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Preface

This volume contains the papers presented at Bridging-15: Bridging the Gap
between Human and Automated Reasoning held on August 1st, 2015 in Berlin
in conjunction with CADE-25.

Human reasoning or the psychology of deduction is well researched in cog-
nitive psychology and in cognitive science. There are a lot of findings which are
based on experimental data about reasoning tasks, among others models for the
Wason selection task or the suppression task discussed by Byrne and others. This
research is supported also by brain researchers, who aim at localizing reasoning
processes within the brain. Automated deduction, on the other hand, is mainly
focusing on the automated proof search in logical calculi. And indeed there is
tremendous success during the last decades. Recently a coupling of the areas of
cognitive science and automated reasoning is addressed in several approaches.
For example, there is increasing interest in modeling human reasoning within
automated reasoning systems including modeling with answer set programming,
deontic logic or abductive logic programming. There are also various approaches
within AT research.

This workshop is intended to get an overview of existing approaches and
makes a step towards a cooperation between computational logic and cognitive
science.

In total, seven papers were submitted to the workshop. From these, five have
been accepted for presentation. The papers present the following strands: logic
programming approaches to model human reasoning; formalization of syllogisms
in human reasoning; computational models for human reasoning; benchmarks
for commonsense reasoning; interactive theorem proving.

Apart from the accepted papers, the workshop program includes one keynote
presentation by Marco Ragni. He can be seen as a representative of interdisci-
plinary research — holding two PhDs, one in computer science and one in cogni-
tive science. His talk on Three-levels of Analysis: Connecting cognitive theories
of reasoning with empirical results and cognitive modeling certainly can be un-
derstood as a bridge connecting various disciplines.

Finally, the Bridging-15 organizers seize the opportunity to thank the Pro-
gram Committee members for their most valuable comments on the submissions,
the authors for inspiring papers, the audience for their interest in this workshop,
the local organizers from the CADE-25 team, and the Workshops Chair.

We hope that in the years to come, Bridging will become a platform for di-
alogue and interaction for researchers in both cognitive science and automated
reasoning and will effectively help to bridge the gap between human and auto-
mated reasoning.

July 8, 2015 Ulrich Furbach
Koblenz Claudia Schon
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Three-levels of Analysis: Connecting cognitive theories of

reasoning with empirical results and cognitive modeling

Marco Ragni
Foundations of Artificial Intelligence lab
Technical Faculty, University of Freiburg

Summary

A recent increase in theories of human reasoning shows the need to evaluate
these theories. While some properties like non-monotonicity can be evaluated theo-
retically other properties can be evaluated empirically only: For instance the ability
to predict quantitative differences in error rates, reponse times, and physiological

correlates like eye-movement and brain activations.

In this talk, I will focus on spatial reasoning and introduce a computational
model implying a cognitive complexity measure. In a second step, this model
will be evaluated on current empirical results. This raises the question of how
well these cognitive models can predict human behavior and the associated cog-
nitive difficulty. Moreover, there is the demand to examine these models on their
cognitive adequacy for physiological correlates such as eye movements and brain
activations. The goal is to have cognitive computational models that can form a

bridge to psychology and neuroscience at the same time.



Weak Completion Semantics and its
Applications in Human Reasoning

Steffen Holldobler

International Center for Computational Logic,TU Dresden, 01062 Dresden, Germany
sh@iccl.tu-dresden.de

Abstract. I present a logic programming approach based on the weak
completions semantics to model human reasoning tasks, and apply the
approach to model the suppression task, the selection task as well as the
belief-bias effect, to compute preferred mental models of spatial reasoning
tasks and to evaluate indicative as well as counterfactual conditionals.

1 Introduction

Observing the performance of humans in cognitive tasks like the suppression [3]
or the selection task [31] it is apparent that human reasoning cannot be ade-
quately modeled by classical two-valued logic. Whereas there have been many
approaches to develop a normative model for human reasoning which are not
based on logic like the mental model theory [22] or probabilistic approaches [15],
Keith Stenning and Michiel von Lambalgen have developed a logic-based ap-
proach [30] where, in a first step, they reason towards an appropriate represen-
tation of some aspects of the world as logic program and, in a second step, reason
with respect to the least model of the program. Their approach is based on the
three-valued (strong) Kripke-Kleene logic [23], is non-monotonic, and utilizes
some form of completion as well as abduction. Most interestingly, the results de-
veloped within the fields of logic programming and computational logic within
the last decades could not be immediately applied to adequately model human
reasoning tasks but rather some modifications were needed. As a consequence,
theorems, propositions and lemmas formally proven for a theory without these
modification cannot be readily applied but their proofs must be adapted as well.

Unfortunately, some of the formal results stated in [30] are not correct. Some-
what surprisingly, we were able to show in [19] that the results do hold if the
Kripke-Kleene logic is replaced by the three-valued Lukasiewicz logic [25]. We
have called our approach weak completion semantics (WCS) because in the com-
pletion of a program, undefined relations are not identified with falsehood but
rather are left unknown. Whereas our original emphasis was on obtaining for-
mally correct results, WCS has been applied to many different human reasoning
tasks in the meantime: the suppression task, the abstract as well as the social
selection task, the belief-bias effect, the computation of preferred mental models
in spational reasoning tasks as well as the evaluation of conditionals.

This paper gives an overview on WCS as well as its applications to human
reasoning tasks.



2 Weak Completion Semantics

2.1 Logic Programs

We assume the reader to be familiar with logic programming, but we repeat basic
notions and notations. A (logic) program is a finite set of (program) clauses of
the foorm A« T, A« L or A< B;A...ANB,, n>0 where A is an atom, B;,
1 <7 < n, are literals and T and L denote truth and falsehood, resp. A is called
head and T, 1 as well as B1A...A B, are called body of the corresponding clause.
Clauses of the form A «+ T and A « L' are called positive and negative facts,
resp. In this paper, P denotes a program, A a ground atom and F' a formula.
We assume that each non-propositional program contains at least one constant
symbol. We also assume for each program that the underlying alphabet consists
precisely of the symbols mentioned in the program, if not indicated differently.
When writing sets of literals we omit curly brackets if a set has only one element.

gP denotes the set of all ground instances of clauses occurring in P. A ground
atom A is defined in gP iff gP contains a clause whose head is A; otherwise A is
said to be undefined. def (S, P) = {A < body € gP | A€ SV —A € S} is called
definition of S in P, where S is a set of ground literals. Such a set S is said to
be consistent iff it does not contain a pair of complementary literals.

A level mapping for P is a function £ which assigns to each atom occurring
in ¢gP a natural number. Let {(—A) = £(A). P is acyclic iff there exists a level
mapping ¢ such that for each A < L1 A... AL, € gP we find that ¢(A) > ¢(L;),
1<i<n.

2.2 Weak Completion

For a given P, consider the following transformation: (1) For each defined atom A,
replace all clauses of the form A < body, ..., A < body,, occurring in gP by
A body, V ...V body,,. (2) Replace all occurrences of < by <». The obtained
ground program is called weak completion of P or wcP.?

