +2F (push+1)*Q

z+1

F+1+P|z+1.(push+1)*Q ——— T +2F push®P | (push+1)*Q

p|ﬂ.

Had these concurrent actions happened in the opposite order, the push on the left would have
been applied first. The final state would be (push +1)*P | push™Q, which is the image of push™P |
(push +1)*Q in the permutation swap which renames 0 to 1 and 1 to 0. Instead of the usual cofinality
square, the final states are related by a “braid” (in the form of a swap) which permutes the free names:

z+1
F+1FP|z+1.(push+1)"Q ——— I +2F push™P | (push +1)*Q

% szap*

MNEx.Plz.0 I+ 2 swap*push®P | swap*(push +1)*Q

N

F+1Fx4+1.(push +1)*P|QT> I+ 2+ (push +1)*P | push*Q
X+l

Here a and B are equalities obtained from Lemma 5.

It is not just the reordering of bound actions which nuances s-calculus cofinality. When two 7
actions are reordered, which happen to be extrusion rendezvous of distinct binders, the resulting binders
exchange positions in the final process. In the standard s-calculus this would be subsumed by the
congruence (vxy) P 2 (vyx) P. In the de Bruijn setting, where adjacent binders cannot be distinguished,
the analogous rule is vvP = vv(swap®P), which applies a swap braid under the two binders.

These two possibilities are subsumed by the following generalised notion of cofinality. First we
define a braiding congruence 2 just large enough to permit swap under a pair of binders. “Cofinality” is
then defined using a more general braiding relation which additionally permits swaps of free variables.
Examples showing reordered extrusions are given in Appendix C.1, including concurrent extrusions of
the same binder, an interesting case identified by Cristescu et al. [8].

Definition 3 (Braiding congruence). Inductively define the binary relation = over processes using the
rules given in Figure 4.

In Figure 4, rule names are shown to the left in blue, permitting a compact term-like notation for =
proofs similar to the convention we introduced earlier for transitions. The process constructors are
overloaded to witness compatibility; transitivity is denoted by o. It is easy to see that 2 is also reflexive
and symmetric, and therefore a congruence. P denotes the canonical proof that P = P.

In what follows ¢ and () range over braiding congruences; src(¢) and tgt(¢) denote P and R, for
any ¢ : P = R. As with transitions, braiding congruences are stable under renamings, giving rise to the
usual notion of residuation; however p/¢ is always p. The proof is a straightforward induction.



56 Proof-relevant st-calculus

P=R
1 R=z=S PR
VV-swapp " VV-swapp - 0 0
vv(swap™P) z vvP vvP 2 vy(swap™P) P=S 0=z0
P~R _ PR PxR 0=zS PR Q=zS
x.P2x.R x{(y).Pzx{y).R P+Q=zR+S Pl|O=R|S
P=R | P=R
" VPR CIP=IR

Figure 4: Braiding congruence =

Lemma 10. Forany[ F P, suppose ¢ : P — Q and p: ' — A. Then there exists a braiding congruence
Qlp:p*P— p*0.

P ¢ Q

PJ JP
*P N *Q
p élp p

Definition 4 (Braiding). For any A € {0,1,2} define the following family of bijective renamings
braidra: I +A — I + A and symmetric braiding relations M A over processes in [ +A.

braidro=idr: I — T
braidr 1 = idryq : T +1— T +1 P xra P < braidrpA*P = P’
braidrp =swapp: [ +2 — 1T +2

Our key soundness result is that residuals of concurrent transitions £ and E’ are always cofinal
up to a braiding of type x A where A € {0,1,2} is the number of free variables introduced by E and
E’/E. Rather than the usual parallel-moves square on the left, the residuals satisfy pentagons of the
form shown in the centre of Figure 5, where y : Q x o Q' is a braiding.

!

MHR F+4+0Q

R
AN &
P Q r-p y

;\\ //;E’ ;\\
R/

MFR ———— T +AFQ
E/E
Figure 5: Cofinality in the style of CCS (left); with explicit braiding (right)

Arranging for this to hold by construction introduces a certain amount of complexity, so we prove
cofinality as a separate theorem.



R. Perera and J. Cheney 57

Theorem 1 (Cofinality of residuals). Suppose E and E' are the transitions on the right of Figure 5, with
E — E’. Then there exists cofing g/ Q Xp Q.

The notion of concurrency extends into dimensions greater than two. Following Pratt’s higher-
dimensional automata [23], we can consider a proof x : E — E’ as a surface that represents the
concurrency of £ and £’ without committing to an order of occurrence. Every such y : E — E’ has
a two-dimensional residual y/E” with respect to a third concurrent transition £”. First we note that
concurrent transitions are closed under renamings.

Lemma 11. Suppose p: I — A and E, E' are both transitions from [ - P, with x : E ~— E'. Then there
exists x|p: Elp— E'[p.

Proof. By induction on y, using Lemma 9. O

Theorem 2 (Residuation preserves concurrency).
Suppose x : E — E' with E — E"” and E' — E". Then there exists x |[E" : E|[E" — E'|E".

Proof. By induction on y and inversion on the other two derivations, using Lemma 11. O]

Theorem 3. Suppose x : E — E', with E' — E"” and E” — E. Then:
(E'TE")(EJE))Icofing. ¢ = (E'IE)/(E"E)

The diagram below illustrates Theorems 2 and 3 informally. The three faces x, x’ and x” with P as
a vertex witness the pairwise concurrency of £, E” and E”. Theorem 2 ensures that these have opposite
faces x/E"”, x'|E and x"/E’. Theorem 3 states that, up to a suitable braiding, there is a unique residual
of a one-dimensional transition after a concurrent two-dimensional one, connecting the faces X// E and
x"/E’ via the shared edge E”/x. Analogous reasoning for £/’ and E’/x” yields a cubical transition
with target P’.

The bold font for S, Sy, S3 and P’ indicates that they represent not a unique process but a
permutation group of processes related by braidings. At P’ there are potentially 3! = 6 variants of the
target process, one for each possible interleaving of £, £’ and E”. The notation E”/y is again informal,
referring not to a unique transition but to a permutation group related by braidings.



58 Proof-relevant st-calculus

4 Causal equivalence

4.1 Traces

Define Action™ I to be the set of finite sequences of composable actions starting at [". The empty
sequence at ™ is written [|; extension to the left is written a :: @. A trace t : P ——— R is a finite
sequence of composable transitions with initial state src(t) = P and final state tgt(t) = R. The empty
trace at P is written [|p; extension to the left of t : R ——— S by E : P ——s R is written E :: t.

4.2 Residuals of traces and braidings

To define the residual of a trace t with respect to a braiding y, we first observe that a braiding congruence
¢ : P = P’ commutes (on the nose) with a transition £ : P —=——s Q, inducing the corresponding notions
of residual ¢/E (the image of the braiding congruence in the transition) and E/¢ (the image of the
transition in the braiding congruence).

Theorem 4. Suppose E: P —>— R and ¢ : P = P'. Then there exists a process R', transition E |
¢ : P'—=— R’ and structural congruence ¢/E : R= R’

P R
¢>J ¢IE
p "

El¢

Proof. By the defining equations in Figure 6.

Unlike residuals of the form E/E’, the cofinality of £/¢ and ¢/E is by construction. Appendix C.2
illustrates cofinality for the cases where ¢ is of the form vv-swapp.

To extend this notion of residuation from braiding congruences to braidings requires a more general
notion of braiding which permits the renaming component of the braiding to be shifted under a
binder. First recall (from Definition 4) that any braiding y : P x o P’ is of the form ¢ obraidr a,
where braidra : '+ A — I + A is the renaming id or swap, as determined by A € {0,1,2}, and ¢
is a braiding congruence. We omit the ', A subscripts whenever possible. The more general form of
braiding allows the braid and ¢ components to be translated by an arbitrary context A'.

Definition 5 (A-shifted braiding). For any context A define
P %, P <> (braidr o +A)*P = P’

Now we define the residual of a transition £ : - P —=— T + A F R, where A € {0,1}, and
coinitial braiding y and show that the residual y/E is y shifted by A.

Definition 6 (Residuals of transitions and braidings). For any transition £ : P —2— R and braiding
y: P x® P’ with y = ¢ o0, define E/y and y/E by the following equations.

El(¢oo)=(E/o)/ (¢oo)/E =(¢/(E]a))oala

Cofinality is immediate by composing the square obtained by applying Lemma 9 to £ and o with the
square obtained from Theorem 4 above to ¢ and £ /0. Closure of (A-shifted) braidings under residuation
follows from the fact that o/a = 0 + A’ for some A" € {0,1}.



R. Perera and J. Cheney

59

(VE)/(vg) = v E/¢
(V'E)/(v@) =V E/¢
lE/(¢]!9) ('o)/(!

(Elg)l¢’ (¢'0 ¢)/E

El¢ ¢IE
vv-swap,, /(v O E) = v ¥(swap*E) vv-swap, ) /(WO E) = v tgt(E )
VV-SWap,, )/(VXVE) :VVXJ”,1 ) (swap*E) VV-SWap,.r ( VE) =vswap “tgt(E).
vv-swap,, ) /(v© v E)= viv ,(swap*E) vV-swap,,. E)/( ,E) =vv- swaptg%( £)
vVV-swap,,. E)/(v vP E) =iy (swap®E) vv-swap,, /(v byb E)=vv- SWAP oo+ (swap-+ 1) swap*tat(E)
(x.P)/(x.¢) = x.tgt(¢) (X¢)( P)=¢
(x(y)-P)/(x(y)-¢) = X(y) tet(¢) (x(y)- @)/ (x(y).P) = ¢
(E+Q)[(o+¢) = El¢+1gt(y) (P+)I(E+Q)=¢/E
(E°|Q)/(¢+¢) = E/$”|tgt(yh) (6+Y)IE"|Q) = ¢/E | push*y
(E°|Q(¢+¢) =El¢‘|tgt(y) (@+PE|Q)=¢IE | ¢
(P1”F)I(¢+4) =tgt(¢) |” F I (p+Y)/(P|°F)=push*¢ | y/F
(PI°F /(¢+l/J = tgt(d) | F/¢ @+ )P F)=¢|¢lF
(ElyF)(@lY)=Elpl, FlY (@1 OIE];F) = (pop y)"¢/E
(E|CF)/(¢|4/)=E/¢|§F/¢/ (@ IYNELF)=v(o/E [ YIF)
(VE)/(vg) =V E[¢ (V¢>) ( E)=¢/E
’E) =
)

=(o[!9)/E
(¢'/(EI¢)) o plE

('E)/(1¢) =
El(¢'o¢) =

Figure 6: Residual of transition E and coinitial braiding congruence ¢

P E R
0+AJ JU-}—A/
El/(c+A
(6+A)'P —— (0 +A)'R
¢J J¢/(E/<U+A>)
P Eloranie F

where both £/(g 4+ A) and (E /(0 + A))/¢ have the action (0 + A)*a
Finally, we extend the definition to traces.
Definition 7 (Residuals of action sequences and renamings).
Suppose p: [T — A and @ : Action™ I". Define the residuals p/a and a/p, writing the latter as p*a.

plllr=p plla::a)=(pla)la
Pl =1l p(a:a)=(p*a):(pla)‘a

Lemma 12 (Res1duals of traces and bra1d1ngs)

Supposet : P ——— R andy = ¢po o : P x> P’. Then there exists a process R’, trace P’ ——— R’ and

braiding y/t: R x R’
t

P R
VJ v/t
P’ > R

tly



60 Proof-relevant st-calculus

Proof. By the following defining equations.

P L P P S R ! S

VJ Jy/[] VJ JV/E J(Y/E)/T
AT ST T
ply =1lp (E=t)ly=(Ely):t/(v/E)
ylllp =v YI(E :t) = (v/E)/t

4.3 Causal equivalence

We now define causal equivalence, the congruence over traces induced by the notion of transition
residual from §3.2. A causal equivalence « : t ~ u witnesses the reordering of one trace t into a
coinitial trace u by the permutation of concurrent transitions. Meta-variables a, B range over causal
equivalences.

Definition 8. Inductively define the relation ~ given by the rules in Figure 7, where syntactically ~

has lower priority than - ::-. If o : t >~ u then src(a) and tgt(a) denote t and u respectively.
t~u
E:P— >R t~u t'~u t~t
[P N src(t) =R o~
[lp ~[lp E:t~E:u t~u
E:P— >R £:P—C LR t~u ,
(=) E—E

E:E'JE:t~E ::EJE : ulcofing g

Figure 7: Causal equivalence

The [|p and E :: a rules are the congruence cases. The a o B rule closes under transitivity, which
is a form of vertical composition. The transposition rule (£ :=: E’) :: a extends an existing causal
equivalence a : t ~ u with the two possible interleavings of concurrent steps £ ~— E’. What is interesting
about this rule is that the trace u must be transported through the braiding cofing £ witnessing the
cofinality of £ and E’, in order to obtain a trace u/cofing g composable with E'/E. The following
diagram illustrates.

R Q S
7 \ J cofing
u
P cofing g s’
E’\ Jcoﬁng,g'/u
R Qo S”

E/E/ U/COfinE’E/



R. Perera and J. Cheney 61

As the diagram suggests, the transposition rule causes braidings to compose vertically. Here, cofin,
is a composite braiding relating S to S’, which is extended by the braiding cofing £ /u to relate S to S”.
We leave formalising this aspect of causal equivalence to future work.

Theorem 5. =~ is an equivalence relation.

Proof. Reflexivity is a trivial induction, using the [|p and E :: @ rules. Transitivity is immediate from the
a o B rule. Symmetry is trivial in the [|p, E :: @ and a o B cases. The (E :=: E’) :: a case requires the
symmetry of — and that (u/cofing)/cofin; ' = u, where u = tgt(a).

5 Related work

Hirschkoff’s s calculus [14] has a similar treatment of de Bruijn indices. Its renaming operators (x), ¢
and ¢ are effectively our pop x, push and swap renamings, but fused with the -* operator which applies
a renaming to a process. Hirschkoff’s operators are also syntactic forms in the ps calculus, rather than
meta-operations, and therefore the operational semantics also includes rules for reducing occurrences
of the renaming operators that arise during a process reduction step.

Formalisations of the sr-calculus have been undertaken in several theorem provers used for mecha-
nised metatheory. Due to space limits, we limit attention to closely-related formalisation techniques
based on constructive logics.

Coq. Hirschkoff [13] formalised the m-calculus in Coq using de Bruijn indices, and verified
properties such as congruence and structural equivalence laws of bisimulation. Despeyroux [12]
formalised the sm-calculus in Coq using weak higher-order abstract syntax, assuming a decidable type of
names, and using two separate transitions, for ordinary, input and output transitions respectively; for
input and output transitions the right-hand side is a function of type name — proc. This formalisation
included a simple type system and proof of type soundness. Honsell, Miculan and Scagnetto [15]
formalised the sr-calculus in Cogq, also using weak higher-order abstract syntax. The type of names name
is a type parameter assumed to admit decidable equality and freshness (notin) relations. Transitions
are encoded using two inductive definitions, for free and bound actions, which differ in the type of the
third argument (proc vs. name — proc). Numerous results from Milner, Parrow and Walker [19] are
verified, using the theory of contexts (whose axioms are assumed in their formalisation, but have been
validated semantically).

CLF. Cervesato, Pfenning, Walker and Watkins [6] formalise synchronous and asynchronous
versions of sr-calculus in the Concurrent Logical Framework (CLF). CLF employs higher-order abstract
syntax, linearity and a monadic encapsulation of certain linear constructs that can identify objects such
as traces up to causal equivalence. Thus, CLF’s s-calculus encodings naturally induce equivalences on
traces. However, a nontrivial effort appears necessary to compare CLF’s notion of trace equivalence
with others (including ours) due to the distinctive approach taken in CLF.

Agda. Orchard and Yoshida [21] present a translation from a functional language with effects to a
st-calculus with session types and verify some type-preservation properties of the translation in Agda.

6 Conclusions and future work

To the best of our knowledge, we are the first to report on a formalisation of the operational behavior of
the sr-calculus in Agda. Compared to prior formalisations, ours is distinctive in two ways.

First, our formalisation employs an indexed family of types for process terms and uses the indices
instead of binding to deal with scope extrusion. Formalisations of lambda-calculi often employ this



62 Proof-relevant st-calculus

technique, but to our knowledge only Orchard and Yoshida report a similar approach for a sr-calculus
formalisation. This choice helps tame the complexity of de Bruijn indices, because many invariants are
automatically checked by the type system rather than requiring additional explicit reasoning.

Second, our work appears to be the first to align the notion of “proved transitions” from Boudol and
Castellani’s work on CCS with “transition proofs” in the sr-calculus. This hinges on the capability to
manipulate and perform induction or recursion over derivations, and means we can leverage dependent
typing so that residuation is defined only for concurrent transitions, rather than on all pairs of transitions.
It is worth noting that while CLF’s approach to encoding m-calculus automatically yields an equivalence
on traces, it is unclear (at least to us) whether this equivalence is the same as the one we propose, or
whether such traces can be manipulated explicitly as proof objects if desired.

In future work we may explore trace structures explicitly quotiented by causal equivalence, such
as dependence graphs [17] or event structures [4]. We are also interested in extending braiding
congruence to the full sr-calculus structural congruence, and in understanding whether and how ideas
from homotopy type theory [24], such as quotients or higher inductive types, could be applied to ease
reasoning about or correct programming with s-calculus terms (modulo structural congruence) or
traces (modulo causal equivalence).

Acknowledgements The authors were supported by the Air Force Office of Scientific Research,
Air Force Material Command, USAF, under grant number FA8655-13-1-3006. The first author was
also supported by UK EPSRC project From Data Types to Session Types: A Basis for Concurrency and
Distribution (EP/K034413/1).