2.3 Lukasiewicz Logic

An interpretation is a mapping from the set of formulas into the set of truth
values. A model for F' is an interpretation which maps F' to true. We consider
the three-valued Lukasiewicz (or L-) logic [25] (see Table 1) and represent each
interpretation I by (I'T,I+), where IT = {A | I(A) =T}, I+ ={A | I(A) = 1},
I" NI+ =0, and each ground atom A & I'T U I+ is mapped to U. Hence, under
the empty interpretation (i, () all ground atoms are unknown. Let (I'",I+) and
(JT,J%) be two interpretations. We define

(T, 15 (T, 5 iff 17 CJT and I C JL,

(IT, 15 U (T, Y = (ITuJT IR u gt

! Under WCS a clause of the form A < L is turned into A <> L provided that it is
the only clause in the definition of A.
2 Note that undefined atoms are not identified with L as in the completion of P [5].
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Table 1. Truth tables for the L-semantics, where we have used T, L and U instead of
true, false and unknown, resp., in order to shorten the presentation.

Theorem 1. (Model Intersection Property) For each program P, the intersec-
tion of all L-models of P is an L-model of P.

This result was formally proven in [19] for programs not containing negative
facts, but it holds also for programs with negative facts.

2.4 A Semantic Operator

The following operator was introduced by Stenning and van Lambalgen [30],
where they also showed that it admits a least fixed proint: &p((IT,I1)) =
(J7T,J+), where

JT ={A| A« body € gP and body is true under (IT,1+)},
Jt ={A| def(A,P) # () and
body is false under (I, I+) for all A < body € def(A,P)}.

The &p operator differs from the semantic operator defined by Fitting in [13]
in the additional condition def(A,P) # ) required in the definition of J+. This
condition states that A must be defined in order to be mapped to false, whereas in
the (strong) Kripke-Kleene-semantics considered by Fitting an atom is mapped
to false if it is undefined. This reflects precisely the difference between the weak
completion and the completion semantics. The (strong) Kripke-Kleene-semantics
was also applied in [30]. However, as shown in [19] this semantics is not only the
cause for a technical bug in one theorem of [30], but it does also lead to a non-
adequate model of some human reasoning tasks. Both, the technical bug as well
as the non-adequate modeling, can be avoided by using WCS.

Theorem 2. The least fized point of ®p is the least £-model of the weak com-
pletion of P. [19]

In the remainder of this paper, Mp denotes the least L-model of weP.

2.5 Contraction

It was Fitting’s idea [14] to apply metric methods to compute least fixed points
of semantic operators and, in particular, he showed that for so-called acceptable?

3 Please see [14] for a definition of acceptable programs. The class of acyclic programs
is a proper subset of the class of acceptable programs.



programs the semantic operator defined in [13] is a contraction.* Consequently,
Banach’s contraction mapping theorem [2] can be applied to compute the least
fixed point of the semantic operator.

As shown in [18], #p may not be a contraction if P is acceptable. But the
following weaker result holds for programs not containing any cycles.

Theorem 3. If P is an acyclic program, then p is a contraction. [18]

As a consequence, the computation of the least fixed point of &p can be
initialized with an arbitrary interpretation.

2.6 A Connectionist Realization

Within the cOrRE-method [1,17] semantic operators of logic programs are com-
puted by feed-forward connectionist networks, where the input and the output
layer represent interpretations. By connecting the output with the input layer,
the networks are turned into recurrent ones and can now be applied to compute
the least fixed points of the semantic operators.

Theorem 4. For each datalog program P there exists a recurrent connectionist
network which will converge to a stable state representing Mp if initialized with
the empty interpretation.

The theorem was proven in [20] for propositional programs but extends to
datalog programs. From the discussion in the previous paragraph we conclude
that the network may be initialized by some interpretation if @p is a contraction.

2.7 Weak Completion Semantics

The weak completion semantics (WCS) is the approach to consider weakly
completed logic programs and to reason with respect to the least L-models
of these programs. We write P |=ycs F iff formula F holds in Mp. WCS is
non-monotonic.

2.8 Relation to Well-Founded Semantics

WCS is related to the well-founded semantics (WFS) as follows: Let P+ =
P\{A+ L | A+ L € P}and u beanew nullary relation symbol not occurring
in P. Furthermore, let P* = Pt U {B « u | def(B,P) = 0} U {u + —u}.

Theorem 5. IfP is a program which does not contain a positive loop, then Mp
and the well-founded model for P* coincide. [11]

4 A mapping f : M — M on a metric space (M, d) is a contraction iff there exists a
k € (0,1) such that for all z,y € M we find d(f(z), f(y)) < k x d(z,y).



2.9 Abduction

An abductive framework consists of a logic program P, a set of abducibles Ap =
{A « T | def(A,P) = 0 U{A « L | def(A,P) = 0}, a set of integrity
constraints IC, i.e., expressions of the form | < BjA...AB,,, and the entailment
relation |=qes; it is denoted by (P, Ap,ZC, FEuwes)-

By Theorem 1, each program and, in particular, each finite set of positive and
negative ground facts has an E-model. For the latter, this can be obtained by
mapping all heads occurring in this set to true. Thus, in the following definition,
explanations as well as the union of a program and an explanation are satisfiable.

An observation O is a set of ground literals; it is explainable in the framework
(P, Ap,ZC, Ewes) iff there exists a minimal & C Ap called ezplanation such that
Mpue satisfies ZC and P U E |=yes L for each L € O. F follows creduluously
from P and O iff there exists an explanantion &€ such that PUE |Eyes F. F
follows skeptically from P and O iff for all explanantions £ we find PUE |=yes F.

2.10 Revision
Let S be a finite and consistent set of ground literals in
rev(P,S) = (P\ def(S,P))U{A+ T|AeS}U{A«+ L|-AecS}

where A denotes an atom. rev(P,S) is called the revision of P with respect to S.
The following result was formally proven in [7].

Proposition 6. 1. rev is non-monotonic,

i.e., there exist P, S and F such that P Euyes F and rev(P,S) Fwes F.
2. If Mp(L) = U for all L € S, then rev is monotonic.
3. M're'u(P,S)(S) =T.

3 Applications

3.1 The Suppression Task

Ruth Byrne has shown in [3] that graduate students with no previous exposure
to formal logic did suppress previously drawn conclusions when additional infor-
mation became available. Table 2 shows the abbreviations that will be used in
this subsection, whereas Table 3 gives an account of the findings of [3]. Interest-
ingly, in some instances the previously drawn conclusions were valid (cases AE
and ACE in Table 3) whereas in other instances the conclusions were invalid
(cases AL and ABL in Table 3) with respect to classical two-valued logic.
Following [30] conditionals are encoded by licences for implications using
abnormality predicates. In the case AF no abnormalities concerning the library
are known. However, in the case ACE it becomes known that one can visit the
library only if it is open and, thus, not being open becomes an abnormality
for the first implication. Likewise, one may argue that there must be a reason
for studying in the library. In the case AC'E the only reason for studying in



If she has an essay to finish, then she will study late in the library.
If she has a textbook to read, then she will study late in the library.
If the library stays open, she will study late in the library.

She has an essay to finish.

She does not have an essay to finish.

She will study late in the library.

She will not study late in the library.