References

[1] David Baelde, Kaustuv Chaudhuri, Andrew Gacek, Dale Miller, Gopalan Nadathur, Alwen Tiu & Yuting
Wang (2014): Abella: A System for Reasoning about Relational Specifications. J. Formalized Reasoning 7(2),
doi:10.6092/issn.1972-5787/4650.

[2] Jesper Bengtson & Joachim Parrow (2009): Formalising the pi-calculus using nominal logic. Logical Methods
in Computer Science 5(2:16), doi:10.2168/LMCS-5(2:16)2009.

[3] Michele Boreale & Davide Sangiorgi (1998): A Fully Abstract Semantics for Causality in the m-Calculus. Acta
Inf. 35(5), pPp- 353-400, doi:10.1007/s002360050124.

[4] Gérard Boudol & Ilaria Castellani (1989): Permutation of transitions: An event structure semantics for CCS and
SCCS. In JW. Bakker, W.-P. Roever & G. Rozenberg, editors: Linear Time, Branching Time and Partial Order
in Logics and Models for Concurrency, LNCS 354, Springer, pp. 411-427, doi:10.1007/BFb0013028.

[5] N.G. de Bruijn (1972): Lambda-Calculus Notation with Nameless Dummies: a Tool for Automatic Formula
Manipulation with Application to the Church-Rosser Theorem. Indagationes Mathematicae 34(5), pp. 381-392,
doi:10.1016/1385-7258(72)90034-0.

[6] Iliano Cervesato, Frank Pfenning, David Walker & Kevin Watkins (2002): A Concurrent Logical Framework II:
Examples and Applications. Technical Report CMU-CS-02-102, Carnegie Mellon University.

[7] James Cheney & Roly Perera (2014): An Analytical Survey of Provenance Sanitization. In: IPAW, pp. 113-126,
doi:10.1007/978-3-319-16462-5_9.

[8] Ioana Cristescu, Jean Krivine & Daniele Varacca (2013): A compositional semantics for the reversible pi-calculus.
In: LICS, pp. 388-397, doi:10.1109/LICS.2013.45.

[9] Haskell B. Curry & Robert Feys (1958): Combinatory Logic. Studies in Logic and the Foundations of
Mathematics 1, North-Holland, Amsterdam, Holland.



R. Perera and J. Cheney 63

(10]
(11]
(12]
(13]
[14]
[15]
(16]

(17]

[24]
(25]

[26]

Vincent Danos & Jean Krivine (2004): Reversible Communicating Systems. In Philippa Gardner & Nobuko
Yoshida, editors: CONCUR, LNCS 3170, Springer, pp. 292-307, doi:10.1007/978-3-540-28644-8_19.

Pierpaolo Degano & Corrado Priami (1999): Non-Interleaving Semantics for Mobile Processes. Theor. Comput.
Sci. 216(1-2), pp. 237-270, doi:10.1016/S0304-3975(99)80003-6.

Joélle Despeyroux (2000): A Higher-Order Specification of the pi-Calculus. In: IFIP TCS, LNCS 1872, Springer-
Verlag, pp. 425-439, d0i:10.1007/3-540-44929-9_30.

Daniel Hirschkoff (1997): A Full Formalisation of pi-Calculus Theory in the Calculus of Constructions. In:
TPHOLSs, pp. 153-169, doi:10.1007/BFb0028392.

Daniel Hirschkoff (1999): Handling Substitutions Explicitly in the pi-Calculus. In: Proceedings of the Second
International Workshop on Explicit Substitutions: Theory and Applications to Programs and Proofs.

Furio Honsell, Marino Miculan & Ivan Scagnetto (2001): w-calculus in (Co)Inductive-type Theory. Theor.
Comput. Sci. 253(2), pp. 239-285, d0i:10.1016/50304-3975(00)00095-5.

Jean-Jacques Lévy (1980): Optimal reductions in the lambda-calculus. In J. P. Seldin & J. R. Hindley, editors: To
H. B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism, Academic Press, pp. 159-191.

A. Mazurkiewicz (1987): Trace Theory. In: Advances in Petri Nets 1986, Part II on Petri Nets: Applications
and Relationships to Other Models of Concurrency, LNCS 255, Springer-Verlag, pp. 279-324, doi:10.1007/3-
540-17906-2_30.

Robin Milner (1999): Communicating and mobile systems: the 7 calculus. Cambridge University Press.
Robin Milner, Joachim Parrow & David Walker (1992): A Calculus of Mobile Processes, I and II. Inf. Comput.
100(1), pp. 1-77, d0i:10.1016/0890-5401(92)90009-5.

Ulf Norell (2009): Dependently Typed Programming in Agda. In: Advanced Functional Programming, LNCS
5832, Springer, pp. 230-266, d0i:10.1007/978-3-642-04652-0_5.

Dominic A. Orchard & Nobuko Yoshida (2015): Using session types as an effect system. In: PLACES.

Roly Perera, Umut A. Acar, James Cheney & Paul Blain Levy (2012): Functional Programs That Explain Their
Work. In: ICFP, ACM, pp. 365-376, d0i:10.1145/2364527.2364579.

Vaughan Pratt (2000): Higher Dimensional Automata Revisited. Mathematical Structures in Computer Science
10(4), pp. 525-548, d0i:10.1017/S0960129500003169.

The Univalent Foundations Program (2013): Homotopy type theory: Univalent foundations of mathematics.
Technical Report, Institute for Advanced Study.

Eugene W. Stark (1989): Concurrent Transition Systems. Theoretical Computer Science 64(3), pp. 221-269,
doi:10.1016/0304-3975(89)90050-9.

Alwen Tiu & Dale Miller (2010): Proof Search Specifications of Bisimulation and Modal Logics for the st-calculus.
ACM Trans. Comput. Logic 11(2), pp. 13:1-13:35, d0i:10.1145/1656242.1656248.



64 Proof-relevant st-calculus

A Agda module structure

Figure 8 summarises the module structure of the Agda formalisation.

Utilities
Common Useful definitions not found in the Agda standard library
SharedModules Common imports from standard library

Core modules

Action Actions a

Action.Concur Concurrent actions a ~— a’; residuals a/a’
Action.Concur.Action Residual of a — a’ after a”

Action.Seq Action sequences a

Name Contexts [; names x

Proc Processes P

Ren Renamings p: T — I’

StructuralCong.Proc Braiding congruence relation ¢ : P =~ P’
StructuralCong.Transition Residuals E/¢ and ¢/E

Transition Transitions £ : P —~——— R

Transition.Concur Concurrent transitions y : £ — E’; residuals E/E’
Transition.Concur.Cofinal Cofinality braidings y
Transition.Concur.Cofinal.Transition Residuals E/y and y/E
Transition.Concur.Transition Residual y/E

Transition.Seq Transition sequences

Transition.Seq.Cofinal Residuals t/y and y/t; permutation equivalence a : t ~ u

Typical sub-modules
.Properties Additional properties relating to X
.Ren Renaming lifted to X

Figure 8: Module overview

B Renaminglemmas

Each lemma asserts the commutativity of the diagram on the left; when a string diagram is also provided,
it should be interpreted as an informal proof sketch.

Lemma 1.
push pop x id
push F+1 r r—<—r
Fr— I +1 0\0 0 O————0
1 1 1 = ()
pop x

\ J 5\2 2 : :

r :

Lemma 2.



R. Perera and J. Cheney

pushi-+1

r+2

\ Jpopm 0

M+1

r+1

Lemma 3.

swapr +1

[+3 ——— 1 +3

Yvapm

swaprV

65

push +1 pop 0 id
M+1 M+ M+1 Ml —— 41
0f 0 0 OF———0

swapr 4

swapr + 1 swapr+1
3 r 3

I [+3
0 OF—0 0
2>—>2><2>—>2

Mr+3 r+3
swapr swapp + 1 swapr
\ / r+3 43— —T+3 243
swapr + 1 swapp +1 0 0 0 0
r M+3
o e
2 2—— 2 2
Lemma 4.
swap pop 0 pop O
r+2 r+2 r+1 42— T +1
swap popr1 0 0 0 0 0 0
F+2$F+ZLF+1 1><:1; 1 = 1/;1
2 :

Lemma 5.

\;\Iapstap
pushr

2}—>2/f

pushi-+1

pushr swapp

r+1 + r+2 r+1 +2
0\0:><:o B 00
D T,

pushp +1 swap pushp
r+2 Ml — 42 L2 41—
OF——0 0 0 0
1\1:><:1 = 1%1

: 2——2 : 2

Lemmas 6, 7 and 8.
push popr x swapp

r r+1 r M2 ——m—r71+42
pJ Jp+1 JP p+2J Jp+2
A 1 A A+2 A+2

push, * popa px * swapp *



66 Proof-relevant st-calculus

C Additional proofs

Proof of Lemma 9. By the following mutually recursive proofs-by-induction on the derivations. The
various renaming lemmas needed to enable the induction hypothesis in each case are omitted.

p*EC p*Eb
p*(x{y).P) =px(py).p*P p*(x.P)=px.(p+1)"P
pE+F)=p"E+p"F p(E+F) pE+pF
p*(P|"F)=p"P|” p*F P|” F)=p*P|P"? p*F
P (E|Q)=p"EX | p*Q PHE"|Q)=p*EP""|p*Q
PHElyF)=p E |y, p F ( E)=v(p+1)'E
pENF)= ppEITp*F PVPE)=vP P (p+1)E
*(VE) = v (p+1)*E Ip*E
pp( e ; o E(p )" pP(E)=1p

C.1 Additional illustrative cases of Theorem 1

Example: permuting concurrent extrusions (different binders). First, note that the residuals of
bound output transitions are not themselves necessarily bound. More specifically, the residuals of the
output transition on X with the output on Z is bound only if the outputs represent extrusions of different
v-binders. In this section we consider only the case when the concurrent extrusions are of different
v-binders.

In this case, each binder is unaffected by the extrusion of the other, and the residuals remain bound
outputs, shifted into [ 4+ 1 as usual. The general form of such residuals is:

(F’ ,_—)m
Fr+1kS M2k Q
FY/ lswap*
N-o +2F swap*Q’

N L

F1ES ——— T +2HQ"
(F/F/)X+1

where ¢ ranges over braiding congruence. Then the residual is able to handle the inner extrusion, with
the resulting T action again propagated through the outer binder:

e —,
rkpP—=—R r-o——s

TFP|Q——v(R|S)




R. Perera and J. Cheney 67

VI(E'IE [T F'IF)
MFv(R|S) —————— Ik vv(swap*P’ | swap™ Q')

E|V va—swapp/‘o/

PO MEvv(P'| Q)
AN [wio19)
r-v(R'|S) rEvv(P”| Q")

vI(EIE' |} FIF"

Example: permuting concurrent extrusions (same binder). Consider the process v(x +1(0).P |
z+1(0).Q), as described in Cristescu et al. [8]. There are two concurrent outputs, both of which try to
extrude the top-level binder. Suppose we take the x + 1(0) action first:

1O

. x+1(0).P
FT+1Fx+1(0).P|z+1(0).Q F+1FP|z+1(0).0

MEv(x+1(0).P|z+1(0).0) ——— T +1FP|z+1(0).Q

x+1(0)
—_

<l

If we then take the z+ 1(0) action, the enclosing v-binder no longer exists, and so z + 1(0) simply
propagates as a non-bound action.

piprie, T+ Fz1(0).0 2% r ko
F1rFPz51(0.0 2% ri1kpPlo

Example: permuting one extrusion-rendezvous with another. Now consider what happens
when the extrusions from the previous example eventually rendezvous with a compatible input.

E|SF:TFP|Q——TFVv(R|S)
E'0F:THFP|Q———THFy(R|S)

(E'1E)*+
FT+1FR———T+2F P

E/ szap*

r-pP I +2F swap*P’
N o
F+1FR F+2FP"
(E/E'Y*L

When the extrusions are of the same v-binder, and the residual outputs are not bound, then we have:

(F/ Fﬁ(o)
F41FS———T+1+Q

FY/
M=o Y

FN

F+1kS ——— T +1FQ”
(F/I_—/)x+1(0>



68 Proof-relevant st-calculus

and the residual of one extrusion-handling after another is a plain communication, with the resulting ©
action simply propagated through the second v binder:
vi(E'|E|SF'IF)

MEv(R|S) I+ v((pop 0)*swap*P’ | Q")
E IV v(a| Q)
r-pPlQ I+ v((pop 0)*P"| Q")

N | (o 06 9)

MN-v(R'|S) ——— T Fv(pop 0)*P"| Q"
RISV g | Fbop 7P 1)

Here a is the equality (pop 0) oswap = pop 0 (Lemma 4) applied to P’.

Example: permuting bound actions propagating through a binder. Now suppose we have a

process of the form vP which has two concurrent transitions propagating an input action through the

v binder:
E XJ;1 £ u+1
T+1FP——>T+2FR . [+1FP —>T+2FR
V= v
[+ vP ———T +1F v(swapR) [k vP ———T +1F v(swap*R)

(The derivations are valid because both x +1 and z+ 1 are of the form push*b.) The residuals of E and
E’ with respect to each other have the form:

(E'JE)+2
F+2FR —————T+3-P

E&/ szap*

Fr+1FP 43 swap*P’

=N K

[+2FR ——— =T +3FP"

We can use these residuals to define the following composite residual (v*E")/(v*E):

E'E =
F+2FR———T+3FF

swap*- ut2
I +2Fswap*R ——— T +3F (swap+1)"P’

v
C+1F v(swap*R) —=5 s T+ 2 F v(swap*(swap + 1)*P')

noting that swap*(u +2) = u +2 by Lemma 8. The complementary residual (v*E)/(v"E’) is similar,
with x instead of u and R’ instead of R. It remains to show that the terminal states are swap-congruent:

swap*v(swap*(swap +1)*P’)
v((swap + 1)*swap*(swap +1)*P’) (definition of -*)
v(swap*(swap + 1)*swap*P’) (Lemma 3)
v(swap*(swap +1)*P”) (v(swap*(swap + 1)*¢))

[E3T!



R. Perera and J. Cheney 69

Example: permuting extruding rendezvous and unhandled extrusion. Of course concurrent
transitions are not always as symmetric as the ones we have seen. Here a name extrusion which has a
successful rendezvous, resulting in a T action, is concurrent with another which does not and which
therefore propagates as a bound output:

PIUF:T+HP|Q —"—T+1Fpush*P|S
EICF':TFP|Q ——TFv(R|S)

As before, it matters whether the extrusions F¥ ~— F’” are of the same or different binders.
Sub-case: extrusions of same binders. In this case, the residuals F’/F and F/F’ become sends of index
0, the binder being extruded.

E —
MFP—~ ST+1FR : ~
push™ Xt FIF X+1(0)
I+1F push*P ——T +2F (push +1)*R Fr+1FS—5T+1FQ

[ +1Fpush*P|S ———T +1F (pop 0)*(push +1)*R | Q'

For the other residual, we can derive:

FIF'

re1rs 29 riq o7

R |m<0>‘

(0)

Fr1eR|S 2 r kR Q"

FrFv(R|S)———T+1+FR|Q"

<l

with Q" = Q”, and noting that pop 0 retracts push + 1 (Lemma 2 below).
Sub-case: extrusions of different binders. In this case the residuals F 'IF and F/F' remain bound
outputs. Then, with the push™E derivation as before, we can derive:

F'IF

F1Fs L ry2r¢
C+1Fpush*P|S ——— T +1F v((push+1)*R| Q')

push™E|] -

and for the other residual:

FIF' L
Fe1ks 2 L ry2rk0”

FH1FR|S — 42k push*R| Q"
r-v(R|S) — L Tk v(swap*push*R | swap*Q”)

RIH.

VTI

with swap*Q’ =~ Q”. It remains to establish a =-path between the two terminal processes. We have
Q' = swap*Q” by functionality and involutivity of swap, and push + 1 = swap o push by Lemma 5 and
then the rest follows by reflexivity and congruence.



70 Proof-relevant st-calculus

C.2 Cofinality for Theorem 4

VVX-H (0>E Ve VC/E

I vv(swap*P) M+1FvR I+ vv(swap*P) - vvR
vv-swapp vv-swapp vv—swapE1
Mk vvP - Fr+1FvR MFvvP — Ik vv(swap*R)
v*V(swap*E) vev© (swap*E)
XVE b b
M vvswap™P) — Y5 Ttk viswap'R) T vw(swap™P) — Y E o T 41 F vy((swap + 1) swap®R)
vV-swapp | vV-swapp vv—swap(;\llapﬂ)xswap*,?
I+vvP — M+1F v(swap*R) IvwP ——— [ +1F vy(swap*(swap+1)"swap*R)
Vv”m))(swap*E) v’v” (swap™E)

Figure 9: Cofinality of ¢/E and E/¢ in the vv-swap cases

Figure 9 illustrates cofinality for the vv-swap cases, omitting the renaming lemmas used as type-level
coercions. The vv—swap_1 cases are symmetric.



Equations for Hereditary Substitution in Leivant’s
Predicative System F: a case study

Cyprien Mangin Matthieu Sozeau
Univ Paris Diderot & Ecole Polytechnique Inria Paris & PPS, Univ Paris Diderot
Paris, France Paris, France
cyprien.mangin@m4x.org matthieu.sozeau@inria.fr

This paper presents a case study of formalizing a normalization proof for Leivant’s Predicative Sys-
tem F [6] using the EQUATIONS package. Leivant’s Predicative System F is a stratified version of
System F, where type quantification is annotated with kinds representing universe levels. A weaker
variant of this system was studied by Stump & Eades [5, 3], employing the hereditary substitution
method to show normalization. We improve on this result by showing normalization for Leivant’s
original system using hereditary substitutions and a novel multiset ordering on types. Our develop-
ment is done in the COQ proof assistant using the EQUATIONS package, which provides an inter-
face to define dependently-typed programs with well-founded recursion and full dependent pattern-
matching. EQUATIONS allows us to define explicitly the hereditary substitution function, clarifying
its algorithmic behavior in presence of term and type substitutions. From this definition, consistency
can easily be derived. The algorithmic nature of our development is crucial to reflect languages with
type quantification, enlarging the class of languages on which reflection methods can be used in the
proof assistant.