Sl EEQm e

Table 2. The suppression taski?;] and used abbreviations. Subjects received condi-
tionals A, B or C and facts F, E, L or L and had to draw inferences.

Cond. Fact Exp. Findings Cond. Fact Exp. Findings

A E  96% conclude L || A L 53% conclude E
AB E 96%conclude L || AB L 16% conclude E
AC E 38%conclude L || AC L  55% conclude E
A E  46% conclude L || A L 69% conclude E
AB E 4% conclude L AB L 69% conclude E
AC E 63%conclude L || AC L 44% conclude E

Table 3. The drawn conclusions in the experiment of Byrne. The different cases will
be denoted by the word obtained by concatenating the conditionals and the fact like
AE or AL for the cases in the first row of the table.

the library is to finish an essay and, consequently, not having to finish an essay
becomes an abnormality for the second implication. Alltogether, for the cases
AE and ACE we obtain the programs

Pap ={l<+eA—aby, e« T, aby + L},
Pace ={l<eN—aby, e T, aby <= -0, = 0N\ —aby, aby < —e}

with Mp,, = ({e, ¢}, {ab1}) and Mp,., = ({e},{abs2}), where ¢, €, 0 and ab
denote that she will study late in the library, she has an essay to finish, the library
stays open and abnormality, resp. Hence, Mp,,(¢) = T and Mp,.,(¢) = U.
Thus, WCS can model the suppression of a previously drawn conclusion.

For the examples in the second column of Table 3 abduction is needed. E.g.,
for the case ABL we obtain the program

Pap ={l < eN—aby, aby < L, £+t A—abs, abs + L}

with Mp,, = (0, {aby, abs}), where ¢ denotes that she has a textbook to read.
The observation O = ¢ can be explained by & = {e < T} and & = {t + T}.
In order to adequately model Byrne’s selection task, we have to be skeptical as
otherwise-being credoluous—we would conclude that she has an essay to finish.

A complete account of Byrne’s selection task under WCS is given in [10,21].



D F 3 7 beer  coke 22yrs  16yrs
89% 16% 62% 25% 95% 0.025% 0.025% 80%
Table 4. The results of the abstract and social case of the selection task, where the

first row gives the symbol(s) on the cards and the second row shows the percentage of
participants which turned it.

(@] & Mop,.ue turn
D {D<«+ T} ({D,3},ab1) yes
F {F«+ T} (F, ab1) no
3 {D+ T} ({D,3},ab1) wyes
7T {7+ T} (7, ab1) no

Table 5. The computational logic approach for the abstract case of the selection task.

3.2 The Selection Task

In the original (abstract) selection task [31] participants were given the condi-
tional if there is a D on one side of the card, then there is 3 on the other side and
four cards on a table showing the letters D and F' as well as the numbers 3 and 7.
Furthermore, they know that each card has a letter on one side and a number on
the other side. Which cards must be turned to prove that the conditional holds?

Griggs and Cox [16] adapted the abstract task to a social case. Consider the
conditional if a person is drinking beer, then the person must be over 19 years
of age and again consider four cards, where one side shows the person’s age and
on the other side shows the person’s drink: beer, coke, 22yrs and 16yrs. Which
drinks and persons must be checked to prove that the conditional holds?

When confronted with both tasks, participants reacted quite differently as
shown in Table 4. Moreover, if the conditionals are modeled as implications in
classical two-valued logic, then some of the drawn conclusions are not valid.

The Abstract Case  This case is artificial and there is no common sense knowl-
edge about the conditional. Let D, F', 3, and 7 be propositional variables denot-
ing that the corresponding symbol or number is on one side of a card. Follow-
ing [24], we assume that the given conditional is viewed as a belief and repre-
sented as a clause in

Pa(; = {3 «—~ DA _‘abl, ab1 — L},

where the negative fact was added as there are no known abnormalities. We
obtain Mp,, = (0, ab;) and find that this model does not explain any symbol
on the cards. Let Age ={D + T, D+ L, F« T, F« L, 7+ T, 7+ 1}
in the abductive framework (Puc, Aqc, 0, Fwes). Table 5 shows the explanations
for the cards with respect to this framework.

In case D was observed, the least model maps also 3 to T. In order to be
sure that this corresponds to the real situation, we need to check if 3 is true.



case Pse Mop,, Euwes 0 bA—abs  turn

beer  {abz + L,b<+ T} (b, ab2) no yes
coke  {aba + Lo+ L1} (0,{b, ab2}) yes no
22yrs  {abs < Lo+ T} (o0, aba) yes no
16yrs  {aba < L0+ L} (0,{o,ab2}) no yes

Table 6. The computational logic approach for the social case of the selection task.

Therefore, the card showing D is turned. Likewise, in case 3 is observed, D is
also mapped to T, which can only be confirmed if the card is turned.

The Social Case  In this case most humans are quite familiar with the condi-
tional as it is a standard law. They are also aware-it is common sense knowledge—
that there are no exceptions or abnormalities. Let o represent a person being
older than 19 years and b a person drinking beer. The conditional can be repre-
sented by o <— b A —abs and is viewed as a social constraint which must follow
logically from the given facts. Table 6 shows the four different cases.

One should observe that in the case 16yrs the least model of the weak comple-
tion of Py, i.e. (B, {0, aba}), assigns U to b and, consequently, to both, b A —absy
and o < b A —aby, as well. Overall, in the cases beer and 16yrs the social
constraint is not entailed by the least L-model of the weak completion of the
program. Hence, we need to check these cases out and, hopefully, find that the
beer drinker is older than 19 and that the 16 years old is not drinking beer.

A complete account of the selection task under WCS is given in [6].

3.3 The Belief-Bias Effect

Evans et. al. [12] made a psychological study showing possibly conflicting pro-
cesses in human reasoning. Participants were confronted with syllogisms and had
to decide whether they are logically valid. Consider the following syllogism:

No addictive things are inexpensive. (PREMISEL)
Some cigarettes are inexpensive. (PREMISE2)
Therefore, some addictive things are not cigarettes. (CONCLUSION)

The conclusion does not follow from the premises in classical logic: If there are
inexpensive cigarettes but no addictive things, then the premises are true, but
the conclusion is false. Nevertheless, most participants considered the syllogism
to be valid. Evans et. al. explained the answers by an unduly influence of the
participants’ own beliefs.

Before we can model this line of reasoning under WCS, we need to tackle
the problem that the head of a program clause must be an atom, whereas the
conclusion of the rule if something is inexpensive, then it is not addictive® is a

5 (PREMISEL) can be formalized in many syntactically different, but semantically
equivalent ways in classical logic. We have selected a form which allows WCS to
adequately model the belief-bias effect.



negated atom. If the relation symbol add is used to denote addiction, then this
technical problem can be overcome by introducing a new relation symbol add’,
specifying by means of the clause

add(X) + —add'(X) (1)

that add’ is the negation of add under WCS and requiring by means of the
integrity constraint

TCoua = {L  add(X) A ~add' (X)}

that add and add’ cannot be simultaneously true.
We can now encode (PREMISEL) following Stenning and van Lambalgen’s
idea to represent conditionals by licences for implications [30]:

add’ (X) < inex(X) A —~aby(X), abi(X) + L. (2)

As for (PREMISE2), Evans et. al. have argued that it includes two pieces of
information. Firstly, there exists something, say a, which is a cigarette:

cigla) < T. (3)

Secondly, it contains the following belief that humans seem to have:
Cigarettes are inexpensive. (B1asl)

This belief implies (PREMISE2) and biases the process of reasoning towards a
representation such that we obtain:

inex(X) < cig(X) A —aba(X), aba(X) + L. (4)

Additionally, it is assumed that there is a second piece of background knowledge,
viz. it is commonly known that

Cigarettes are addictive, (B1as2)

which in the context of (1) and (2) can be specified by stating that cigarettes
are abnormalities regarding add’:

aby(X) + cig(X). (5)

Alltogether, let Pyqq be the program consisting of the clauses (1)-(5). Because
(CONCLUSION) is about an object which is not necessarily a we need to add
another constant, say b, to the alphabet underlying P,q4qs. We obtain

Mep,,, = {cig(a), inex(a), abi(a), add(a)}, {abz(a), aba(b), add’ (a)}).

Turning to (CONCLUSION) we consider its first part as the observation O =
add(b) which needs to be explained with respect to the abductive framework

<Padd7 {C“}(b) <~ Ta Cig(b) <~ J—}7ICacl117 ):wcs>~
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We find two minimal explanations £ = {cig(b) < L} and &t = {cig(b) + T}
leading to the minimal models

—

a),inex(a), abi(a), add(a), add(b)},

a), aby(b), add’(a), cig(b), inex(b), aby (b), add’' (b)} ),

a), inex(a), aby(a), add(a), cig(b), inex(b), aby (b), add(b)},
a), aby(b), add’(a), add' (b)}),

Mp e, = < {Cig
{abg
Mp,auer = < {Cig
{ab2

—

—_—~

respectively. Because under Mp,,,ue, all known addictive objects (a and b)
are cigarettes and under Mp, ,ue, the addictive object b is not a cigarette,
(ConcLusioN) follows creduluously, but not skeptically.

On the other hand, the two explanations £, and &t do not seem to be equally
likely given (PREMISEL) and (B1As1). Rather, £, seems to be the main explana-
tion whereas £7 seems to be the exceptional case. Pereira and Pinto [26] have in-
troduced so-called inspection points which allow to distinguish between main and
exceptional explanations in an abductive framework. Formally, they introduce a
meta-predicate inspect and require that if inspect(A) < T or inspect(A) + L
are elements of an explanation £ for some literal or observation L, then either
A< T or A<+ L must bein £ as well and, moreover, A - L or A <— T must
be elements of explanations for some literal or observation L’ # L, where A is a
ground atom.

With the help of inspection points, the program P,q4q can be rewritten to

add = (Pada \ {ab1(X) ¢ cig(X)}) U {aby (X) « inspect(cig(X))}

and the explanation O = add(b) is to be explained with respect to the abductive
framework (P’ ;;, AL ui>ZCadds Fwes), Where

‘A;dd = { ng(b) «— Ta ng(b) A L7
inspect(cig(b)) < T, inspect(cig(b)) < L,
inspect(cig(a)) < T, inspect(cig(a)) < L }.

Now, &, is the only explanation for add(b) and, hence, (CONCLUSION) follows
skeptically in the revised approach.

More details about our model of the belief-bias effect and abduction using
inspection points can be found in [27,28].

3.4 Spatial Reasoning

Consider the following spatial reasoning problem. Suppose it is known that a
ferrari is left of a porsche, a beetle is right of the porsche, the porsche is left of
a hummer, and the hummer is left of a dodge. Is the beetle left of the hummer?

The mental model theory [22] is based on the idea that humans construct so-
called mental models, which in case of a spatial reasoning problem is understood

11



as the presentation of the spatial arrangements between objects that correspond
to the premises. In the example, there are three mental models:

ferrari porsche beetle hummer dodge
ferrari porsche hummer beetle dodge
ferrari porsche hummer dodge beetle

Hence, the answer to the above mentioned question depends on the construction
of the mental models.

In the preferred model theory [29] it is assumed that humans do not con-
struct all mental models, but rather a single, preferred one, and that reasoning
is performed with respect to the preferred mental model. The preferred mental
model is believed to be constructed by considering the premises one by one in
the order of their occurrence and to place objects directly next to each other
or, if this impossible, in the next available space. For the example, the preferred
mental model is constructed as follows:

ferrari porsche

ferrari porsche beetle

ferrari porsche beetle hummer
ferrari porsche beetle hummer dodge

Hence, according to the preferred model theory, the beetle is left of the hummer.

In [8] we have specified a logic program P taking into account the premises of
a spatial reasoning problem such that Mp corresponds to the preferred mental
model. Moreover, within the computation of Mp as the least fixed point of &p,
the preferred mental model is constructed step by step as in [29].

3.5 Conditionals

Conditionals are statements of the form if condition then consequence. In this
paper we distinguish between indicative and subjunctive (or counterfactual) con-
ditionals. Indicative conditionals are conditionals whose condition is either true
or unknown; the consequence is asserted to be true if the condition is true. On
the contrary, the condition of a subjunctive or counterfactual conditional is ei-
ther false or unknown; in the counterfactual circumstance of the condition being
true, the consequence is asserted to be true.5 We assume that the condition and
the consequence of a conditional are finite and consistent sets of literals.

Conditionals are evaluated with respect to some background information
specified as a program and a set of integrity constraints. More specifically, as
the weak completion of each program admits a least L-model, conditionals are
evaluated under the least L-model of a program. In the reminder of this section
let P be a program, ZC be a finite set of integrity constraints, and Mp be the
least L-model of weP such that Mp satisfies ZC.

6 In the literature the case of a condition being unknown is usually not explicitely
considered; there also seems to be no standard definition for indicative and counter-
factual conditionals.
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In this setting we propose to evaluate a conditional cond(C,D) as follows,
where C and D are finite and consistent sets of literals:

I Mp(C) =T and Mp(D) =T, then cond(C,D) is true.

LI Mp(C) =T and Mp(D) = L, then cond(C, D) is false.

I Mp(C) =T and Mp(D) = U, then cond(C, D) is unknown.

. If Mp(C) = L, then evaluate cond(C, D) with respect to M ey (p,s),
where S={L eC | Mp(L)=1}.

5. If Mp(C) = U, then evaluate cond(C,D) with respect to Mp/, where

- P =rev(P,S)UE,

— & is a smallest subset of C and £ C A,,(p,s) is a minimal explanation
for C \ S such that Mp/(C) = T.

In words, if the condition of a conditional is true, then the conditional is an
indicative one and is evaluated as implication in L-logic. If the condition is false,
then the conditional is a counterfactual conditional. In this case, i.e., in case 4,
non-monotonic revision is applied to the program in order to reverse the truth
value of those literals, which are mapped to false.

The main novel contribution concerns the final case 5. If the condition C of
a conditional is unknown, then we propose to split C into two disjoint subsets S
and C \ S, where the former is treated by revision and the latter by abduction.
In case C contains some literals which are true and some which are unknown
under Mp, then the former will be part of C \ S because the empty explanation
explains them. As we assume S to be minimal this approach is called minimal
revision followed by abduction (MRFA). Furthermore, because revision as well
as abduction are only applied to literals which are assigned to unknown, case 5
is monotonic.