1 Introduction

EQUATIONS [10] is a toolbox built as a plugin on top of the COQ proof assistant for writing dependently-
typed programs in COQ. Given a high-level specification of a function, using dependent pattern-matching
and complex recursion schemes, its purpose is to compile it to pure COQ terms. This compilation scheme
builds on the work of Goguen et al [4], which explains dependent pattern-matching [2] in terms of ma-
nipulations of propositional equalities. In essence, dependent pattern-matching is compiled away using
a reduction-preserving encoding with eliminators for the equality type between datatypes. In addition to
this compilation scheme, EQUATIONS also automatically derives the resulting equations as propositional
equalities, abstracting entirely from the encoding of pattern-matching found in the actual compiled def-
inition, and an elimination scheme corresponding to the graph of the function. This elimination scheme
can then be used to simplify proofs that directly follow the case-analysis and recursion behavior of the
function without repeating it. EQUATIONS supports definitions using arbitrarily complex well-founded
recursion schemes, including the nested kind of recursion found in hereditary substitution functions, and
the generation of unfolding lemmas and elimination schemes for those as well. Additionally, EQUA-
TIONS plays well with the Program extension of COQ to manipulate subset types (also known as refine-
ment types).

The purpose of this paper is to present a case study of using EQUATIONS to show the normalization
of Predicative System F, in an algorithmic way such that the normalization function can actually be run
inside the proof assistant.

Predicative System F was introduced by Leivant [0] to study the logical strength of different exten-
sions of arithmetic. Using kinds to represent levels of allowed predicative quantification, he can show

I. Cervesato and K. Chaudhuri (Eds.): Tenth International Workshop © C. Mangin & M. Sozeau
on Logical Frameworks and Meta-Languages: Theory and Practice This work is licensed under the
EPTCS 185, 2015, pp. 71-86, doi: 10.4204/EPTCS.185.5 Creative Commons Attribution License.



72 Equations for Predicative System F

that super-elementary functions can be represented in this system. He employs a Tait-Girard logical
relation proof to argue normalization.

Stump and Eades [5] took the system and studied a normalization proof using hereditary substitution.
However, they needed to define a variant of the system where the kinding rule of universal quantifications
is more restrictive, which makes level n+ 1 not closed by quantifications over types in level n. They
claim that the same derivations can be done in their system but give no proof of such fact. We remedy
this situation by giving a simple normalization proof still based on hereditary substitution using a novel
ordering on types based on multisets of kinds.

The hereditary substitution function ends up being defined as one would do in e.g. ML, but com-
bining Program and EQUATIONS, it can be shown to inhabit a richer type, providing a proof that the
function indeed computes normal forms given inputs in normal form. The pre and postconditions of the
hereditary subsitution function, which will be explicited later, are actually necessary to justify the termi-
nation of this function. From this it is easy to derive normalization and show that the system is consistent
(relatively to Coq’s theory, with the K axiom currently, although we hope to have an axiom-free version
working by the time of the workshop).

The paper is organized as follows: in §2 we present a gentle introduction to the EQUATIONS pack-
age and its features and quickly explain the main differences with the original presentation from [10].
Then we summarize the standard definitions and metatheoretical results on Predicative System F that we
proved and highlight the main differences with the presentation of [5]. We provide the CoQ develop-
ment of our proof supplemented with some commentary to help follow along. First in §3 we present the
language definition, with its typing and reduction rules. Then we show in §4 some metatheoretical prop-
erties on this language, such as substitution lemmas and regularity. Section 5 is dedicated to showing
strong normalization of the calculus, which includes defining a well-founded ordering to justify the ter-
mination of the hereditary substitution function, and its definition itself using the EQUATIONS package.
We also provide as an appendix the code which is produced from this definition by C0OQ’s extraction
mechanism. Finally, we compare with related work and conclude in §6.

2 Equations

EQUATIONS allows one to write recursive functions by specifying a list of clauses with a pattern on the
left and a term on the right, a la Agda [9] and Epigram [8]. Here is an example recursive definition on
lists, where wildcards corresponds to arbitrary fresh variables in patterns:

Equations length {A} (/: list A) : nat :=
length _ [ = 0;
length _ (cons _ t) = S (length 7).

The package starts by building a splitting tree for the definition and then compiles it to a pure COQ
term. From the splitting tree, it also derives the equations as propositional equalities, which can be more
robust to use than reduction when writing proofs about the constant, although in this particular case the
compiled definition is the same as the one from the standard library. Here we have two leaves in the
computation tree hence two equations:

Check length_equation_1 : V A : Type, length [] = 0.
Check length_equation_2 : V (A : Type) (a: A) (I : list A) , length (cons a [) =S (length /).

These two equations are automatically added to a rewrite hint database named length and can be used
during proofs using the simp length tactic. In addition, an elimination principle for length is derived. Note



C. Mangin & M. Sozeau 73

that length_comp is just a definition of the return type of length in terms of its arguments, i.e. itis A A [,
nat here:

Check length_elim : V P :V (A : Type) (I : list A) , length_comp / — Prop,
(VA :Type, PA[]10) —
(V (A:Type)(a: A)(l:listA), PAl(length ) — P A (cons al) (S (Iength [))) —
YV (A : Type) (I: list A), P Al (length [).

This elimination principle can be used in proofs to eliminate calls to length and refine at the same
time the arguments and results of the call in the goal. For example, to prove the following lemma, one
can apply the functional elimination principle using the funelim tactic to eliminate the length / call:

Lemma length_rev {A} (/ : list A) : length (rev /) = length I.
Proof.
Jfunelim (length [).

We get two subgoals, easily solved by simplification and arithmetic.

A : Type

length (rev []) =0

A : Type

a:A

[:listA

H :length (rev [) = length /

length (rev (cons a [)) = S (length [)

- simp length.
- simpl; rewrite length_app, H; simp length; omega.
Qed.

2.1 Dependent Pattern-Matching

EQUATIONS handles not only simple pattern-matching on inductive types, but also dependent pattern-
matching on inductive families. With respect to the standard COQ match construct, it eases the definition
of complex pattern-matchings by compiling in the proof term all the inversion and unification steps that
must be witnessed. Here is an example with the le relation on natural numbers.

Inductive le: nat — nat — Set :=
|[1z:V{n},0<n
[Is:V{mn},m<n— (Sm) < (Sn) where m < n” :=(le m n).

Proving antisymmetry of this relation requires only two cases, because pattern matching on the first
argument determines the endpoints of the second argument:

Equations antisym {mn:nat} (x:m<n)(y:n<m):m=n:=
antisym _ _ x y by rec x =
antisym _ _ |z |z = eq_refl;



74 Equations for Predicative System F

antisym _ _ (Isx) (Isy) = f_equal S (antisym x y).

More precisely, in the x = Iz case, it is possible during the translation to deduce that m must be
0, which implies that y cannot be some application of Is. These deductions are done automatically by
EQUATIONS, which allows to reduce this proof to its simplest form. Writing it explicitely in pure COQ
would be actually annoying and require explicit mention of impossible cases and surgical rewritings with
equalities.

2.2 Recursion

Note that we use a clause by rec x = here in addition to the pattern-matching. This is a different kind of
right-hand-side, that allows to specify the recursion scheme of the function. We are using well-founded
recursion on the m < n hypothesis here. The implicit ordering used is actually automatically derived
using a Derive Subterm for le command, and corresponds to the transitive closure of the direct subterm
relation, i.e. the deep structural recursion ordering.

The compiled definition cannot be checked using the built-in structural guardness check of C0Q,
because the equality manipulations appearing in the term go outside of the subset of recursion schemes
recognized by it. It would have to handle commutative cuts and specific constructs on the equality type.
Also, the syntactic check can be very slow on medium-sized terms.

The solution here, using the logic to justify the recursive calls, means that we are freed from any
syntactic restriction, and any logical justification for termination is allowed. At each recursive call, we
must simply provide a proof that the given argument is strictly smaller than the initial one in the subterm
relation. An automatic proof search using the constructors of the subterm relation for le solves these
subgoals for us here, otherwise they are given as obligations for the user to prove.

As in the case of length, we provide equations and an elimination principle for the definition. In case
well-founded recursion is used, we first prove an unfolding lemma for the definition which allows us to
remove any reasoning on the termination conditions after the definition. The equations are as expected:

Check antisym_equation_1 : antisym |z |1z = eq_refl.
Check antisym_equation_2 : V (nl m0 : nat) (I : n1 <m0) (10 : m0 < nl),
antisym (Is ) (Is [0) = f_equal S (antisym [ [0).

And the elimination principle, with the correct inductive hypothesis in the recursive case:

Check antisym_elim: VP :V (mn:nat) (x: m <n)(y:n<m), antisym_comp x y — Prop,
PO0O0Izlzeq_refl
— (V (nI mO : nat) ([ : nI <m0) (I0: mO <nl), Pnl mOlI0 (antisym [ [0) —
P (S nl) (Sm0) (Isl) (Is 10) (f_equal S (antisym [ [0))) —
Vimn:nat) (x:m<n)(y:n<m), Pmnxy (antisym x y).

The last feature of EQUATIONS necessary to write real definitions is the with construct. This con-
struct allows to do pattern-matching on intermediary results in a definition. A typical example is the filter
function on lists, which selects all elements of the original list respecting some boolean predicate:

Context {A} (p: A — bool).

Equations filter (/: list A) : list A ==

filter [1 =[] ;

filter (cons a ) <= p a = { | true := cons a (filter /) ; | false := filter [ }.

The <= p a = right-hand side adds a new pattern to the left-hand side of its subprogram, for an
object of type bool here. The subprogram is actually defined as another proxy constant, which takes as



C. Mangin & M. Sozeau 75

arguments the variables a, p and a new variable of type bool. The clauses of the subprogram can shortcut
the filter (cons a /) part of the pattern which is automatically inferred from the enclosing left-hand side.

The generated equations for such definitions go through the proxy constant, hence we have two
equations for filter and two for filter_helper_1, which is the name of the proxy constant. To generate
the elimination principle, a mutually inductive graph is generated, and the predicate applying to the
subprogram is defined in terms of the original one, adding an equality between the new variable and the
exact term it is applied to in the enclosing program. This way, we cannot forget during proofs that the
true or false cases are actually results of a call to p a. Note that there are three leaves in the original
program (and splitting tree) hence three cases to consider here.

Check filter_elim : V (A : Type) (p : A — bool) (P : list A — list A — Prop)

(PO:=A (a: A) (refine : bool) (I H : listA), p a = refine — P (consal) H) ,
P[1[]— (W(a:A)(:listA), Pl (filter pI) — PO a true [ (cons a (filter p [))) —
V (a:A)(:listA), Pl (filter p ) — PO a false [ (filter p [)) —

Vi:listA, Pl (filter p ).

In general, the term used as a new discriminee is abstracted from the context and return type at
this point of the program before checking the subprogram. In that case the eliminator predicate for the
subprogram has a dependent binding for the # = refine hypothesis that is used to rewrite in the type of
hypotheses and results. This is examplified in the following classical example:

Inductive incl {A} : list A — list A — Prop :=

stop : incl nil nil
| keep {x: A} {xsys: list A} : incl xs ys — incl (cons x xs) (cons x ys)
| skip {x: A} {xsys: list A} : incl xs ys — incl (xs) (cons x ys).

We define list inclusion inductively and show that filtering out some elements from a list xs results
in a included list.

Equations(nocomp) sublist {A} (p : A — bool) (xs : list A) : incl (filter p xs) xs :=
sublist A p nil :=stop ;
sublist A p (cons x xs) with p x:={

| true := keep (sublist p xs) ; | false := skip (sublist p xs) }.

Here at the with node, the return type is incl (if p x then cons x (filter p xs) else filter p xs) (cons
x xs). We abstract p x from the return type and check the new subprogram in context A P x xs (refine :
bool) with return type: incl (if refine then cons x (filter p) xs else filter p xs) (cons x xs).

Each of the patterns instantiates refine to a constructor, so the return type reduces to the two ex-
pected cases matching with conclusions of the incl relation. The (nocomp) option indicates that we do
not want the return type to be defined using a _comp constant. Indeed, the term keep (sublist p xs) would
not be well-typed, as it is expected to have type sublist_comp p (x :: xs) which is incl (filter p (x :: xs)) (x
22 xs), but has type incl (x :: filter p xs) (x :: xs). This is just a technical limitation we hope to remove in
the future.

Check %sublist_elim : V (P :V (A : Type) (p : A — bool) (xs : list A) , incl (filter p xs) xs — Prop)
(PO:=A (A :Type) (p: A — bool) (a: A) (refine : bool) (/: list A)
(H : incl (filter_obligation_2 (filter p) a refine [) (cons a l)) ,
YV Heq : p a = refine, PA p (consal)
(eq-rect_r (A r: bool, incl (filter_obligation_2 (filter p) a r I) (cons a I)) H Heq)) ,
(V (A:Type) (p: A — bool), PAp [] stop) —
(V (A:Type) (p: A — bool)(a: A)(:listA),



76 Equations for Predicative System F

PApl(sublistpl) — POA patruel (keep (sublist p [))) —
(V (A:Type)(p: A — bool)(a:A)(l:listA),

P A pl(sublist p l) — PO A p afalse [ (skip (sublist p [))) —
YV (A:Type) (p: A — bool) (xs: list A), P A p xs (sublist p xs).

The resulting elimination principle, while maybe not so useful in that case as this program constructs
a proof, shows the explicit rewriting needed in the definition of the subpredicate PO.

This concludes our exposition of EQUATIONS and we now turn to the formalization of Predicative
System F.

3 Typing and reduction

3.1 Definition of terms

Recall that Predicative System F is a typed lambda calculus with type abstractions and applications. Our
type structure is very simple here, with just the function space and universal quantification on kinded type
variables. We use an absolutely standard de Bruijn encoding for type and term variables. The kinds (a.k.a
universe levels) are represented using natural numbers. Our development is based on Jérdme Vouillon’s
solution to the POPLmark challenge for System F*“* [11].

Definition kind := nat.

Inductive typ: Set :=
| tvar : nat — typ | arrow : typ — typ — typ | all : kind — typ — typ.
We will write V X :* k. T for the quantification over types of kind k.

Inductive term: Set :=
| var : nat — term
| abs : typ — term — term
| app : term — term — term
| tabs : kind — term — term
| tapp : term — typ — term.

Our raw terms are simply the abstract syntax trees.

3.2 Shiftings and substitutions

We define the different operations of shifting and substitutions with the EQUATIONS package, we only
show the substitution function here which uses a with right-hand side. All the development can be
downloaded or browsed at http://equations-fpred.gforge.inria.fr.

Check shift_typ : V (X : nat) (¢ : term) , term.
Check tsubst : typ — nat — typ — typ.

Equations subst (¢ : term) (x : nat) (¢’ : term) : term :=
subst (var y) x t’ < lt_eq_lt_dec y x = {

| inleft (left _) = vary;

| inleft (right =) = 1’;

| inright _ = var(y-1) };
subst (abs T1 t2) x t" = abs T1 (subst 2 (1 + x) (shift 0 ¢));



C. Mangin & M. Sozeau 77

subst (app t1 t2) x ¢’ = app (subst ¢t/ x t’) (subst £2 x t’);
subst (tabs k t2) x t’ = tabs k (subst 2 x (shift_typ 0 ¢°));
subst (tapp t1 T2) x t’ = tapp (subst 1/ x t’) T2.

Check subst_typ : term — nat — typ — term.

3.3 Contexts

We define the contexts env and the two functions get_kind and get_var which access the context. A
context is an interleaving of types and terms contexts. Vouillon’s great idea is to have parallel de Bruijn
indexings for type and term variables, which means separate indices for type and term variables. That
way, shifting and substitution of one kind does not influence the other, making weakening and substitu-
tion lemmas much simpler, we follow this idea here.

Inductive env: Set :=
| empty : env | evar : env — typ — env | etvar : env — kind — env.

Note that EQUATIONS allows wildcards and overlapping clauses with a first match semantics, as
usual.

Equations(nocomp) get_kind (e : env) (X : nat) : option kind :=
get_kind empty - = None;

get_kind (evar e _) X = get_kind e X;

get_kind (etvar - T) O = Some T;

get_kind (etvar e _) (S X) = get_kind ¢ X.

We need the functorial map on option types to ease writing these partial lookup functions.

Equations opt_map (A B : Set) (f : A — B) (x : option A) : option B :=
opt_map _ _ f (Some x) = Some (f x);
opt_map - - - None = None.

Equations(nocomp) get_var (e : env) (x : nat) : option typ :=
get_var empty _ = None;

get_var (etvar e _) x = opt_map (tshift 0) (get_var e x);
get_var (evar _ T) O = Some T;

get_var (evar e _) (S x) = get_var e x.

3.4 Well-formedness conditions

We also define some well-formedness conditions for types, terms and contexts. Namely, in a type (resp.
in a term), the variables must all be kinded (resp. typed). We just show the wf_typ definition here, those
follow Stump and Haye’s work.

Equations wf_typ (e : env) (T : typ) : Prop :=
wf_typ e (tvar X) = get_kind e X # None;

wi_typ e (arrow T1 T2) = wf_type T1 N wi_typ e 72;
wi_typ e (all k T2) = wi_typ (etvar e k) T2.



78 Equations for Predicative System F

3.5 Kinding and typing rules

The kinding rules are the main difference between Leivant’s and Stump’s presentations. We refer to these
works for pen and paper presentations of these systems, due to lack of space, we cannot include them
here. The case for universal quantification sets the level of a universal type at 1 + max k k’, where k and
k’ are respectively the domain and codomain kinds, in Stump’s case, which allows for a straightforward
order on types based on levels, but this means that each level is not closed under products from lower
levels anymore. In other words, multiple quantifications at the same level raise the overall level. For
example (V X :* 0. X) :* 1 asexpected but VX :*0. VY :*0. X :* (1 + max 0 (1 + max 0 0)) = 2. This is
a very strange behavior.

We use the standard predicative product rule which sets the product level to max (k+1) k’, which di-
rectly corresponds to Martin-L6f’s Predicative Type Theory. Note that the system includes cumulativity
through the Var rule which allows to lift a type variable declared at level & into any higher level k.

Inductive kinding : env — typ — kind — Prop :=
| T_-TVar: V¥ (e: env) (X :nat) (kk’: kind), wf_env e —
get_kind e X = Some k — k <= k’ — kinding e (tvar X) k’
| T_Arrow : Ve T U k k’, kinding e T k — kinding e U k’ — kinding e (arrow T U) (max k k’)
| T_All: Ve Tkk’, kinding (etvar e k) T k” — kinding e (all k T) (max (k+1) k’).

The typing relation is straightforward. Just note that we check for well-formedness of environments
at the variable case, so typing derivations are always well-formed.

Inductive typing : env — term — typ — Prop :=
| T_Var (e : env) (x: nat) (T : typ) : wf_env e — get_var e x = Some T — typing e (varx) T
| T_Abs (e : env) (¢ : term) (T1 T2 : typ) :
typing (evar e T1) t T2 — typing e (abs T1 1) (arrow T1 T2)
| T_App (e : env) (¢1 12 : term) (T11 T12 : typ) :
typing e tl (arrow T11 T12) — typing e t2 T11 — typing e (app t1 t2) T12
| T_Tabs (e : env) (¢ : term) (k : kind) (T : typ) :
typing (etvar e k) t T — typing e (tabs k r) (all k T')
| T_Tapp (e: env) (¢: term) k (T1 T2 : typ) :
typing e t (all k T1) — kinding e T2 k — typing e (tapp t T2) (tsubst T1 0 T2).

3.6 Reduction rules

To define normalization we must formalize the reduction relation of the calculus. Beta-redexes for this
calculus are the application of an abstraction to a term and the application of a type abstraction to a type.

Inductive red : term — term — Prop :=
| E_AppAbs (T : typ) (11 12 : term) : red (app (abs T t1) £2) (subst ¢ 0 12)
| E_TappTabs k (T : typ) (¢ : term) : red (tapp (tabs k 1) T) (subst_typ ¢ 0 7).

We define the transitive closure of reduction on terms by closing red by context.

Inductive sred : term — term — Prop :=
| Red_sred t ¢ :redrt’ — sred 1 t’
| sred_trans t1 12 t3 : sred t1 12 — sred 12 13 — sred 11 13
| Par_app_left t1 11’12 : sred t1 t1” — sred (app t1 12) (app 11’ 12)
| Par_app_right 11 12 12’ : sred 12 12’ — sred (app t1 12) (app 11 12°)
| Par_abs Tt : sredtt’ — sred (abs T t) (abs T' 1)



C. Mangin & M. Sozeau 79

| Par_tapp ¢t T :sred t ' — sred (tapp t T) (tapp ¢’ T)
| Par_tabs k r1”: sred 1 t’ — sred (tabs k ) (tabs k t’).

Definitionreds ¢ n := clos_refl sred ¢ n.

We can prove usual congruence lemmas on reds showing that it indeed formalizes parallel reduc-
tion.

4 Metatheory

The metatheory of the system is pretty straightforward and follows the one of F*** closely. We only
mention the main idea for type substitution and the statements of the main metatheoretical lemmas.

To formalize type substitution, we use a proposition env_subst that corresponds to the environment
operation: E, X :* k, E* = E, (X +— T’) E’ assuming E F T’ :* k. In other words, env_subst X T e e’
holds whenever we can find environments E, £’ and akind k suchthat E- T’ :* kande=E, X :* k, E’
ande’'=E,(X—T)E".

Inductive env_subst : nat — typ — env — env — Prop :=
| es_here (e : env) (T : typ) (k : kind) : kinding e T k — env_subst O T (etvar e k) e
| es_var (X : nat) (T T" : typ) (e e’ : env) :
env_subst X 7" e ¢’ — env_subst X 7" (evar e T') (evar ¢’ (tsubst T X T))
| es_kind (X : nat) k (T" : typ) (e e’ : env) :
env_subst X 7" e ¢’ — env_subst (1 + X) (tshift 0 77) (etvar e k) (etvar e’ k).

4.1 Typing and well-formedness
Actually, both kinding and typing imply well-formedness. In other words, it is possible to kind a type T
in an environment e only if both the type and the environment are well-formed.

Lemma kinding_wf (e : env) (T : typ) (k : kind) : kinding e T k — wf_env e A wi_type T.

4.2 Weakening

We only show the main weakening lemma for typing: if e’ results from e by inserting a type variable at
position X with any kind, the term and types of a typing derivation can be shifted accordingly to give a
new typing derivation in the extended environment.
Lemma typing_weakening_kind_ind (e e’ : env) (X : nat) (¢ : term) (U : typ) :
insert_kind X e ¢’ — typing e t U — typing e’ (shift_typ X ) (tshift X U).

Weakening by a term variable preserves typing as well.

Lemma typing_weakening_var (e : env) (¢ : term) (U V : typ) :
wi_typ e V — typing e t U — typing (evar e V) (shift 0 ¢) U.

4.3 Narrowing

As the system includes a kind of subtyping relation due to level cumulativity, we can prove a narrowing
property for derivations. Again we define a judgment formalizing that a context ¢’ is a narrowing of a
context e if they are identical but for one type variable binding (7 : k) in e’ and (7 : k) in e with k&~ < k.



80 Equations for Predicative System F

Inductive narrow : nat — env — env — Set :=
narrow_0 (e : env) (k k’ : kind) : kK’ < k — narrow O (etvar e k) (etvar e k’)
| narrow_extend_kind (e e’ : env) (k : kind) (X : nat) :
narrow X e ¢’ — narrow (1 + X) (etvar e k) (etvar e’ k)
| narrow_extend_var (e ¢’ : env) (T : typ) (X : nat) :
wi_type’ T — narrow X e ¢’ — narrow X (evare T) (evare’ T).

Before we can show narrowing, we have to show that kinding respects cumulativity: If it is provable
that a type T has kind k in the context e, then we can also prove that it has any kind &’ for k£ < k.
Lemma kinding_transitive e T k k’ : kindinge T k — k <k’ — kindinge T k’.
Narrowing is a strong property, in the sense that a type 7" can have in a narrowing of a context e any
kind that it can have in e itself.

Lemma typing_narrowing_ind (e e’ : env) (X : nat) (¢ : term) (U : typ) : narrow X e ¢’ — typing et U
— typing e’ t U.

4.4 Substitution

Now, substitution lemmas can be proven for the various substitution functions.
Lemma subst_preserves_typing (e : env) (x : nat) (f u : term) (V W : typ) :

typing e t V — typing (remove_var e x) u W — get_var e x = Some W — typing (remove_var e x)
(substrx u) V.

Lemma subst_typ_preserves_typing (e : env) (¢ : term) (U P : typ) k :
typing (etvar e k) t U — kinding e P k — typing e (subst_typ ¢ O P) (tsubst U 0 P).

Finally, we prove regularity, which is to say that the type of any well-typed term is kinded. This is
a consequence of the fact that any well-formed type is kindable. All these results correspond directly to
the paper proofs of Stump and Hayes.

Theorem regularity (e : env) (¢ : term) (U : typ) : typing et U — 3 k : kind, kinding e U k.

5 Normalization

To show that hereditary substitution is well-defined, we must provide an order of termination. In our
case, we will have a lexicographic combination of a multiset ordering on kinds. To formalize this, we
reuse CoLoR’s [ 1] library of multisets and definition of the multiset order. Those are multisets on ordered
types, here natural numbers with the usual ordering, which is well-founded.

Notation "X <,,Y” := (MultisetLt gt X Y) (at level 70).
Definition wf_multiset_order : well_founded (MultisetLt gt).

The kinds_of function computes the multiset of kinds appearing in a type, which reduces to the
bounds of universal quantifications.

Equations kinds_of (¢ : typ) : Multiset :=
kinds_of (tvar _) = empty; kinds_of (arrow T U) = union (kinds_of T') (kinds_of U);
kinds_of (all k T) = union {k} (kinds_of T).



C. Mangin & M. Sozeau 81

Clearly, the singleton multiset built from any valid kind for 7 bounds the bag of kinds appearing in
T, according to the kinding rules. This is proved by induction on the kinding derivation:

Lemma kinds_of_kinded e T k : kinding e T k — kinds_of T <mul { k }.

Kinds in a type are invariant by shifting or lifting. This is a simple example of a proof by functional
elimination. The 7" argument and result of kinds_of 7 get refined and we just need to simplify the right
hand sides according to the definitions of kinds_of and tshift, using rewriting not computation, and finish
by rewriting with the induction hypotheses.

Lemma kinds_of_tshift X T : kinds_of (tshift X T') = kinds_of T.
Proof.

Sfunelim (kinds_of T); simp kinds_of tshift; now rewrite H, 7HO.
Qed.

For type substitution of 7" in U however, an exact arithmetic relation holds. We know that the multiset
of kinds of the substituted type can appear a finite number of times in the resulting type, along with the
original kinds of U.

Lemma kinds_of_tsubste e’ X T U k : env_subst X T e ¢’ — kinding e U k —
dn: nat, kinds_of (tsubst U X T) =mul= kinds_of U + mul_sum » (kinds_of T).

This allows us to derive a general result about kindings of universal types: any well-kinded instance
substitution produces a type with a strictly smaller bag of kinds. This is the central result needed to show
termination. In Stump’s work, the measure considered was solely the depth of types, and only through
the stricter kinding invariant could the order be shown well-founded.

Lemma kinds_of_tsubst_all e U k k' T : kinding e (all k U) k* —
kinding e T k — kinds_of (tsubst U 0 T') <mul kinds_of (all k U).

5.1 Definition of the measure.

We first define the depth of a type as being the number of universal quantifications and type variables in
that type.

Equations depth (¢ : typ) : nat :=

depth (tvar _) = 1; depth (arrow T U) = (depth T + depth U)%nat;

depth (all k U) = S (depth U).

Of course, it cannot be zero, which is useful since it allows to have depth T < depth (arrow T U),
which will be needed to prove the well-foundedness of the hereditary substitution.
Lemma depth_nz ¢ : 0 < depth .
The order that we will use on types is a lexicographical order on the multiset of kinds and the depth.
As the first part of the lexicographic product is a multiset, and as those should not be compared with the

Leibniz equality but rather a specific setoid equality, we defined a generalized notion of lexicographic
product up-to an equivalence relation on the first component, here meq which represents multiset equal-

ity.
Definition relmd : relation (Multiset x nat) := lexprod (MultisetLt gt) meq It.
It is well-founded, relying ultimately on the well-foundedness of It.

Definition wf_relmd : well_founded relmd.



82 Equations for Predicative System F

The actual order is relmd on the kinds_of and depth measures on types.
Definition order (x y : typ) :=relmd (kinds_of x, depth x) (kinds_of y, depth y).
Definition wf_order : well_founded order.

It is well-founded and clearly transitive. = Lemma order_trans ¢ u v : order f u — order u v — order
tv.

As we expected, we can compare a type with an arrow on that type, on the left and on the right.
Lemma order_arrow_l : ¥V A B, order A (arrow A B).
Lemma order_arrow_r : V A B, order B (arrow A B).

We also define the reflexive closure of this order. It will be useful to express the postcondition of the
hereditary substitution function, as we will explain below.

Definition ordtyp := clos_refl order.
Finally, we define the size of a term as usual.

Equations(nocomp) term_size (¢ : term) : nat :=

term_size (var _) = 0; term_size (abs T t) = S (term_size ?);

term_size (app t u) = S (term_size ¢ + term_size u);

term_size (tabs k t) = S (term_size ?); term_size (tapp t U) = S (term_size ?).

Definition wf_term_size : well_founded (MR term_size It) := wf_inverse_image It term_size 1t_wf.

The hereditary substitution order is a lexicographic combination of the order on the multisets of kinds
in the substituted term’s type, the number of universal quantifiers and type variables in the substituted
term’s type, and the term size of the substituend. In other words, with U the type of the substituted term
and 7 the substituend, we first compare the multiset of kinds in U, then the depth of U, and ultimately the
size of t.

Definition her_order : relation (typ X term) :=
lexprod order (fun x y = kinds_of x = kinds_of y A depth x = depth y) (MR term_size It).

Instance WF_her_order : WellFounded her_order.

5.2 The model

We now turn to the interpretation proper. We characterize the normal forms as a subset of the terms using
mutually-inductive normal and neutral judgments. The plan is to show that the hereditary substitution
function, when given two terms in normal form will produce terms in normal form. We can already
expect some complications as normal terms also include neutral ones...

Inductive normal : term — Prop :=

| normal_abs 7' : normal # — normal (abs T 1)

| normal_tabs k 7 : normal ¢t — normal (tabs k 1)

| normal_neutral r : neutral r — normal r

with neutral : term — Prop :=

| neutral_var i : neutral (var i)

| neutral_app 7 n : neutral r — normal n — neutral (app t n)
| neutral_tapp ¢ T : neutral t — neutral (tapp ¢ 7).



C. Mangin & M. Sozeau 83

A term ¢ is said to be a canonical inhabitant of a type T in environment e if e - ¢ : T and ¢ is in normal
form. Our goal will be to show that every typeable term can be normalized to a canonical one.

Definition canonical e t T :=typing e t T A normal .

We define a relation expressing that n is the interpretation of some arbitrary term ¢ of type 7 and in
environment e.  Definitioninterpet T n:=redstn A canonicalen T.

5.3 Hereditary substitution

As we said, hereditary substitution takes two terms ¢ and « in normal form and returns a term which is
the result of substituting « in ¢ at some index. From a purely algorithmic point of view, we only need ¢, u
and the index X to compute the result of this function. However, we need more to prove its correctness.

First of all, the well-founded order that we use to justify its termination is an order on the type of the
substituted and on the substituend, which is why the function hsubst also takes as an argument the type
of the substituted term.

We then need a typing environment for ¢ and u, which is not useful from a computational point of
view but will serve to prove the termination and the correctness of hsubst. To this effect, we will decorate
the function with a precondition and a postcondition. We define those in the universe of propositions to
underline the fact that they are not useful in a computational way.

Definition pre (¢: typ X term) (u : term) (X : nat) (p : env X typ) : Prop :=
(get_var (fst p) X = Some (fst #) A canonical (fst p) (snd ¢) (snd p)
A canonical (remove_var (fst p) X) u (fst 7)).

There is one subtle point in the formulation of the postcondition. When we substitute in an applica-
tion app ¢/ 12, it may be that the result of substituting in ¢/ is an abstraction abs T ¢. If that’s the case, to
preserve the invariant that the result of hsubst is in normal form, we have to call again hsubst to perform
the beta-reduction. However to do this, we need to know that the type of ¢/ is smaller than the type of
the substituted term. Note that we need to add a side-condition to this property, which is not always true:
if the substituted variable did not appear at all, then there is no reason to have any relation between those
types. There is a relation only if the original term was not an abstraction but the substituted term is.

Equations is_abs (¢ : term) : Prop :=
is_abs (abs _ _) = True; is_abs (tabs _ _) = True; is_abs _ = False.

Definition post (¢: typ x term) (u : term) (X : nat) (r: term) (p : env X typ) : Prop :=
interp (remove_var (fst p) X) (subst (snd 7) X u) (snd p) r A
(—is_abs (snd ) — is_abs r — ordtyp (snd p) (fst 1)).

The Program mode proposed by COQ interacts nicely with EQUATIONS, in that it allows us to just
return a term, and provide later the postcondition, thanks to subtyping of subset types. In the same way,
we can treat a value returned by a call as if it was just the term. We use a standard encoding for the ghost
p: env X typ variable. The (noind) option disables the generation of the graph and elimination principle
for the function, its type and computational behavior is all we need here.

Equations(noind) hsubst (¢ : typ x term) (u: term) (X : nat) (P: 3 (p:env X typ), pretu X p):
{r:term |V (p:env x typ),pretuXp—posttuXrp}:=

hsubst  u X P by rec t her_order =

hsubst (pairUt) u X P <t = {



84 Equations for Predicative System F

| vari < lt_eq_lt_dec i X = {
| inleft (right p) = u; | inleft (left p) = var i;
| inright p = var (pred i) };
| abs T t = abs T (hsubst (U, 1) (shift0u) (S X) _);
| tabs k t = tabs k (hsubst (tshift 0 U, 1) (shift_typ O u) X -);
|tappt T <=hsubst (U, ) uX - = {
| exist (tabs kt') P = subst_typ " 0 T}
| existr P = tappr T };
| app t1t2 <= hsubst (U, 22) u X - = {
| exist r2 P2 <= hsubst (U, 1) uX - = {
| exist (abs T't') P1 = hsubst (7", 1) r20 _;
| exist r1 Pl = apprir2}}}.

With hsubst defined, it is now easy to implement a normalize function which takes a term and re-
turns its normal form. As for hsubst, we add a precondition and a postcondition which allow to show
correctness by construction.

Definition pre’ (f: term) (p : env X typ): Prop :=
typing (fst p)  (snd p).

Definition post’ (f: term) (n: term) (p : env X typ) : Prop :=
interp (fst p) ¢ (snd p) n.