As an example consider the forest fire scenario taken from [4]: The condi-
tional cond(—dl, —ff), if there had not been so many dry leaves on the forest floor,
then the forest fire would not have occurred, is to be evaluated with respect to

> W N

Py = {ff < IA—aby, 1 T, aby = —dl, dl < T},

which states that lightning (1) causes a forest fire (ff) if nothing abnormal (aby),
is taking place, lightning happened, the absence of dry leaves (dl) is an abnor-
mality, and dry leaves are present. We obtain Mp, = ({dl, 1, ff},{ab1}) and
find that the condition —dl is false. Hence, we are dealing with a counterfactual
conditional. Following Step 4 we obtain & = {—dl},

rev(Pg,—dl) = {ff < IA—aby, 1 < T, aby < —dl, dl + L}

and Mey(py —ary = ({1, ab1},{dl, ff}). Because ff is mapped to false under this
model, the conditional is true.
Let us extend the example by adding arson (a) causes a forest fire:

Pga = Py U{ff ¢ aA—aby, aby + L}

We find Mp,, = ({dl, 1, ff},{ab1, aba}) and M eo(Ppa,—dl) = ({1, ab1},{dl, ab2}).
Under this model ff is unknown and, consequently, cond(—dl, —ff) is unknown
as well.
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As final example consider Py, and the conditional cond({ff,—dl},a): if a
forest fire occurred and there had not been so many dry leaves on the forest
floor, then arson must have caused the fire. Because the condition {ff,—dl} is
false under Mp,, we follow Step 4 and obtain § = {-dl},

1ev(Ppa, ndl) = (Pga \ {dl + T}) U {dl + L}

and Myey(py,,—ary = ({1, ab1},{dl, abz2}). One should observe that ff as well as
the condition {ff,~dl} are unknown under this model. Hence, we follow Step 5,
consider the abductive framework

(rev(Pga, ~dl), {a  T,a + L}, 0, Ewes)

and learn that {ff,—dl} can be explained by {a < T}. Hence, by MRFA we
obtain as final program rev(Pgq, ~dl) U {a < T} and find

Mrsv(?’/fmﬁdl)u{m—T} = <{l’ ablvﬁv a’}7 {dlv ab2}>'

Because a is mapped to true under this model, the conditional is true as well.
More details about the evaluation of conditionals under WCS can be found
in [7,9].

4 Conclusion

I have presented the weak completion semantics (WCS) and have demonstrated
how various human reasoning tasks can be adequately modeled under WCS. To
the best of my knowledge, WCS is the computational logic based approach which
can handle most human reasoning tasks within a single framework. For example,
[30] discusses only the selection task in detail and mentions the selection task,
whereas [24] discusses the selection task in detail and mentions the suppression
task.

But there are many open questions. I only claim that conditionals are ade-
quately evaluated as shown in Section 3.5; this claim must be thoroughly tested.
We may also consider scenarios, where abduction needs to be applied to satisfy
the consequent of a conditional. The connectionist model reported in 2.6 does
not yet include abduction and we are unaware of any connectionist realization
of sceptical abduction.

Acknowledgements 1 like to thank Michiel van Lambalgen for the discussions
at the ICCL summer school 2008 which initialized this research. Carroline Dewi
Puspa Kencana Ramli wrote an outstandings master’s thesis in which she devel-
oped the formal framework of the WCS including the connectionist realization;
she has received the EMCL best master’s thesis award 2009. The relationship
between WCS and WFS was established jointly with Emmanuelle-Anna Dietz
and Christoph Wernhard. Abduction was added to the framework with the help
of Emma, Christoph and Tobias Philipp. The ideas underlying the revision op-
erator were developed jointly with Emma and Luis Moniz Pereira.
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Abstract. Psychological experiments on syllogistic reasoning have shown
that participants did not always deduce the classical logically valid con-
clusions. In particular, the results show that they had difficulties to rea-
son with syllogistic statements that contradicted their own beliefs. This
paper discusses syllogisms in human reasoning and proposes a formal-
ization under the weak completion semantics.

1 Introduction

Evans, Barston and Pollard [10] made a psychological study about deductive rea-
soning, which demonstrated possibly conflicting processes in human reasoning.
Participants were presented different syllogisms, for which they had to decide
whether these were (classical) logically valid. Consider S,;;:

PREMISE 1 No nutritional things are inexpensive.
PREMISE 2 Some vitamin tablets are inexpensive.
CONCLUSION Therefore, some vitamin tablets are not nutritional.

The conclusion necessarily follows from the premises. However, approximately
half of the participants said that this syllogism was not logically valid. They
were explicitly asked to logically validate or invalidate various syllogisms. Ta-
ble 1 gives four examples of syllogisms, which have been tested in [10]. If par-
ticipants judged that “the conclusion necessarily follows from the statements in
the passage, [you]” they ”should answer ‘yes,” otherwise ‘no’.” The last column
shows the percentage of the participants that believed the syllogism to be valid.
Evans, Barston and Pollard asserted that the participants were influenced by
their own beliefs, their so-called belief bias, where we distinguish between the
negative and the positive belief bias [11]. The negative belief bias, i.e., when a
support for the unbelievable conclusion is suppressed, happens for 56% of the
participants in S,;. A positive belief bias, i.e., when the acceptance for the be-
lievable conclusion is raised, happens for 71% of the participants in S.;,. As
pointed out in [14], Wilkins [32] already observed that syllogisms, which conflict
with our beliefs are more difficult to solve. People reflectively read the instruc-
tions and understand well that they are required to reason logically from the
premises to the conclusion. However, the results show that their intuitions are
stronger and deliver a tendency to say ‘yes’ or ‘no’ depending on whether it
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Type Case %

No police dogs are vicious.
Some highly trained dogs are vicious. 89
Therefore, some highly trained dogs are not police dogs.

valid and
o9 helievable

No nutritional things are inexpensive.
Some vitamin tablets are inexpensive. 56
Therefore, some vitamin tablets are not nutritional.

valid and

it ynbelievable

. . No millionaires are hard workers.
invalid and

Srich unbelievable Some rich people a(’e‘hard workers. . 10
Therefore, some millionaires are not rich people.
. . No addictive things are inexpensive.
invalid and . . .
S Some cigarettes are inexpensive. 71

9 believabl TR ,
chevable Therefore, some addictive things are not cigarettes.

Table 1. Examples of four kinds of syllogisms. The percentages are summarized results
over three experiments and show the rate that the conclusion is accepted to be valid [10].

is believable [9]. Various theories have tried to explain this phenomenon. Some
conclusions can be explained by converting the premises [2] or by assuming that
the atmosphere of the premises influences the acceptance for the conclusion [33].
Johnson-Laird and Byrne [20] proposed the mental model theory [19], which
additionally supposes the search for counterexamples when validating the con-
clusion. These theories have been partly rejected or claimed to be incomplete.
Evans et al. [10,12] proposed a theory, which is sometimes referred to as the
selective scrutiny model [1,14]. First, humans heuristically accept any syllogism
having a believable conclusion, and only check on the logic if the conclusion
contradicts their belief. Adler and Rips [1] claim that this behavior is rational
because it efficiently maintains our beliefs, except in case if there is any evidence
to change them. It results in an adaptive process, for which we only make an
effort towards a logical evaluation when the conclusion is unbelievable. It would
take a lot of effort if we would constantly verify them even though there is no
reason to question them. As people intend to keep their beliefs as consistent as
possible, they invest more effort in examining statements that contradict them,
than the ones that comply with them. However, this theory cannot fully explain
all classical logical errors in the reasoning process. Yet another approach, the
selective processing model [8], accounts only for a single preferred model. If the
conclusion is neutral or believable, humans attempt to construct a model that
supports it. Otherwise, they attempt to construct a model, which rejects it.

As summarized in [14], there are several stages in which a belief bias can take
place. First, beliefs can influence our interpretation of the premises. Second, in
case a statement contradicts our belief, we might search for alternative models
and check whether the conclusion is plausible.

Stenning and van Lambalgen [30] explain why certain aspects influence the in-
terpretations made by humans when evaluating syllogisms and discuss this in
the context of mental models. They propose to model human reasoning in a
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two step procedure. First, human reasoning should be modeled towards an ad-
equate representation. Second, human reasoning should be adequately modeled
with respect to this representation. In our context, the first step is about the
representational part, that is, which our beliefs influence the interpretation of
the premises. The second step is about the procedural part, that is, whether we
search for alternative models and whether the conclusion is plausible.

After we have specified some preliminaries, we explain in Section 3 how the just
discussed four cases of the syllogistic reasoning task can be represented in logic
programs. Based on this representation, Section 4 discusses how beliefs and back-
ground knowledge influences the reasoning process and shows that the results
can be modeled by computing the least models of the weak completion.

2 Preliminaries

The general notation, which we will use in the paper, is based on [15,22].

2.1 Logic Programs

We restrict ourselves to datalog programs, i.e., the set of terms consists only of
constants and variables. A logic program P is a finite set of clauses of the form

where n > 0 with finite n. A is an atom and L;, 1 < i < n, are literals. A
is called head of the clause and the subformula to the right of the implication
sign is called body of the clause. If the clause contains variables, then they are
implicitly universally quantified within the scope of the entire clause. A clause
that does not contain variables, is called a ground clause. In case n = 0, the
clause is a positive fact and denoted as

A« T.

A negative fact is denoted as
A+ 1,

where true , T, and false, L, are truth-value constants. The notion of falsehood
appears counterintuitive at first sight, but programs will be interpreted under
their (weak) completion where we replace the implication by the equivalence
sign. We assume a fixed set of constants, denoted by CONSTANTS, which is
nonempty and finite. constants(P) denotes the set of all constants occurring
in P. If not stated otherwise, we assume that CONSTANTS = constants(P).

gP denotes ground P, which means that P contains exactly all the ground
clauses with respect to the alphabet. atoms(P) denotes the set of all atoms
occurring in P. If atom A is not the head of any clause in P, then A is undefined
in P. The set of all atoms that are undefined in P, is denoted by undef(P).
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F|-F ATU L VITU L —|TU L < |TUL

T L TITU L TITTT TITTT TITUL
1T uluu L uTuU U UUTT UluTu
ulu i 1TulL lTliuT INIRVES

Table 2. T, L, and U denote true, false, and unknown, respectively.

2.2 Three-Valued Lukasiewicz Semantics

We consider the three-valued Lukasiewicz Semantics [23], for which the corre-
sponding truth values are T, L and U, which mean true, false and unknown,
respectively. A three-valued interpretation I is a mapping from formulas to a set
of truth values {T,_L,U}. The truth value of a given formula under [ is deter-
mined according to the truth tables in Table 2. We represent an interpretation
as a pair I = (I'T,I+) of disjoint sets of atoms where I'T is the set of all atoms
that are mapped to T by I, and I+ is the set of all atoms that are mapped to L
by I. Atoms, which do not occur in IT U+, are mapped to U. Let I = (I'T, I+)
and J = (JT,J+) be two interpretations: I C J iff IT € JT and I+ C J*.
I(F) = T means that a formula F' is mapped to true under I. M is a model of
g P if it is an interpretation, which maps each clause occurring in gP to T. I is
the least model of g P iff for any other model J of g P it holds that I C J.

2.3 Reasoning with Respect to Least Models
Consider following transformation for g P:

1. Replace all clauses in g P with the same head A < Body,, A < Body,, . ..
by the single expression A <— Body,; V Body,,V . ...

2. If A € undef(gP), then add A «+ L.

3. Replace all occurrences of < by <.

The resulting set of equivalences is called the completion of g'P [3]. If Step 2 is
omitted, then the resulting set is called the weak completion of gP (wcgP). In
contrast to completed programs, the model intersection property holds for weakly
completed programs [17]. This guarantees the existence of a least model for every
program. Stenning and van Lambalgen [30] devised such an operator, which has
been generalized for first-order programs by [16]: Let I be an interpretation
in @SVLJD(I) = <JT, JL>, where

JT = {A] there exists a clause A < Body € g P with I(Body) = T},
J+ = {A ] there exists a clause A < Body € g P and
for all clauses A < Body € g'P we find I(Body) = L}.

As shown in [16] the least fixed point of ®g, 1, p is identical to the least model
of the weak completion of gP under three-valued Lukasiewicz semantics. In the
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following, we will denote the least model of the weak completion of a given
program P by ImpwcgP. From I = (0,0), ImywcgP is computed by iterat-
ing @g,1. p. Given a program P and a formula F, P =™ F iff Im,wcg P(F) =
T for formula F. Notice that &g, differs in a subtle way from the well-known
Fitting operator @5, introduced in [13]: The definition of @5 is like that of
D1, except that in the specification of J* the first line “there exists a clause
A « Body € gP and” is dropped. The least fixed point of ¢z p corresponds
to the least model of the completion of gP. If an atom A is undefined in gP,
then, for arbitrary interpretations I it holds that A € J* in ®pp(I) = (JT,J+),
whereas if @g, 1, is applied instead of @, this does not hold for any interpreta-
tion 1.

The correspondence between weak completion semantics and well-founded se-
mantics [31] for tight programs, i.e. those without positive cycles, is shown in [6].

2.4 Integrity Constraints

A set of integrity constraints ZC comprises clauses of the form 1 < Body,
where Body is a conjunction of literals. Under three-valued semantics, there
are several ways on how to understand integrity constraints [21], two of them
being the theoremhood view and the consistency view. Consider ZC:

1+ -pAg.

The theoremhood view requires that a model only satisfies the set of integrity
constraints if for all its clauses, Body is false under this model. In the example,
this is only the case if p is true or if ¢ is false in the model. In the consistency
view, the set of integrity constraints is satisfied by the model if Body is unknown
or false in it. Here, a model satisfies ZC already if either p or ¢ is unknown.
Given P and set ZC, P satisfies ZC iff there exists I, which is a model for g P,
and for each L < Body € ZC, we find that I(Body) € {L,U}.