Equations(noind) normalize (¢ : term) (P : 3 (p: env X typ), pre’ tp):
{n: term |V (p:env x typ),pre’ tp — post’ tnp} =
normalize (var i) P = var i;
normalize (abs T1 t) P = abs T/ (normalize t _) ;
normalize (app t1 t2) P <= normalize 12 _ = {
| exist t2' P2' <= normalize t/ _ = {
| exist (abs T t) P1' = hsubst (T, 1) 12’0 _;
| existtl’ P1' = apptl’ 12’ } };
normalize (tabs k t) P = tabs k (normalize 1 _) ;
normalize (tapp t T) P <= normalize ¢ _ = {
| exist (tabs k t") P = subst_typ#’ 0 T ;
| existt' P' = tapp ' T }.
The existence of the normalize function is in itself a proof of the strong normalization of Leivant’s
Predicative System F.

Theorem normalization e t T : typing et T — dn, reds t n A typing e n T A normal n.

5.4 Consistency

It is easy to show consistency based on the normalization function. We just need lemmas showing that
neutral terms cannot inhabit any type in an environment with only a type variable, by inversion on the
neutrality derivation.

Lemma neutral_tvar 7 k T : neutral t — typing (etvar empty_env k) t T — False.

Consistency is then proved using case analysis on an assumed typing derivation of falsehood at any
universe level k. Informally, it is showing that ¥V X :* k, X is not inhabited for any k.



C. Mangin & M. Sozeau 85

Corollary consistency k : — 3 ¢, typing empty_env ¢ (all k (tvar 0)).

6 Related Work and Conclusion

There are many formalizations of similar calculi, and we do not claim any originality there. However,
to our knowledge, the multiset ordering used to show normalization is original. The point of this paper
is more to show that the EQUATIONS plugin is ready to handle more consequent developments and
showcase its features. Is has similar expressivity w.r.t. Agda and Idris, but derives more principles, and
everything is compiled down to vanilla COQ terms, so it does not change the trusted code base except for
the use of K, which we are hopeful we can get rid of by the time of the workshop.

It would be interesting to study extensions of the language with type recursion. As shown by Leivant,
this would allow to type terms that are not typeable in second-order lambda calculus. We will also need
to extend the language with existentials, pairs and a minimal notion of inductive types to be able to
handle a larger class of programs. One of the possible venues for generalization is to extend the work of
Malecha et al [7] to reflect a larger fragment of GALLINA, the language of C0Q.

References

[1] Frédéric Blanqui: CoLoR, a Coq Library on Rewriting and Termination. Available at http://color.
inria.fr.

[2] Thierry Coquand (1992): Pattern Matching with Dependent Types. Available at http://www.cs.
chalmers.se/~coquand/pattern.ps. Proceedings of the Workshop on Logical Frameworks.

[3]1 Harley D Eades III (2014): The semantic analysis of advanced programming languages. Ph.D. thesis, The
University of lowa. Available at http://metatheorem.org/wp-content/papers/thesis.pdf.

[4] Conor McBride Healfdene Goguen & James McKinna (20006): Eliminating Dependent Pattern Matching.
Available at http://cs.ru.nl/~james/RESEARCH/goguen2006.pdf.

[5] Harley D. Eades III & Aaron Stump (2010): Hereditary Substitution for Stratified System F. In: International
Workshop on Proof-Search in Type Theories, A FLoC workshop, Edinburgh, Scotland. Available at http:
//homepage.divms.uiowa.edu/~astump/papers/pstt-2010.pdf.

[6] Daniel Leivant (1990): Finitely stratified polymorphism. Technical Report, Carnegie Mellon Univer-
sity. Available at http://repository.cmu.edu/cgi/viewcontent.cgi?article=2961&context=
compsci.

[7] Gregory Malecha, Adam Chlipala & Thomas Braibant (2014): Compositional Computational Reflec-
tion. In Gerwin Klein & Ruben Gamboa, editors: ITP’14, Lecture Notes in Computer Science 8558,
Springer, pp. 374-389, doi:10.1007/978-3-319-08970-6_24. Available at http://dx.doi.org/10.1007/
978-3-319-08970-6.

[8] Conor McBride (2005): Epigram: Practical Programming with Dependent Types. Advanced Functional
Programming, pp. 130-170, doi: 10.1007/11546382_3.

[9] Ulf Norell (2007): Towards a practical programming language based on dependent type theory. Ph.D.
thesis, Department of Computer Science and Engineering, Chalmers University of Technology, SE-412 96
Goteborg, Sweden. Available at http://www.cs.chalmers.se/~ulfn/papers/thesis.html.

[10] Matthieu Sozeau (2010): Equations: A Dependent Pattern-Matching Compiler. In: First International Con-
ference on Interactive Theorem Proving, Springer, doi:10.1007/978-3-642-14052-5_29.

[11] Jérome Vouillon: POPLmark challenge solution. Available at http://www.seas.upenn.edu/~plclub/
poplmark/vouillon.html.



86 Equations for Predicative System F

A Extracted code

let hereditary_subst t u x =
let rec fix_F x0 =
let h = fun y -> fix_F y in
(fun u0 x1 _ ->
let Pair (t0, t1) = x0 in
(match t1 with
| Var n ->
(match 1lt_eq_lt_dec n x1 with
| Inleft s ->
(match s with
| Left -> Var n
| Right -> u0)
| Inright -> Var (pred n))
| Abs (t2, refine) ->
Abs (t2, (h (Pair (t0, refine)) (shift 0 u0) (S x1) __))
| App (refinel, refine2) ->
(match h (Pair (t0, refinel)) u0 x1 __ with
| Abs (t2, x2) ->
h (Pair (t2, x2)) (h (Pair (t0, refine2)) u0 x1 __) O
| x2 -> App (x2, (h (Pair (t0, refine2)) ul0 x1 __)))
| Tabs (k, refine) ->
Tabs (k, (h (Pair ((tshift 0 tO0), refine)) (shift_typ 0 u0) x1 __))
| Tapp (refine, t2) ->
(match h (Pair (t0, refine)) u0 x1 __ with
| Tabs (k, x2) -> subst_typ x2 0 t2
| x2 -> Tapp (%2, t2))))
in fix_F t u x

type normalize_comp = term
(¥* val mnormalize : term -> mormalize_comp **)
let rec normalize = function

| Var n -> Var n
| Abs (t0, t1) -> Abs (t0, (normalize t1))
| App (1, t2) ->
(match normalize t1 with
| Abs (t0, x0) -> hereditary_subst (Pair (t0, x0)) (normalize t2) O
| x -> App (x, (normalize t2)))
| Tabs (k, t0) -> Tabs (k, (normalize t0))
| Tapp (tO0, t1) ->
(match normalize t0 with
| Tabs (k, x) -> subst_typ x 0 ti
| x -> Tapp (x, t1))




Rewriting Modulo S in the AT-Calculus Modulo

Ronan Saillard
MINES ParisTech, PSL Research University, France

ronan.saillard@mines-paristech.fr

The AlM-calculus Modulo is a variant of the-calculus with dependent types whedeconversion is
extended with user-defined rewrite rules. It is an expredsigical framework and has been used
to encode logics and type systems in a shallow way. Basiceptieg such as subject reduction or
uniqueness of types do not hold in general in Aié-calculus Modulo. However, they hold if the
rewrite system generated by the rewrite rules together Bitleduction is confluent. But this is
too restrictive. To handle the case where non confluence £drom the interference between the
B-reduction and rewrite rules with-abstraction on their left-hand side, we introduce a notibn
rewriting modulof for the AM-calculus Modulo. We prove that confluence of rewriting miods

is enough to ensure subject reduction and uniqueness of.tyyeachieve our goal by encoding the
Al-calculus Modulo into Higher-Order Rewrite System (HRS3.8dconsequence, we also make the
confluence results for HRSs available for thid-calculus Modulo.

1 Introduction

The AlM-calculus Modulo is a variant of tha&-calculus with dependent typed [l-calculus or LF)
where 3-conversion is extended with user-defined rewrite rulesic&its introduction by Cousineau
and Dowek [8], it has been used as a logical framework to espiéferent logics and type systems. A
key advantage of rewrite rules is that they allow desigrshgllowembeddings, that is embeddings that
preserve the computational content of the encoded systéras been used, for instance, to encode func-
tional Pure Type Systems [8], First-Order Logic [9], Higi@mer Logic [2], the Calculus of Inductive
Constructions [4], resolution and superposition proofsdéd theg-calculus [7].

The expressive power of thel-calculus Modulo comes at a cost: basic properties suchlgsciu
reduction or uniqueness of types do not hold in general. &fbe, one has to prove these properties
for each particular set of rewrite rules considered. Thalusay to do so is to prove that the rewriting
relation generated by the rewrite rules together vitheduction is confluent. This entails a property
called product compatibility (also known Blinjectivity or injectivity of function types) which, in tun,
implies both subject reduction and uniqueness of types.tamamportant consequence of confluence
is that, together with termination, it implies the decidi#épiof the corresponding congruence. Indeed,
for confluent and terminating relations, checking congeeeboils down to a syntactic equality check
between normal forms. As a direct corollary, we get the dsaildy of type checking in thd NM-calculus
Modulo for the corresponding rewrite relations.

One case where confluence is easily lost is if one allows tewuies withA -abstractions on their
left-hand side. For instance, consider the following réswnile (which reflects the mathematical equality
(e') = f'xefl):

D (Ax:RExp (f X)) — fMult (D (AX: R.f X)) (Ax: RExp (f X)).
This rule introduces a non-joinable critical peak when covath with 3-reduction:

I. Cervesato and K. Chaudhuri (Eds.): Tenth Internationatk&hop © R. Saillard
on Logical Frameworks and Meta-Languages: Theory and ieeact This work is licensed under the
EPTCS 185, 2015, pp. 87-101, doi:10.4204/EPTCS.185.6 Creative Commons Attribution License.



88 Rewriting Modulof in the A -calculus Modulo

Xy,z € ¥V (Variable)
c f € %o (Object Constant)
CF e & (Type Constant)
tuy = x|cluv|Ax:Ut (Object)
uv == Cl|Uyv|Ax:UV|Nx:UV (Type)
K = Type|Mx:U.K (Kind)
t,uv = u|U|K]|Kind (Term)
Figure 1: The terms of th&lM-calculus Modulo

D (Ax:RExp ((Ay: RYy) X))

L Ty

fMult (D (AX:R(Ay:RY) X)) (AXx:R.(Exp ((Ay: RY) X))) D (Ax: RExp X)

A way to recover confluence is to consider a generalized tiegrielation where matching is done
modulo3-reduction. In this setting (Ax: RExp X) is reducible because it [$-equivalent to the redex
D (Ax:RExp((Ay:RY) X)) and, as we will see, this allows closing the critical peak.

In this paper, we formalize the notion aéwriting modulof in the context of theAM-calculus
Modulo. We achieve this by encoding tiAé1-calculus Modulo into Nipkow’s Higher-Order Rewrite
Systems [14]. This encoding allows us, first, to properly rdefinatching modul¢@ using the notion
of higher order rewriting and, secondly, to make availaliighe AM-calculus Modulo, confluence and
termination criteria designed for higher-order rewritinhen we prove that the assumption of conflu-
ence for the rewriting modul@ relation can be used, in most proofs, in place of standarflumnce.

In particular this implies subject reduction (for both stard rewriting and rewriting modul) and
uniqueness of types.

The paper is organized as follows. First, we define in Se@itive A N-calculus modulo for which
we prove subject reduction and uniqueness of types understemption of product compatibility and
we show that confluence implies this latter property. In ®ac3, we show that a naive definition of
rewriting modulof does not work in a typed setting. This leads us to use HighdeRewrite Systems
which we present in Section 4 and in which we encodeARecalculus Modulo in Section 5. Then, we
use this encoding to properly define rewriting modglan Section 6 and generalize the results of the
previous sections. We discuss possible applications itiddet before concluding in Section 8.

2 TheATl-Calculus Modulo

The AT-calculus Modulo is an extension of the dependently-typethiculus @ NM-calculus) where the
B-conversion is extended by user-defined rewrite rules.

2.1 Terms

The terms of theAl-calculus Modulo are the same as the terms ofAhkecalculus. Their syntax is
given in Figure 1.



R. Saillard 89

A = O|AX:VU) (Local Context)
2= Q0|F(c:U)|FC:K)|TFT(u—=vV)|FU<=V) (Global Context)

-
[

Figure 2: Syntax for contexts

Definition 2.1 (Object, Type, Kind, Term)A termis either anobject atype akind or the symboKind .

An object is either avariablein the set?’, or anobject constanin the set¢o, or an applicationu v
of two objects, or ambstractiom x : A.t where A is a type andis an object.

A type is either @ype constanin the setér, or an applicationU v where U is a type and is an
object, or anabstractiomx: U.V where U and V are types, or@oductlx:U.V where U and V are
types.

A kind is either goroductlx: U.K where U is a type and K is a kind or the symBgpe.

Type andKind are calledsorts

The sets/’, o and ¢t are assumed to be infinite and pairwise disjoint.

Definition 2.2. A term isalgebraicif it is not a variable, it is built from constants, variablesd appli-
cations and variables do not have arguments.

Notation 2.1. In addition to the naming convention of Figure 1, we use A amhal d&note types or kinds;
T to denote a type, a kind ¢find ; s for Type or Kind .

Moreover, we writed to denote the application of t to an arbitrary number of argents w, ..., Un.
We write ux/V| for the usual (capture-avoiding) substitution of x by v inie write A— B for MNx: A.B
when B does not depend on x.

2.2 Contexts

We distinguish two kinds of context: local and global cotte)A local context is a list of typing decla-
rations corresponding to variables. The syntax for costexgiven in Figure 2.

Definition 2.3 (Local Context) A local contexis a list of variable declarations (variables together with
their type).

Following our previous work [17], we give a presentation lo¢ A [-calculus Modulo where the
rewrite rules are internalized in the system as part of tbbajlcontext. This is a difference with earlier
presentations [8] where the rewrite rules livaatsidethe system and were typed in an external system
(either the simply-typed calculus or tA¢l-calculus). The main benefit of this approach is that thetypi
of the rewrite rules is made explicit and becomes an itezgiiocess: rewrite rules previously added in
the system can be used to type new ones.

Definition 2.4. A rewrite ruleis a pair of terms. We distinguisbbject-level rewrite rulegpairs of
objects) fromtype-level rewrite rulegpairs of types).

These are the only allowed rewrite rules. We wfite— v) for the rewrite rule(u, V).

It is left-algebraicf u is algebraic andeft-linearif no free variable occurs twice in u.

Definition 2.5 (Global Context) A global contextis a list of object declarations (an object constant
together with a type), type declarations (a type constagétioer with a kind), object-level rewrite rules
and type-level rewrite rules.



90 Rewriting Modulof in the A -calculus Modulo

(Sory ;A Type: Kind
(Variable) (xtAEA

MAFX:A
(Constant) (ctA el

MAFC:A

icafti MmAFt:Tx:AB MAFuU:A
Application J ;
e ) M AFtu: B[x/u
(Abstraction) _ATA:Type TAX:A)Ft:B  B#Kind
MAFAX:AL:MNx:AB

(Product) AFA:Type MAX:A)FB:s

MAFTIX:AB:s
MAFt:A MAFB:s AzﬁrB
MAFt:B

(Conversion)

Figure 3: Typing rules for terms in th-calculus Modulo.

2.3 Rewriting

Definition 2.6 (B-reduction) TheB-reductionrelation — g is the smallest relation on terms containing
(AX:Au)v—g ulx/V], for all terms Au and v, and closed by subterm rewriting.

Definition 2.7 (I-reduction) Letl be a global context. ThE-reductionrelation —r is the smallest
relation on terms containing s> v for every rewrite rule(u — v) € I', closed by substitution and by
subterm rewriting. We say thab is left-algebraic(respectivelyeft-linear) if the rewrite rules inl" are
left-algebraic (respectively left-linear).

Notation 2.2. We write —gr for —g U —r, =p for the congruence generated byg and =gr the
congruence generated bygr.

It is important to notice that these notions of reduction @eéined as relations on all (untyped)
terms. In particular, we do not require the substitutionsdaavell-typed. This allows defining the notion
of rewriting independently from the notion of typing (seddvg. This makes the system closer from
what we would implement in practice.

Since the rewrite rules are either object-level or typellevewriting preserves the three syntactic
categories (object, type, kind). Moreover, sorts are onlyertible to themselves.

2.4 Type System

We now give the typing rules for theM-calculus Modulo. We begin by the inference rules for terms,
then for local contexts and finally for global contexts.

Definition 2.8 (Well-Typed Term) We say that a termhas typeA in the global context and the local
contextA if the judgment ;A t: Ais derivable by the inference rules of Figure 3. We say thatm is
well-typedif such A exists.



R. Saillard 91

(Empty Local Context) )

r=aA  AFU:Type  x¢ domA)
M EEXA(x:U)

(Variable Declaration)

Figure 4: Typing rules for local contexts

The typing rules only differ from the usual typing rules fbef IM-calculus by th€Conversion)rule
where the congruence is extended frBreonversion tg3I -conversion allowing taking into account the
rewrite rules in the global context.

Definition 2.9 (Well-Formed Local Context)A local contexth is well-formedwith respect to a global
contextl” if the judgment - A is derivable by the inference rules of Figure 4.

Well-formed local contexts ensure that local declaratiargsuniqgue and well-typed.

Besides the new conversion relation, the main differendevden theAM-calculus and the\ M-
calculus Modulo is the presence of rewrite rules in globailtexts. We need to take this into account
when typing global contexts.

A key feature of any type system is the preservation of tyfipgeduction: the subject reduction

property.
Definition 2.10 (Subject Reduction)Let I be a global context. We say that a rewriting relatien

satisfies theubject reductioproperty inl if, for all terms t,t>, T and local contexA such that™ - A,
MAFt :Tandg -t implyl At T.

In theATl-calculus Modulo, we cannot allow adding arbitrary rewriifes in the context, if we want
to preserve subject reduction. In particular, to prove ettbjeduction for thg8-reduction we need the
following property:

Definition 2.11 (Product-Compatibility) We say that a global contekt satisfies theoroduct compati-
bility property (and we not®C(I")) if the following proposition is verified:

if Mx: A;.B; andlMx: Az.B, are two well-typed product types in the same well-formedlloontext such
thatMx: A;.By =gr Mx: Az.Bx then A =gr A2 and B, =pr By.

On the other hand, subject reduction for theeduction requires rewrite rules to be well-typed in the
following sense:
Definition 2.12 (Well-typed Rewrite Rules)

e Arewrite rule(u — v) is well-typedfor a global contexf if, for any substitutioro, well-formed
local contextA and term T ;A o(u) : T impliesl ;AFo(v) : T.

e Arewrite rule ispermanently well-typedbr a global context if it is well-typed for any extension
o D I that satisfies product compatibility. We wrife- u < v when(u — v) is permanently
well-typed inr.

The notion of permanently well-typed rewrite rule makessilale to typecheck rewrite rules only
once and not each time we make new declarations or add othetereules in the context.
We can now give the typing rules for global contexts.

Definition 2.13 (Well-formed Global Context) A global context isvell-formedif the judgment wf is
derivable by the inference rules of Figure 5.



92 Rewriting Modulof in the A -calculus Modulo

(Empty Global Context) 0 wf

r wf M0FU : Type c¢domT)
M(c:U)wf
r wf 0FK:Kind PC(r(C:K)) C¢ doml)
I(C:K) wf
I wf (VDI Fu = v PC(I(ug = V1)...(Up = Vp))
M(ur <= v1)...(Up <= Vn) WF

(Obiject Declaration)

(Type Declaration)

(Rewrite Rules)

Figure 5: Typing rules for global contexts

The rules(Object Declaration) and(Type Declaration) ensure that constant declarations are well-
typed. One can remark that the premi®@(I" (c: U)) is missingin the (Object Declaration) rule. This
is becaus®C(I" (c: U)) can be proved froC(I"); to prove product compatibility fdr (c: U) it suffices
to emulate the constaniby a fresh variable and use the product compatibility prigpefl™. This cannot
be done for type declarations since type-level variablesad@xist in theA M-calculus Modulo. The rule
(Rewrite Rules) permits adding rewrite rules. Notice that we can add severalite rules at once. In
this case, only product compatibility for the whole systasmeiquired. On the other hand, when a rewrite
rule is added it needs to be well-typed independently fraaother rules that are added at the same time.
Well-formed global contexts satisfy subject reduction anajueness of types. Proofs can be found
in the long version of this paper at the author’s webpage.
Theorem 2.1(Subject Reduction)Let” be a well-formed global context. Subject reduction holds fo
—pr inl.
Theorem 2.2(Uniqueness of Types)Letl” be a well-formed global context and ketbe a local context
well-formed forl™. If M AFt: Ty andl ARt To then | =pr To.
Remark that strong normalization of well-typed terms far télations—r and— g is not guaranteed.

2.5 Ciriteria for Product Compatibility and Well-typedness of Rewrite Rules

We now give effective criteria for checking product compiity and well-typedness of rewrite rules.

The usual way to prove product compatibility is by showing tlonfluence of the rewrite system.
Theorem 2.3(Product Compatibility from Confluence) etl” be a global context. I g is confluent
then product compatibility holds fdr.

One could think that we can weaken the assumption of confeueeguiring only confluence for
well-typed terms. This is not a viable option since, withpubduct compatibility, we do not know if
reduction preserves typing (subject reduction) and if #teo§ well-typed terms is closed by reduction.
Therefore, it seems unlikely to be able to prove confluendg fon well-typed terms before proving the
product compatibility property.

The confluence of> - can be obtained from the confluence-of .

Theorem 2.4(Mduller [12]). If —r is left-algebraic, left-linear and confluent, themgr is confluent.

To show that a rewrite rule is well-typed, one can use theahg result:

Theorem 2.5. Letl" be a well-formed global context arid — v) be a rewrite rule. If u is algebraic and
there existA and T such thaf’ F*™* A, dom(A) = FV(u), I;Au: T andlM;AFv: T then(u < V) is
permanently well-typed fdr.



R. Saillard 93

2.6 Example

As an example, we define the map function on lists of integ#esfirst define the type d®eano integers
by the three successive global declarations:

Nat : Type.
0 : Nat.

S . Nat — Nat. )
n times

e . . - ﬂﬁ - -
For readability, we will writen instead ofS (S ... (S 0)). We now define a type for lists:

List : Type.

Nil : List.

Cons : Nat — List — List.
and the function map on lists:

Map : (Nat — Nat) — List — List.
Map f Nil < Nil.
Map f (Cons hd tl) < Cons (f hd) (Map f tI).

For instance, we can use this function to add some value tel&meents of a list. First, we define addi-
tion:

plus : Nat — Nat — Nat.
plusOn <= n.
plus (Sng) Ny < S (plus Ny Ny).

Then, we have the following reduction:
Map (plus 3) (Cons 1 (Cons 2 (Cons 3Nil))) —f Cons 4 (Cons 5 (Cons 6Nil)).

This global context is well-formed. Indeed, one can checkt #ach global declaration is well-
typed. Moreover, each time we add a rewrite rule, it veriftes ypotheses of Theorem 2.5 and it
preserves the confluence of the relatieryr. Therefore, the rewrite rules are permanently well-typed
and, by Theorem 2.3, product compatibility is always guteed.

3 A Naive Definition of Rewriting Modulo 3

As already mentioned, our goal is to give a notion of rewgitmodulof in the setting ofA M-calculus
Modulo. We first exhibit the issues arising from a naive débniof this notion.

In an untyped setting, we could define rewriting mod@ilim this mannert; rewrites ta if, for some
rewrite rule(u < v) and substitutioro, o(u) =g t; ando(v) =g to. This definition is not satisfactory
for several reasons.

It breaks subject reduction. For the rewrite rule of Section 1, takimg= {f — Ay: Q.y} whereQ is
some ill-typed term, we have

D (AX:RExp X) — fMult (D (AX:R.(Ay: Q.y) X) (AXx: RExp ((Ay: Q.y) X)))

and, even iD (Ax: RExp X) is well-typed, its reduct is ill-typed since it contains &rtyped subterm.



94 Rewriting Modulof in the A -calculus Modulo

It may introduce free variables. In the example abové&) has no reason to be closed.

It does not provide confluence. If we consider the following variant of the rewrite rule
D (Ax:RExp (f X)) < £Mult (D f) (AX: RExp (f X))

and takeo; = {f — Ay: Ar.y} ando, = {f — Ay: Ay.y} whereA; andA; are two non convertible types
then we have:
D (Ax:RExp ((Ay:RYy) X))

DUl D02
fMult (D (Ay:A1Y)) (AX:R(Exp ((Ay:Ay) X)) fMult (D (Ay:Azy)) (AX:R(Exp ((Ay:Azy) X)))

and the peak is not joinable.
Therefore, we need to find a definition that takes care of thesses. We will achieve this using an
embedding ofA IM-calculus Modulo into Higher-Order Rewrite Systems.

4 Higher-Order Rewrite Systems

In 1991, Nipkow [14] introduced Higher-Order Rewrite Syste(HRS) in order to lift termination and
confluence results from first-order rewriting to rewritingeoA -terms. More generally, the goal was to
study rewriting over terms with bound variables such as g, theorem and proofs.

Unlike the AM-calculus Modulo, in HRS$-reduction and rewriting do not operate at the same
level. Rewriting is defined as a relation between rp-equivalence classes of simply typgeterms:
the A-calculus is used as a meta-language.

Higher-Order Rewrite Systems are based upon the (pre)tefriie simply-typedA -calculus built
from a signature. A signature is a set of base tygeand a set of typed constants. A simple type is
either a base typl € % or an arrowA — B whereA andB are simple types.

Definition 4.1 (Preterm) A pretermof type A is

e either avariablex of type A (we assume given for each simple type A an infinitdaciof variables
of this type),

e Or aconstantf of type A,
e or anapplicationt(u) where t is a preterm of type B— A and u is a preterm of type B,
e or, if A=B — C, anabstractiom x.t where x is a variable of type B and t is a preterm of type C.

In order to distinguish the abstraction of HRSs from the ralotion of A M-calculus Modulo, we use
the underlined symbal instead ofA. Similarly, we write the applicatiot(u) for HRSs (instead ofu).
We use the abbreviatidrfuy, ..., us) for t(uy)... (uy). If Ais a simple type, we writ&! for A andA™*
for A— A",

Notice also that HRSs abstractions do not have type anantaliecause variables are typed.

B-reduction andj-expansion are defined as usual on preterms. We Q}ﬁitéor the longfn-normal
form oft.

Definition 4.2 (Term). Atermis a preterm in long3n-normal form.



R. Saillard 95

Definition 4.3 (Pattern) A termt is apatternif every free occurrence of a variable F is in a subterm of
t of the form R such thatl is n-equivalent to a list of distinct bound variables.

The crucial result about patterns (due to Miller [11]) is trexidability of higher-order unification
(unification moduloB3n) of patterns. Moreover, if two patterns are unifiable thenasingeneral unifier
exists and is computable.

The notion of rewrite rule for HRSs is the following:

Definition 4.4 (Rewrite Rules) A rewrite ruleis a pair of terms(l < r) such that | is a pattern not
n-equivalent to a variable, F) C FV(l) and | and r have the same base type.

The restriction to patterns for the left-hand side ensun@$ matching is decidable but also that,
when it exists, the resulting substitution is unique. Thig/vthe situation is very close to first-ordée(
syntactic) matching.

Definition 4.5 (Higher-Order Rewriting System (HRS)A Higher-Order Rewriting Systeis a set R of
rewrite rules.

The rewrite relation—rg is the smallest relation on terms closed by subterm revgriinch that, for
any(l < r) € R and any well-typed substitutian, 1} o(l) —rlg o(r).

The standard example of an HRS is the untypedalculus. The signature involves a single base
type Term and two constants:

Lam: (Term — Term) — Term

App : Term — Term — Term

and a single rewrite rule fg8-reduction:

(beta) App(Lam(Ax.X(X)),Y) < X(Y)

5 An Encoding of the ATl-calculus Modulo into Higher-Order Rewrite
Systems

5.1 Encoding of Terms

We now mimic the encoding of the untypddcalculus as an HRS and encode the terms ofAthie
calculus Modulo. First we specify the signature.
Definition 5.1. The signatureSig(A M) is composed of a single base typerm, the constantSype and
Kind of atomic typeTerm, the constantipp of typeTerm — Term — Term, the constant&.am and
Pi of typeTerm — (Term — Term) — Term and the constants of typeTerm for every constant
CE GoUCT.

Then we define the encoding af1-terms.
Definition 5.2 (Encoding ofAM-term). The function||.|| from AT1-terms to HRS-terms in the signature
Sig(A M) is defined as follows:

||Kind || = Kind I Type|| = Type

[I1X] := X (variable of typeTerm) ||c]| = ¢

[uv] = App(|lull, [IvI) [Ax: ALl = Lan([JAf,Ax[t])
IMx:ABJ| = Pi([|Afl,Ax|[B])

Lemma 5.1. The function|.|| is a bijection from the\ M-terms to HRS-terms of tyfferm.

Note that this is a bijection between the untyped terms ofAthiecalculus Modulo and well-typed
terms of the corresponding HRS.



96 Rewriting Modulof in the A -calculus Modulo

5.2 Higher-Order Rewrite Rules

We have faithfully encoded the terms. The next step is to @mtle rewrite rules. The following rule
corresponds t@-reduction at the HRS level:

(beta) App(Lan(X,AX.Y(X)),Z) < Y(Z)

We have the following correspondence:
Lemma 5.2.
o Ifty —ptathen||ty]| — ety ||t2l-
o Ift1 —(pety t2 @nd t,to have typelerm then|[ty|| = — g [[tz]| ™t (Where]|.|| " is the inverse of.|)).

By encoding rewrite rules in the obvious way (translating— v) by (||ul| < ||v||)), we would get
a similar result forl -reduction. But, since we want to incorporate rewriting miod3, we proceed
differently.

First, we introduce the notion of uniform terms. These anaeverifying an arity constraint on their
free variables.

Definition 5.3 (Uniform Terms) A term t isuniform for a set of variables V if all occurrences of a
variable free int notinV is applied to the same number of angats.

Now, we define an encoding for uniform terms.

Definition 5.4 (Encoding of uniform terms)Let V be a set of variables and t be a term uniform in V.
The HRS-ternfju||y of typeTerm is defined as follows:

|Kind [jv ;= Kind

ITypellv = Type

[|X[|v = xif xeV (variable of typeTerm)
Iclv = c

[Ax:Aully = Lam(|[Allv, Ax[[ullyugg)

IMx:ABllv = Pi(|Allv, Ax.[[Bllvuix)
|| xV||v = x(||V|v) if x¢ V (x of type Tern"** wheren = |V))
luvliv = app(Jullv.[IV]lv) if v x W for x ¢ V

Now, we define an equivalent of patterns for fi@-calculus Modulo.

Definition 5.5 (AM-patterns) Let \p be a set of variablesgZ be a function giving an arity to variables
and let V= (V, ). The subset?, of Al-terms is defined inductively as follows:

e if cis a constant, then € Ay;
e ifp,ge Ay, then pge HAy;
e if X €V, then xe HAy;
o if pe Py, x¢\Vpandy is a vector of pairwise distinct variables i 8uch thaty| = .7 (x), then
p (Xy) € Av;
o if pe Py, FV(A) CVoand g€ Pyyuix,0), then p(Ax: Aq) € Ay,
Atermt is aATl-patternif, for some arity functions, t € Z ¢ ).

Remark that the encoding ofdd1-pattern as a uniform term is a pattern.
We now define the encoding of rewrite rules.



R. Saillard 97

Definition 5.6 (Encoding of Rewrite Rules)Let (u < v) be a rewrite rule such that

e Uis aAll-pattern;

e FV(v) CFV(u);

¢ all free occurrences of a variable in u and v are applied to shene number of arguments.
The encoding ofu < V) is ||u < V|| = |[ullo = [|V]le-

Remark that the first assumption ensures that the left-hidedssa pattern and the third assumption
ensures that the HRS-term is well-typed.
Definition 5.7 (HRS(")). Letl" a global context whose rewrite rules satisfy the conditibDefinition 5.6.
We write HRS() for the HRS{|ju < V|| | (u— V) € '} and HRSRT") for HRSI) U {(beta)}.

6 Rewriting Modulo 8

6.1 Definition

We are now able to properly define rewriting mody#lo As for usual rewriting, rewriting modul@ is
defined on all (untyped) terms.
Definition 6.1 (Rewriting Modulof). Letl" be a global context. We say thatrewrites tot, modulo3
(written t — o tp) if [|t1]| rewrites tol|tz|| in HRS(). Similarly, we write § —gro to if ||ty | rewrites to
||t2|| in HRSEI).
Lemma 6.1.

o —>Brb:—)rb U —)B

o Ift; —rtathent —ro o,

6.2 Example

Let us look at the example from the introduction. Now we have :
D (AX:R.Exp X) —rb £Mult (D (AX:RX)) (AX: RExp X)
Indeed, foro = {f — Ay.y} we have
ID (Ax: RExp X)|| = App(D, Lam(R, Ax.App(Exp,))) =13 0 (App(D, Lam(R Ax.App(Exp, (x)))))

and
[fMult (D (AX:RX)) (AX:RExpX)|| = App(fMult App(D,Lam(R,Ax.X)),Lam(R, AX.App(Exp,X)))
—iﬁ (App(fMult,App(D,Lam(R,AX.f(X))),Lam(R,AX.App(Exp, f(X)))))

Therefore, the peak is now joinable.
D (Ax:RExp ((Ay:RYy) X

/\

fMult (D (AX:R(Ay:RYy) X)) (AXx:R(Exp ((Ay: RYy) X D (AX: RExp X)

\/

fMult (D (AXx:RX)) (AX: RExp X)



98 Rewriting Modulof in the A -calculus Modulo

In fact the rewriting relation can be shown confluent [15].

6.3 Properties

Rewriting moduloB also preserves typing.

Theorem 6.1(Subject Reduction for>rb). Letl a well-formed global context anfi a local context
well-formed forl. If ARt : T and§ —po tathenl ;AR T.

It directly follows from the following lemma:
Lemma 6.2. If t; —p» to then, for somejtand t,, we have1t<—g t—rt) —>2§ to. Moreover, if § is
well-typed then we can choogesuch that it is well-typed in the same context.

Proof. The idea is to lift theB-reductions that occur at the HRS level to th&l-calculus Modulo.
Supposd; — b to. For some rewrite ruléu — v) and (HRS) substitutiow, we haveig o(u) = ||ta]]

andig o(v) = ||tz||. We define theXM) substitutiong as follows: 6(x) = ||a(x)||~* if a(x) has type
Term; 6(X) = AX: A |ul| 1 if o(x) = AX.u has typeTern" — Term where theA; are arbitrary types.
We have, at tha I level, 5(u) —r 6(v), 6(u) =5 tr andd(v) —5 to. If ty is well-typed then they can
be chosen so that(u) is also well-typed. O

Another consequence of this lemma is that the rewriting rfrmfuwloes not modify the congruence.
Theorem 6.2. The congruence generated By is equal to=gr.