2.5 Abduction

We extend two-valued abduction [21] for three-valued semantics. The set of
abducibles Ap may not only contain positive but can also contain negative
facts:

{A+ T | Acundef(P)} U{A+«+ L| A€ undef(P)}.

Let (P, Ap,ZC, ™) be an abductive framework, £ C Ap and observation O
a non-empty set of literals.

O is explained by € given P and ZC iff
P Rmwve 0 PUE EM™C O and Impweg (P U E) satisfies IC.
O is ezplained given P and ZC iff
there exists an € such that O is explained by £ given P and ZC.
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We assume that explanations are minimal, that means, there is no other expla-
nation & C & for O. In case abducibles are not abduced as positive or negative
facts, they stay unknown in the least model of the weak completion. We distin-
guish between skeptical and credulous abduction as follows:

F follows skeptically from P, ZC and O iff O can be explained given P and ZC,
and for all minimal £ for O, given P and ZC, it holds that P U & E=mwe F.

F follows credulously from P, ZC and O iff there exists a minimal £ for O,
given P and ZC, and it holds that P U & mwe F.

3 Reasoning Towards an Appropriate Logical Form

Let us specify the syllogisms from the introduction in logic programs. We first
discuss a technical aspect that allows us to encode the negative consequences
of the premises. Section 3.2 covers the representational part and show how the
beliefs, which might influence the interpretation of the premises, are encoded.

3.1 Positive Encoding of Negative Consequences
The first premise of Sg,4 is

No police dogs are vicious.
and is equivalent to

If something is vicious, then it is not a police dog.
and If something is a police dog, then it is not vicious.

The consequences in both inferences are the negation of it is a police dog and
the negation of it is vicious, respectively. As the weak completion semantics does
not allow negative heads in clauses, we cannot represent these inferences in a
logic program straightaway. For every negative conclusion —p(X) we introduce
an auxiliary formula p’(X) together with the clause p(X) < —p/(X). We obtain
the following preliminary representation of the first premise of S 4,4 wrt vicious:!

police_dog' (X) < wvicious(X), police_dog(X) < —police_dog' (X),

where police_dog(X), police_dog’(X), and wicious(X) denote that X is a police
dog, X is not a police dog, and X is vicious, respectively. A model I = (IT,I+)
that contains both police_dog(X) and police_dog’(X) in IT should be invalidated.
This condition can be represented by the integrity constraint

TCpolice_dog = {L < police_dog(X) A police_dog'(X)},

and is to be understood as discussed in Section 2.4. For the following examples,
whenever there exists a p(X) and its p/(X) counterpart in P, we implicitly
assume ZC, = {L + p(X) Ap'(X)}.

! In the following we will only encode one of the inferences.
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3.2 Abnormality Predicates and Background Knowledge

Newstead and Griggs [25] have shown, that the universal quantifiers in natural
language are often understood as fuzzy quantifiers, which allow exceptions. In
some circumstances for all is understood as for almost all. They argue that
the statement all Germans are hardworking seems to permit exceptions and is
understood as a generalization about all Germans and not a statement, which
is true for each one.

This fuzzy interpretation of quantifiers seems to be in line with Stenning and
van Lambalgen’s suggestion to implement conditionals by default licenses for
implications [29,30]. They propose to introduce abnormality predicates, which
should be added to the antecedent of the implication, where the abnormality
predicate is initially assumed to be false. Consider again PREMISE 1 in Sg,g,
which can be understood as

If something is vicious and not abnormal (in that respect),
then it is not a police dog.
Nothing (by default) is abnormal (regarding the previous sentence).

This information together with the previously introduced clauses for PREMISE 1
in Sgog can now be encoded as:

police_dog' (X) + vicious(X) A =abgog (X),
police_dog(X) < —police_dog' (X),
abdog/(X) +— 1.

Sdog PREMISE 2 states that there are some highly trained dogs that are vicious.
This statement presupposes that there actually exists something, let us say a
new reserved (Skolem) constant a, for which the following is true:

highly_trained(a) + T and vicious(a) « T.
Paog represents the first two premises of Sgo4:

police_dog' (X)) « vicious(X) A =abgeg (X),
police_dog(X) + —police_dog’ (X),
abdng/(X) — J_,

highly _trained(a) < T,
vicious(a) « T.

We encode the first two premises of the other syllogisms similarly.
St PREMISE 2 states that there are some vitamin tablets, which are inexpen-
sive. We presuppose that there exists something, a, for which these facts are

true:
vitamin(a) < T and inex(a) < T.
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Additionally, it is commonly known that
The purpose of vitamin tablets is to aid nutrition.
This belief and the clause representing PREMISE 1 leads to

If something is a vitamin tablet, then it is abnormal
(regarding PREMISE 1 of Syit).

The program P,;; represents PREMISE 1 and PREMISE 2 together with the
background knowledge:

nutritional’ (X) < inex(X) A —ab(X),
nutritional (X)) < —nutritional’ (X),
ab(X) ¢ 1,
ab(X) + vitamin(X),

vitamin(a) < T,
inex(a) < T.

nutritional (X), nutritional’(X) denote X is nutritional, not nutritional, resp.

Srich PREMISE 2 states that there are some hard workers who are rich. We
presuppose that there is someone, let us say, a, for which these facts are true:

hard_worker(a) < T and rich(a) «+ T.

Prich represents PREMISE 1 and PREMISE 2 of S ep:

mil' (X) < hard_worker(X) A —ab(X),
mil(X) —|mzl (X),
ab(X)
rich(a) <
hard_worker(a) +

mil(X) and mil'(X) denote X is a millionaire and not a millionaire, resp.

Scig PREMISE 2 states that there are some cigarettes, which are inexpensive.
Again, we presuppose that there is something, a, for which these facts are true:
cigla) < T and inex(a) < T.

Additionally, it is commonly known that
Cligarettes are addictive.

This belief and the clause representing PREMISE 1 leads to
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If something is a cigarette, then it is abnormal
(regarding PREMISE 1 of Scig ).

As discussed by Evans et al. [10], humans seem to have a background knowledge
or belief, which might provide the motivation on whether to validate a syllogism.
A direct representation of PREMISE 2 is

There exists a cigarette, which is inexpensive. (1)
Additionally, in the context of PREMISE 1, we assume that
Compared to other addictive things, cigarettes are inexpensive. (2)

which implies (1) and biases the reasoning towards a representation. Note that (2)
only implies (1) because we understand quantifiers with existential import, i.e.,
for all implies there exists. This is a reasonable assumption when modeling hu-
man reasoning, as in natural language we normally do not quantify over things
that don’t exist. Furthermore, Stenning and an Lambalgen [30] have shown that
humans require existential import for the conditional to be true.

The belief bias represented by (2), together with the idea to represent condition-
als by a normal default permission for implication, leads to the conditional

If something is a cigarette and not abnormal, then it is inexpensive. (3)
Nothing (as a rule) is abnormal (regarding (3)).

Pcig represents the first two premises and the background knowledge in S, as
follows:
addictive’ (X) < inex(X) A —abgqq (X),
addictive(X) «+ —addictive’ (X),
abgga (X) < L,

abadd’(X) «— (’Zg(X)7
inex(X) < cig(X) A —abnes (X),
abmem(X) < L,
cigla) < T,

inex(a) < T,

addictive(X) and addictive’(X) denote X is addictive and not addictive, resp.