Proof. Follows from Lemma 6.1 and Lemma 6.2. O

6.4 Generalized Criteria for Product Compatibility and Well-Typedness of Rewrite Rules

Using our new notion of rewriting modulB, we can generalize the criteria of Section 2.5.
Theorem 6.3. Letl" be a global context. If HRB() is confluent, then product compatibility holds far
Proof. Assume thaflx: A1.B; =pr INx: Az.B; then, by Theorem 6.Z]x : A;.B; =pro [1X: A2.B2. By

confluence, there exig{y andBg such thatA; —>Erb Ag, Ao —>Erb Ag, B1 _>Z3Fb By andB; —>I*3rb Bo. It
follows, by Theorem 6.2, that; =gr A, andBy =pr By.

To prove the confluence of a HRS, one can use van Oostrom’topevent-closed theorem [15].
Theorem 2.5 can also be generalized to deal wlthpatterns.

Theorem 6.4. Letl" be a well-formed global context arfd < v) be a rewrite rule. If u is a M-pattern
and there exist and T such thaf F** A, FV(u) =dom(A), I A u: T andl ;AR v: T then(u < V)
is permanently well-typed fdr.

This theorem is a corollary of the following lemma.

Lemma 6.3. Letl" C I'; be two well-formed global contexts. It Zyqn(s), dom(o) = domA), for
all (x:A)eX, gA)=AT,AXFt:T andl2; A2+ a(t) : T, then B =pr, (T) and, for all xe
FV(t)ndomA), F2;82F g(X) : Ty for Ty =gr, 0(A(X)).

Proof. We proceed by induction dne Zyons)-

e if t =cis aconstant, theRV (t) = 0 and, by inversion ofi;AZ -t : T, there exists a (closed term)
Asuchthatc: A) el C T2, T =gr AandT, =gr, A. SinceA= o(A), we haved (T) =gr, Ta.



R. Saillard 99

o if t =xcdom?Z), then, by inversion, there exiséssuch thatx: A) € X, T =gr Aand T, =gr, A.
SinceA = g (A), we haveo (T) =gr, T
e if t = pq, then, by inversion, on the one hafidA> + p: Mx: AB,I;AXFq: AandT =gr B[x/q].
On the other hand;2; A2Z = a(p) : Mx: A2.Bp, M2, 422 = 0(q) : A2 and T, =gr, B2[x/0(q)].
By induction hypothesis op, we haveo (Mx: A.B) =gr, Mx: A2.B; and for allx € FV(p) N
domd), 2,82 a(x) : Ty with Ty =g, 0(A(X)).
By product-compatibility ofl2, g(A) =gr, A2 and d(B) =gr, B2. It follows that o(T) =g,
o(B[x/d]) =pr, Bz2[x/0(q)] =pr, To.
Now, we distinguish three sub-cases:
— eitherq € Pyon(s) and by induction hypothesis ap for all x € FV(q) ndom(A), 2,4z =
0(x) : Ty with Ty =gr, 0(A(X)).
— Org=Ax:Ado with FV(A) € domZ) andgo € Pyomz(xa)) and by induction hypothesis
ondp, for all x e FV(go) ndomA), M2, A2 = 0(x) : Ty with Ty =g, 0(A(X)).
— Org=xy with x¢ domZ) andy C dom(Z). By inversion, on the one hand(x) =gr My :
Z(y).C for C =gr A. On the other hand;2; Az - a(x) : My : Z(¥).Cy for C =pr, A2. Since
0(A) =pr, Ac, we havey: 2(y).Co =gr, My : 2(y).0(C) = 0 (A(X)).
]

Proof of Theorem 6.4Let ", be a well-formed extension &f. Suppose thdt,; Az - o (u) : To.

By Lemma 6.3 and~V (u) = dom(A), we have, for alk € dom(A), 2,42 = o (x) : Ty for Ty =g,
0(A(X)) andT, =gr, a(T).

By induction onl";A-v: T, we deducd 2,42 - o (v) : Tg, for T3 =gr, 0(T) =gr, T2. It follows, by
conversion, thaf2; A, - o(v) : To. O

7 Applications

7.1 Parsing and Solving Equations

The context declarations and rewrite rules of Figure 6 defifactionto_expr which parses a function
of typeNat to Nat into an expression of the foran« x+ b (represented by the ternak_expr a b) where
a andb are constants. The left-hand sides of the rewrite rulescaaxpr areAll-patterns. This allows
definingto_expr by pattern matching in a way which looks under the binders.
The functionsolve can then be used to solve the linear equatiexx+ b = 0. The answer is either
None if there is no solution, oA11 if any x is a solution ol0ne m nif —m/(n+ 1) is the only solution.
For instance, we have (writinghe — % for One 1 2):

solve (to_expr(AX:Nat.plus X (plus X (SX)))) —pr One —

By Theorem 6.3 and Theorem 6.4 the global context of Figusvéell-formed.

7.2 Universe Reflection

In [1], Assaf defines a version of the calculus of constructidth explicit universe subtyping thanks to
an extended notion of conversion generated by a set of eevuligs. This work can easily be adapted to
fit in the framework of theA lM-calculus Modulo. However, the confluence of the rewritedesysholds
only for rewriting modulog.



100 Rewriting Modulof in the A -calculus Modulo

expr : Type.
mk_expr : Nat — Nat — expr.
expr_S : exXpr — expr.
expr_S (mk_expr a b) — mk_expra(Sh).
expr_P : exXpr — expr — expr.
expr P (mk_expr & by) (mk_expr ap bp) < mk_expr (plus a; @) (plus by bp).
to_expr : (Nat — Nat) — expr.
to_expr (AX:Nat.0) — mk_expr 00.
to_expr (AX:Nat.S (f X)) — expr.S (to_expr (AX:Nat.f X)).
to_expr (AX:Nat.X) — mk_expr (S0)0.
to_expr (AX:Nat.plus (f X) (g X)) —
expr_P (to_expr (AX:Nat.f X)) (to_expr (AX:Nat.g X)).
Solution : Type.
A1l : Solution.
One : Nat —> Nat — Solution.
None : Solution.
solve (mk_expr 0 0) — All.
solve (mk_expr 0 (S n) < None.
solve (mk_expr (S n m) < Onemn

Figure 6: Parsing and solving linear equations

8 Conclusion

We have defined a notion of rewriting modyBofor the A M-calculus Modulo. We achieved this by en-
coding theA IM-calculus Modulo into the framework of Higher-Order Rewi8ystems. As a consequence
we also made available for tid1-calculus Modulo the confluence criteria designed for theSHIisee
for instance [14] or [15]). We proved that rewriting modyfopreserves typing. We generalized the
criterion for product compatibility, by replacing the asgution of confluence by the confluence of the
rewriting relation modul@3. We also generalized the criterion for well-typedness wofite rules to al-
low left-hand to beA M-patterns. These generalizations permit proving subgstigtion and uniqueness
of types for more systems.

A natural extension of this work would be to consider rewgtimoduloB8n as in Higher-Order
Rewrite Systems. This requires extending the conversiah gvreduction. But, as remarked in [10]
(attributed to Nederpelt); g, is not confluent on untyped terms as the following examplevsho

AY:BY<n AX:A(Ay:By)X—g AX:AX

Therefore properties such as product compatibility nedzbtproved another way. We leave this line of
research for future work.

For the AT-calculus a notion of higher-order pattern matching hasljeposed [16] based on
Contextual Type Theory (CTT) [13]. This notion is similar eor. However, it is defined using the
notion of meta-variable (which is native in CTT) instead dfamnslation into HRSs.

In [3], Blanqui studies the termination of the combinatidnBereduction with a set of rewrite rules
with matching modulg3n in the polymorphicA-calculus. His definition of rewriting moduln is



R. Saillard 101

direct and does not use any encoding. This leads to a sligtitirent notion a rewriting modul@8. For
instanceD(A : RExp X) would reduce tdMult (D (AX: R.(Ay:RYy) X)) (AX: RExp ((Ay:RY) X)) in-
stead offMult (D (AX: R.x)) (AX: RExp X). It would be interesting to know whether the two definitions
are equivalent with respect to confluence.

We implemented rewriting modulB in Dedukti [5], our type-checker for theM-calculus Modulo.

Acknowledgments. The author thanks very much Ali Assaf, Olivier Hermant, Réelouvelot and the
reviewers for their very careful reading and many suggestio

References

[1] A. Assaf (2015):A calculus of constructions with explicit subtypirig: The 20th International Conference
on Types for Proofs and Programs (TYPES '14)

[21 A. Assaf & G. Burel (2014): Translating HOL to Dedukti Available at
https://hal.archives-ouvertes.fr/hal-01097412.

[3] F. Blanqui (2015):Termination of rewrite relations on lambda-terms based @maf@’s notion of reducibility.
Theoretical Computer Scienc&o appeatr.

[4] M. Boespflug & G. Burel (2012)CoqInE : Translating the calculus of inductive construoganto theA -
calculus moduloln: The Second International Workshop on Proof Exchange fooiiéra Proving (PxTR)

[5] M. Boespflug, Q. Carbonneaux, O. Hermant & R. Saillard:Dedukti Available at
http://dedukti.gforge.inria.fr.

[6] G. Burel (2013):A Shallow Embedding of Resolution and Superposition Piotdsthe A M-Calculus Mod-
ulo. In: The Third International Workshop on Proof Exchange for TreeoProving (PxTP '13)

[7] R. Cauderlier & C. Dubois (2015Dbjects and Subtyping in thd1-Calculus Modulo

[8] D. Cousineau & G. Dowek (2007): Embedding Pure Type Systems i1-Calculus Modulo

In:  The 8th International Conference on Typed Lambda Calculi #pplications (TLCA °'07)
doi:10.1007/978-3-540-732289

[9] A. Dorra: Equivalence de Curry-Howard entre le lambda-Pi calcul efbligique intuitionniste Report.

[10] H. Geuvers (1992)The Church-Rosser Property for beta-eta-reduction in @yfaenbda-Calculi In: The
Seventh Annual Symposium on Logic in Computer Science (L82% doi:10.1109/LICS.1992.185556.

[11] D. Miller (1991): A Logic Programming Language with Lambda-Abstraction, tion Variables, and Simple
Unification Journal of Logic and Computatipdoi:10.1093/logcom/1.4.497.

[12] F. Muller (1992): Confluence of the Lambda Calculus with Left-Linear AlgebRewriting Information
Processing Lettersloi:10.1016/0020-0190(92)90155-0.

[13] Aleksandar Nanevski, Frank Pfenning & Brigitte Piean{R008):Contextual modal type theanACM Trans.
Comput. Log9(3), doi:10.1145/1352582.1352591.

[14] T. Nipkow (1991):Higher-Order Critical Pairs In: The Sixth Annual Symposium on Logic in Computer
Science (LICS '91)d0i:10.1109/LICS.1991.151658.

[15] V. van Oostrom (1995)Development Closed Critical Pairsin: The Second International Workshop on
Higher-Order Algebra, Logic, and Term Rewriting, (HOA "98pi:10.1007/3-540-61254-%6.

[16] Brigitte Pientka (2008):A type-theoretic foundation for programming with higheder abstract syn-
tax and first-class substitutionsin: Symposium on Principles of Programming Languages, (POBJ, "0
doi:10.1145/1328438.1328483.

[17] R. Saillard (2013):Towards explicit rewrite rules in th&M-calculus modulo In: The 10th International
Workshop on the Implementation of Logics (IWIL '13)



Sequent Calculus and Equational Programming

(work in progress)

Nicolas Guenot and Daniel Gustafsson
IT University of Copenhagen
{ngue,dagu}@itu.dk

Proof assistants and programming languages based on type theories usually come in two flavours:
one is based on the standard natural deduction presentation of type theory and involves eliminators,
while the other provides a syntax in equational style. We show here that the equational approach
corresponds to the use of a focused presentation of a type theory expressed as a sequent calculus. A
typed functional language is presented, based on a sequent calculus, that we relate to the syntax and
internal language of Agda. In particular, we discuss the use of patterns and case splittings, as well as
rules implementing inductive reasoning and dependent products and sums.

1 Programming with Equations

Functional programming has proved extremely useful in making the task of writing correct software
more abstract and thus less tied to the specific, and complex, architecture of modern computers. This,
is in a large part, due to its extensive use of types as an abstraction mechanism, specifying in a crisp
way the intended behaviour of a program, but it also relies on its declarative style, as a mathematical
approach to functions and data structures. However, the vast gain in expressivity obtained through the
development of dependent types makes the programming task more challenging, as it amounts to the
question of proving complex theorems — as illustrated by the double nature of proof assistants such as
Coq [11] and Agda [18]. Keeping this task as simple as possible is then of the highest importance, and it
requires the use of a clear declarative style.

There are two main avenues for specifying a language of proofs, or programs, that is abstract enough
to support complex developments involving dependent types. The first approach, chosen by the Coq
project, is to have a language of tactics that partially automate the construction of proofs — that is, to
mechanically construct complex programs based on the composition of a few generic commands. While
this takes the development task closer to the usual idea of proving a mathematical theorem, the second
approach is to take the programming viewpoint: although Coq allows to directly write proof terms, this is
better illustrated by Agda, where a syntax inspired by Haskell [1] provides a clear equational style.

Our goal here is to investigate the relations between the equational style of dependently-typed
functional programming as found in Agda to the proof-theoretical description of intuitionistic logic
given in the sequent calculus. In particular, we claim that a focused sequent calculus, akin to the LJF
system of Liang and Miller [15], offers a logical foundation of choice for the development of a practical
dependently-typed language. We intend to support this claim by showing how the equational syntax of
Agda and the internal structure of its implementation correspond to a computational interpretation of
such a calculus — for an extended for of intuitionistic logic including dependencies and (co)induction.
As it turns out, the use of left rules rather than eliminations for positive connectives such as disjunction,
in sequent calculus, yields a simpler syntax. In general, beyond the use of spines in applications, as
in LJT [13] and quite common in the implementation of functional programming languages or proof

I. Cervesato and K. Chaudhuri (Eds.): Tenth International Workshop
on Logical Frameworks and Meta-Languages: Theory and Practice
EPTCS 185, 2015, pp. 102-109, doi:10.4204/EPTCS.185.7

This work is licensed under the
Creative Commons Attribution License.



N.Guenot and D. Gustafsson 103

assistants, the structure of the sequent calculus is much closer to the equational style of programming than
natural deduction, the standard formalism in which type theory is usually expressed [16]. Using a focused
system rather than a plain sequent calculus based on LJ provides a stronger structure, and emphasizes the
importance of polarities, already observed in type theory [2].

Beyond the definition of a logical foundation for a functional language in equational style, giving a
proof-theoretical explanation for the way Agda is implemented requires to accomodate in the sequent
calculus both dependent types and a notion of inductive definition. This is not an easy task, although there
has been some work on dependent types in the sequent calculus [14] and there is a number of approaches
to inductive definitions in proof theory, including focused systems [5]. For example, the system found
in [14] is based on LJT but is limited to IT and does not support X, while [12] has both, but requires an
intricate mixture of natural deduction and sequent calculus to handle ¥. Induction is even more complex to
handle, since there are several approaches, including definitions [19] or direct least and greatest fixpoints
as found in yMALL [5] and pL.J [4]. From the viewpoint of proof-theory, the least fixpoint operator
seems to be well-suited, as it embodies the essence of induction, while the greatest fixpoint v allows to
represent coinduction. However, these operators are not used the same way as inductive definitions found
in Agda or other languages or proof assistants — they seem more primitive, but the encoding of usual
constructs in terms of fixpoints is not obvious. Even more complicated is the question of using fixpoints
in the presence of dependent types, and this has only been studied from the type-theoretic viewpoint
in complex systems such as the Calculus of Inductive Constructions [10]. In the end, what we would
like to obtain is a proof-theoretical understanding of the equational style of dependent and (co)inductive
programming, related to the goals of the Epigram project. In particular, we consider that the sequent
calculus, with its use of left rules, provides access to the “left” of equations in a sense similar to what is
described in [17].

Here, we will describe the foundamental ideas for using a variant of LJF as the basis for the design of
a dependently-typed programming language. We start in Section 2 by considering a propositional system
and show how the shape of sequent calculus rules allows to type terms in equational style. This is made
even more obvious by the use of pattern in the binding structure of the calculus. Then, in Section 3 we
discuss the extension of this system to support dependent types and induction, problems related to patterns
in this setting, as well as the question of which proof-theoretical approach to induction and coinduction is
better suited for use in a such a language. Finally, we conclude by the review of some research problems
opened by this investigation, and an evaluation of the possible practical applications to languages and
proofs assistants.

2 Focusing and Polarities in the Sequent Calculus

We start our investigation with a propositional intuitionistic system presented as a focused sequent calculus.
It is a variant of LJF [15] to which we assign a term language extending the A-calculus of Herbelin [13].
Unlike the calculus based on LJT, this system has positive disjunctions and conjunctions V and X, but it
has no positive atoms. We use the following grammar of formulas:

NM :=a|1P| PN |NAM P,Q == [N | PVQ | PxQ

where 1 and | are called polarity shifts and are meant to maintain an explicit distinction between the
two categories of formulas, negatives and positives. This is not absolutely necessary, but it clarifies the
definition of a focused system by linking the focus and blur rules to actual connectives. Note that this was
also used in the presentation of a computational interpretation of the full LJF system [7].



104 Sequent Calculus and Equational Programming

Y Ed: [Pl Y| 1N
Y N Fe:N Y| . bFod:fP P Ear: [IN]

W x:|N,N|Ek:M Yx:IN|Tki:M Y|p:Pri:N
Wx:IN| -Fxk:M W | Tx:INFi:M W [tP] E kp.t:N

Y |I[,p:Pki:N Y [N|Ek:L Y M Ek:L
Y |T'EApt:P—N Y INAM]Eprik:L YW, NAM|Eprrk:L
YEd:|[P] Y, [N|Ek:M Y |TFi:N Y| Thu:M
Y. [P—>NEd:k:M Y |T'-(tu)y:NAM
I'Ed:[P] I'kFe:[Q] I'Ed:[P] 'Ed:|[Q]
TFE(d.e):[PxQ TFEinld:[PVQ] TFinrd: [PV
Y |T,p:Pqg:QF1:N Y |T,p:PFt:N Y |T,g:QFu:N
Y |I,(p,gq) :PxQkFt:N Y | Txlplql:PVQHEX[t|u:N

Figure 1: Typing rules for a pattern-based A-calculus based on A

The rules we use in this system are shown in Figure 1, where the term assignment is indicated in
red and several turnstiles are used to distinguish an inversion phase I from a focused phase F. In this
syntax, brackets are used to pinpoint the precise formula under focus. The extended A-calculus we use to
represent proofs is based on the following grammar:

tu m=10>d | Apr | xk | (t,u) | x[t|u]
pg = x | (pq) | xlp|q]

dye m= <t | (dye) | inld | inrd

kym i= € | tuk | prlk | prrk | Kp.t

where ¢ denotes a ferm, p a binding pattern, d a data structure and k an application context. In terms of
programming, terms are describing computation, mostly by means of functions, while data structures
implement pairs and constructors. Note that computations can use case splittings x[t | u] to choose between
the subterms ¢ or u depending on the contents of the data bound to x. The use of patterns rather than plain
variables to annotate formulas in the context of typing judgement is taken from [8] and allows to express
more directly the equational style found in Agda. For example, we could write:

f:(NxNwN-—>N
f(inl (xy)) =x+y
f(inrz) = z

to define a function f that uses pattern-matching on its argument and computes the result based on the
components of the data structure it received. Such a function can be written in our calculus as the following



N.Guenot and D. Gustafsson 105

term: Aw[(x,y) | z].w[add ((x €) :: (y €) :: €) | z €], where add is the name of the addition function. This
makes the compilation of the code written above to the adequate representation in our calculus relatively
easy, since different parts of a definition can be aggregated into a term with a pattern and a case splitting.
This is very much related to the question of compiling pattern-matching into a specific splitting tree where
case constructs are used [3].

The idea of the logical approach is that cut elimination in this system yields a reduction system
implementing the dynamics of computation in the corresponding calculus. In such a focused calculus, a
number of cut rules are needed to complete the proof of completeness of the cut-free fragment, but only
two of them really need to be considered as rules — the other cuts can simply be stated as principles, and
their reduction will correspond to a big step of computation. These two rules are:

YiEd: [P Y |I[,p:Pti:N Y |I'ke:N  W[N|Ek:M
Y |T'Fp=dint:N Y |Tkthk:M

the first one being the binding of a data structure to a matching pattern, and the second a simple application
of a term to a list of arguments. The latter is already part of the LJT system [13], but the former is specific
to LJF in the sense that it appears only when formulas can be focused on the right of a sequent. The main
reduction rule extracted from cut elimination is the A variant of B-reduction:

(Apt)(d:k) — (p=dint)k

but there are a number of other reduction rules generated by the use of other connectives than implication.
In particular, conjunction yields a form of pairing where a term (¢,u) has to be applied to a list prl k
to reduction to ¢t k. The binding cut is simpler in a certain sense, since its reduction corresponds to a
decomposition of the data structure d according to the shape of the pattern p, and a simple substitution
when p is just a variable. Moreover, other cuts encountered during reduction usually amount to a form of
substitution, except for the one, already present in LJT, that yields lists concatenation in the argument of
an application.

Note that the > d construct is present in the internal language of Agda, but the constructs < and kp.t
are not, although they can be obtained indirectly using a cut. While <¢ should simply be understood as
a thunk, which is a term made into data, the list kp.f is slightly more complex. This construct, already
present in [6], is more a context than a list in the sense that it stops the application of a term to kp.t and
enforces the execution of ¢, where the original term applied is bound to p. This can be understood by
considering the reduction extracted from cut elimination:

(>d) (kp.t) — p=dint

Finally, note that we could have an explicit contraction rule in the system, that would appear in terms
under the form of a pattern p@ g indicating that p and ¢ will be the patterns associated to two copies of the
same assumption P. The associated typing rule is:

Y |I,p:Pg:PFi:N
Y |T,peg:PF1:N

and it is reminiscent of the pattern using the same syntax in Haskell — which is meant to exist in Agda as
well, but this not yet implemented. However, in Haskell, this is restricted to the form x @ p so that it can
only serve to name an assumption before decomposing it, and we could allow for such a use by avoiding
maximal inversion, which is not strictly necessary in a focused system [7]. This rule is not necessary for
the completeness of the calculus, and there are other ways to obtain the same result. Of course, in a very
similar way, the pattern _ can be associated to the weakening rule, also admissible.



106 Sequent Calculus and Equational Programming

YEd:[P] Y| -Fi:N Y [N Ek:L
Y [N Fe:N Y| -F>d: 1P W Ear: [IN] Y INAM]Eprlk:L
Wx:|N,NFk:M W¥x:[N|Tkt:M W|x:PFi:N Y M| Fk:L

Wx:IN|-Fxk:M YW|Tx:{NFi:M Y [tP|Ekxi:N W,[NAM|Eprrk:L

Y |[x:PHt:N Y Ed:[P] Y [N{d/x}|Fk:M ¥ |TFt:N W|Ttu:M

Y |I'FAx.t:I(x:P).N Y, [(x:P).NEd:k:M Y |I'E(tu):NAM
Y |T,y:Pz:QtF1:N{(yz)/x} I'Fd:[P] I'Ee:[Q{d/x}] I'Fd:[P]
Y |Ix:Z(y:P).OFyz=xint:N I'E(d,e): [Z(x:P).Q] I'Einld: [PV Q]
Y |I,y:PkFi:N{inl y/x} Y| TI,z:QFu:N{inr z/x} I'Ed:[Q]
Y |Tx:PVQbExyr|zul:N I'Einrd: [PV Q]
Y Ed:[A] ¥ |Tx:AAFi:B Y| I'kr:A Y [A]Ek:B
W | T,A{d/x} Fx—dint: B{d/x} W (TFrk:B

Figure 2: Typing rules for a dependent A-calculus based on A

3 Adding Dependent Types and Induction

We continue our investigation by adapting our variant of LJF to dependent types, but this unveils
some issues that we will now discuss. On problem we immediately encounter is the adaptation of the
pattern machinery to the dependent setting, mostly due to the substitutions involved in the types, where
patterns should have appeared. For the dependent implication IT(x : P).N, using a pattern p rather than
a binding variable x yields the question of substituting a data structure d for p: this becomes a much
more complicated operation than the traditional substitution. Moreover, keeping the patterns and variables
synchronised between their use in terms and in types is a challenging task, that would probably require
heavy syntactic mechanisms. For this reason, the system shown above in Figure 2 has no patterns, but
rather falls back to the traditional style of typing using only variables to label assumptions. The language
used in this variant can still be related to the equational approach to functional programming, but the
translation between equations and terms is more involved.

The generalisation of the implication into the dependent product I1(x : P).N is a straightforward
operation, and the rules we use are essentially the ones found in [14] — except that it involves a data
structure, corresponding to a focus on the right-hand side of a sequent. Now, the case of X is more
complicated, as it is a priori unclear whether it should be obtained as a generalisation of the negative
conjunction A or of the positive product x and both solutions might even be possible. But a generalisation
of the negative disjunction seems to be problematic, when it comes to the specification of the second left
rule, typing the prroperation. Indeed, when focusing on X(x : N).M we would need to plug a term of type
N for x in M, but this would require to maintain some “natural deduction version” of the term currently



N.Guenot and D. Gustafsson 107

being transformed, and to plug at adequate locations some translation between natural deduction style and
our sequent calculus syntax — as done in [12]. This is quite unsatisfactory and will not help us build a
proper understanding of dependent types in a pure sequent calculus setting. The solution we adopt here is
to obtain X(x : P).Q as a generalisation of the positive product x and simply update the corresponding
rules as shown in Figure 2. The left rule is simple to define in this case, because the decomposition of the
Y in the context preserves the binding of y in the type Q.

There is a particularly interesting benefit to the use of the sequent calculus to handle splitting as done
in the left ¥ rule. Consider the elimination rule in natural deduction:

[x:AVBFC:type I't:AVB T,y:Atu:C{inly/x} T,z:BFv:C{inrz/x}
I' Fmatch [x.C] (t; y.u; z.v) : C{t/x}

Ve

and observe that it is necessary to be explicit about the return type, since obtaining C from C{z/x} is a
complicated process, that reverses a substitution. This makes the term syntax heavy, while the problem is
avoided in the sequent calculus, where no substitution is needed in the conclusion. Note that in Coq, the
natural deduction style is used for the proof language, but tactics are written in a style that is much closer
to the sequent calculus — as this is the framework of choice for proof search — so that tactics have to
perform some kind of translation between the two formalisms.

At the level of dependent types, there is a number of tricks used in the Agda implementation that
diverge from the proof-theoretical viewpoint. For example, substitutions in types are treated in a complex
way and may be grouped together. Although some of the design choices can be justified by a similarity
to the focused sequent calculus, there is probably a number of implementation techniques that have no
proof-theoretical foundation. Moreover, we have chosen here a particularly precise framework where
formulas are explicitly polarised, but in practice types in a programming language should not always
require these annotations: the question of the presence of specific terms corresponding to shifts is therefore
not obvious, as it depends if some interesting programming constructs require their presence or their
absence. One can observe, for example, that in the system proposed here, dependencies are subject to the
presence of delays, because of the contraction present in the left focus rule and of the treatment of names
in the xx.t operation.

The problem of generalising the equational style of programming associated to the focused sequent
calculus at the propositional level to the level of dependent types is parametrised by a choice: using patterns
seems to require a complex tracking mechanism, but provides a relatively direct logical representation
of equations, while using simple variables leads to a translation overhead. Notice however that one
could think of an implementation based on variables in which equations are easily obtained, since the
language would already be expressed in the style of the sequent calculus — this is the approach suggested
by Epigram, where equations are meant to clarify the meaning of programs but are not their internal
representation. But we now turn to the most challenging task of our whole enterprise: the accomodation
of induction in the framework of a focused sequent calculus in a form that can be exploited to design
declarative programs.

Induction can be expressed in Agda in a concise manner and enjoys the benefits of the equational
presentation. Consider for example the following inductive scheme for natural numbers:

indy : Pzero — (I(x:N).Px — P(sucx)) — O(n:N).Pn
indy base ih zero = base

indy base ih (sucn) = ihn (indy base ihn)

where the code essentially relies on the matching of a natural number, that can be either zero or the
successor of another number. It is not obvious to see through this program and select a particular approach



108 Sequent Calculus and Equational Programming

to induction that would be a good candidate for a proof-theoretical description. The natural candidate for a
representation of induction in the sequent calculus would be the u operator as studied in [4] in the setting
of intuitionistic logic. The unfocused rules for this operator would be, from a purely logical viewpoint:

I' - B{ua.B/a} B{C/a} FC
I'+ua.B uaB+-C

but the presence of fixpoints has consequences for cut elimination, as it prevents some cuts to be reduced.
The usual technique applied to avoid this problem is to build the cut rule into the left rule for y and to
consider the result as cut free. This way, all the cuts that cannot be reduced further are explicitly attached
to the blocking rule instance. However, the use of these rules in terms of computation is not obvious
to specify, in part because of the complexity of the associated cut reduction, that involves the creation
of several other cuts and appeals to the functoriality of the body B of any fixpoint ta.B — ensured by
a positivity condition. In addition, these rules seem to interact poorly with dependent types, as dealing
with fixpoints will require a complex handling of terms appearing inside types. It is unclear as of now
if fixpoints as expressed by tt — and Vv in the case of induction — can fit our scheme of explaining the
implementation of a language such as Agda, but at the same time there is no obvious proof-theoretical
approach that accounts in a straightforward way for the pervasive nature of inductive definitions in the
internal language of Agda, where they are handled by expansion of names with the body of the definition.

4 Conclusion and Future Work

As we have seen here, the A-calculus proposed by Herbelin as an interpretation of the LJT focused
sequent calculus can be extended beyond its original scope to include positive connectives, leading to a
full-fledged intuitionistic system where we can focus on the right-hand side of sequents to decompose
positives. The language we obtain is well-suited to represent programs written in the kind of equational
style found in Haskell or Agda, the relation to equations can be made even tighter by using patterns
as labels for assumptions in the type system. The opens up the possibility to select focused sequent
calculus as a logical framework of choice for the implementation of such languages — as evidenced by the
current state of the implementation of Agda, containing many elements that can be explained as sequent
calculus constructs. The benefit could not only be a simplication of such an implication, but possibly an
improvement in terms of efficiency if advanced techniques from proof theory are transferred and made
practical. Moreover, one of the strength of the logical approach is that generalisations and extensions of
all kinds are usually made simpler by the strong principles at work: any kind of progress made on the
side of proof theory could translate into more expressive languages using the clear equational style of
Haskell and Agda — that could be modalities, linearity or many other elements studied in the field of
computational logic.

The generalisation of this idea to handle dependent types has already been partially investigated, but
some question are left unresolved as to the specific rules used in such a system, and the possibility of
making the system more equational by exploiting patterns. But the most difficult task at hand is the
explanation of the various treatments of induction available in language and proofs assistants in terms
of the sequent calculus. As observed previously [2], the notion of polarity seems to be important in the
understanding of this question, but unfortunately the proper polarised handling of fixpoints in proof theory
has yet to be found — a number of choices are left open when it comes to the definition of a focused
system using fixpoints [5]. Note that our enterprise also yields the question of the treatment of the identity
type in proof theory, as it makes dependent pattern matching admit the axiom K. This axiom is undesirable



N.Guenot and D. Gustafsson 109

in homotopy type theory, and thus the restriction of dependent pattern matching has been studied [9]. But
this was achieved by restricting unification in the splitting rules, and as Agda has no explicit calculus for
splitting, this was somewhat hidden. The framework we want to develop provides a calculus and could
thus help making this restriction simpler.

Acknowledgements. This work was funded by the grant number 10-092309 from the Danish Council

for Strategic Research to the Demtech project.

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(1]

(12]

[13]

(14]

[15]

[16]
(17]

(18]

[19]

Haskell, an advanced purely-functional programming language: http://www.haskell.org.

Andreas Abel, Brigitte Pientka, David Thibodeau & Anton Setzer (2013): Copatterns: programming infinite
structures by observations. In: POPL’13, pp. 27-38, doi:10.1145/2429069.2429075.

Lennart Augustsson (1985): Compiling Pattern Matching. In: FPCA’85, pp. 368-381,
doi:10.1007/3-540-15975-4_48.

David Baelde (2008): A linear approach to the proof-theory of least and greatest fixed points. Ph.D. thesis,
Ecole Polytechnique.

David Baelde (2012): Least and Greatest Fixed Points in Linear Logic. ACM Transactions on Computational
Logic 13(1), p. 2, doi:10.1145/2071368.2071370.

Henk Barendregt & Silvia Ghilezan (2000): Lambda-terms for natural deduction, sequent calculus and cut
elimination. Journal of Functional Programming 10(1), pp. 121-134.

Taus Brock-Nannestad, Nicolas Guenot & Daniel Gustfasson (2015): Computation in Focused Intuitionistic
Logic. In: PPDP’15, pp. 43-54, doi:10.1145/2790449.2790528.

Serenella Cerrito & Delia Kesner (1999): Pattern Matching as Cut Elimination. In: LICS’99, pp. 98-108,
doi:10.1109/LICS.1999.782596.

Jesper Cockx, Dominique Devriese & Frank Piessens (2014): Pattern Matching Without K. In: ICFP’ 14, pp.
257-268, doi:10.1145/2628136.2628139.

Thierry Coquand & Christine Paulin (1988): Inductively defined types. In: Conference on Computer Logic,
LNCS 417, pp. 50-66, doi:10.1007/3-540-52335-9_47.

Gilles Dowek, Amy Felty, Gérard Huet, Hugo Herbelin, Chet Murthy, Catherine Parent, Christine
Paulin-Mohring & Benjamin Werner (1993): The Coq proof assistant user’s guide. Technical Report, INRIA.
Roy Dyckhoff & Luis Pinto (1998): Sequent Calculi for the Normal Terms of the AI1- and ATIZ-Calculi.
Electronic Notes in Theoretical Computer Science 17, pp. 1-14, doi:10.1016/S1571-0661(05)01182-5.
Hugo Herbelin (1994): A A-Calculus Structure Isomorphic to Gentzen-Style Sequent Calculus Structure. In
L. Pacholski & J. Tiuryn, editors: CSL’94, LNCS 933, pp. 61-75, doi:10.1007/BFb0022247.

Stéphane Lengrand, Roy Dyckhoff & James McKinna (2011): A Focused Sequent Calculus Framework for
Proof Search in Pure Type Systems. Logical Methods in Computer Science 7(1),
doi:10.2168/LMCS-7(1:6)2011.

Chuck Liang & Dale Miller (2009): Focusing and Polarization in Linear, Intuitionistic, and Classical Logics.
Theoretical Computer Science 410(46), pp. 4747-4768, doi:10.1016/j.tcs.2009.07.041.

Per Martin-Lof (1984): Intuitionistic Type Theory. Studies in Proof Theory, Bibliopolis.

Conor McBride & James McKinna (2004): The view from the left. Journal of Functional Programming 14(1),
pp- 69-111, doi:10.1017/S0956796803004829.

UIf Norell (2007): Towards a practical programming language based on dependent type theory. Ph.D. thesis,
Chalmers University of Technology.

Peter Schroeder-Heister (1993): Rules of Definitional Reflection. In M. Vardi, editor: LICS’93, pp. 222-232,
doi:10.1109/LICS.1993.287585.