4 Reasoning with Respect to Least Models

This section deals with Stenning and van Lambalgen’s second step, and discusses
where a possible belief bias during the reasoning procedure can influence the re-
sult. We show how to compute the least model for each case and discuss whether
it represents the participants’ conclusions shown in the introduction.
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4.1 Valid Arguments

Paog represents Sgo4. Its weak completion, wegPgqg, is:

police_dog'(a) <> vicious(a) A —abgey (a),
police_dog(a) <+ —police_dog'(a),

abdog/(a) — L
highly_trained(a) <> T,
vicious(a) <> T

Its least model is:
{{ highly_trained(a), vicious(a), police_dog' (a)}, {police_dog(a), abao, (a)}).

This model entails the CONCLUSION of Sg,4, some highly trained dogs are not
police dogs. According to [10], Sgog is logically valid and psychologically believ-
able. No conflict arises neither at the psychological nor at the logical level, and
the majority concludes that this syllogism holds, which complies with the least
model of wegPgo.

The psychological results of the second syllogism, S, indicate that there seems
to be two kinds of participants each taking a different interpretation of the state-
ments. The group, which validated the syllogism, was not influenced by the bias
with respect to nutritional things. Accordingly, the logic program that represents
their view, corresponds to Py \ {ab(X) < vitamin(X)}. The weak completion
of g Pyt \ {ab(a) < vitamin(a)} is:

nutritional’ (a) <> inez(a) A —ab(a),
nutritional(a) < —nutritional’ (a),
ab(a) “ 1,

vitamin(a) ~ T,
inez(a) T,
The corresponding least model is:

({vitamin(a), inex(a), nutritional’ (a)}, {nutritional(a), ab(a)}),

which entails the conclusion, that some vitamin tables are not nutritional, and
indeed we can conclude that this syllogism is valid.

The other interpretation, where participants’ chose not to validate the syllo-
gism, is the group who has apparently been influenced by their belief. Their
interpretation of S, is represented by P, Its weak completion, we g Py, is:

nutritional’ (a) < inex(a) A —ab(a),
nutritional(a) < —nutritional’ (a),

ab(a) < LV vitamin(a),
vitamin(a) “ T,
inezx(a) ~ T.
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Its least model is:
({vitamin(a), inex(a),nutritional(a), ab(a)}, {nutritional’ (a)}).

The CONCLUSION of S,;; is not entailed. According to [10], S, is logically valid
but psychologically unbelievable. There arises a conflict at the psychological level
because we generally assume that the purpose of vitamin tablets is to aid nu-
trition. The participants who have been influenced by this belief concluded that
the syllogism does not hold, which complies with the least model of Imywc g Py;:.

4.2 Invalid Arguments

The third and the fourth cases of the syllogistic reasoning task cannot be mod-
eled straightforwardly as the first two cases. We assume that the belief has an
influence on the procedural part, that is, the reasoning process is biased. We can
model this by abduction, which has been explained in Section 2.5.

Prich represents Spicn. Its weak completion, we g Prich, is:

< hard_worker(a) A —ab(a),

mil' (a
il(a) < —mil' (a),

mil(a
ab(a

NN N N

(

(a) & L,
rich(a) < T,

(a) > T

hard_worker(a
Its least model is:
{{hard worker(a),rich(a), mil' (a)}, {ab(a),mil(a)}),

and states nothing about the CONCLUSION, some millionaires are not rich peo-
ple. Actually, the CONCLUSION in S, states something, which contradicts
PREMISE 2, and thus needs to be about something that cannot be the pre-
viously introduced constant a. According to our background knowledge, we
know that millionaires exist. Let us formulate this as an observation, let’s say
about b: O = {mil(b)}. If we want to allow to suppose truth or falsity of some-
thing about b with respect to Prich, say about the truth of hard_worker(b), we
can no longer assume that CONSTANTS = constants(Pc;), because Agp,,.,
would not contain any facts about b. Therefore, we specify that the new set
of constants in consideration is CONSTANTS = {a,b}. g Pyricn with respect to
CONSTANTS contains additionally three more clauses:

mil’ (b) + hard_worker(b) A —ab(b),
mil(b) < —mil’ (b),
ab(b) « L.

The set of abducibles, Agp,, ,, contains the following clauses:

hard_worker(b) « T, hard_worker(b) < L.
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& = {hard_worker(b) < L} is the only explanation for O. wcg (Pricp U E)
contains:

mil'(b) > hard _worker(b) A —ab(b),
mil(b) —|mzl (b),
ab(b) <

hard_worker(b) «» L.

Its least model, where Impwc g (Prier, UE) = (I, I4), contains:

"= {mil(b)},
L+ = {ab(b), mil' (b), hard_worker (b)}.

As this model does not confirm the CONCLUSION it does not validate S,icp.
According to [10] this case is quite easy to solve, because it is neither logically
valid nor believable. Almost no one validated S,;.;, which complies with the
least model of wc g (Pricn, U E).

Peig represents S.y. Its weak completion, weg Py, is:

"(a) + inex(a) A —abggq(a),
< —addictive’(a),

<—>J_\/czg( ),

addictive
addictive
abgqqr

a
a
a

cig(a

inex(a (czq(a) A abines(a)) VT,

(
(
(
(
(
(

NN N N NN

abines(a
Its least model of the weak completion is:
{{cig(a), inex(a),addictive(a), ab,qq (a)}, {addictive’ (a), abipe.(a)}),

which, similarly to the previous case, does not state anything about the CONCLU-
SION, some addictive things are not cigarettes. Again, the CONCLUSION of S, is
something, which cannot be about a. According to our background knowledge,
we know that addictive things exist. Let us formulate this again as an observa-
tion, say about b: O = {addictive(b)}, which needs to be explained. In order to
generate an explanation for O, let us define CONSTANTS = {a, b}. g Pricn, with
respect to CONSTANTS now additionally contains five more clauses:

addictive’ (b) < inex(b) A —abgqq (b),
addictive(b) < ﬂaddzctwe (),
abadd/(b)

) CZg( )

) czg(b) A =abines (b),

) <

abogar (b) <

inex(b) +
abmez (b

Given g Py, the set of abducibles, Agp,, , contains the following clauses:

cig(b) < T, cig(b) < L.
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O is true if addictive’(b) is false, which is false if inex(b) is false or abgqq:(b) is
true. inex(b) is false if cig(b) is false and abgqq: (b) is true if cig(b) is true. For O
we have two minimal explanations, £, = {cig(b) < L} and &1 = {cig(b) < T}.
The weak completion of g (Pc;y U €1 ) contains:

addictive’ (b) < inex(b) A —abgqq (b),
addictive(b) < —addictive’ (),

abgqqr (b) <> LV cig(b),

)

) &

) &

inex( “ czg(b) A =abipes (),

mex (b
cig(b

Its least model, where Imywcg (Peiy UEL) = (IT,I1) contains:

T = {addictive(b)},
L = {cig(b), inex(b), abaqar (b), abines (b)},

which entails the CONCLUSION of S.i. As &1 is yet another explanation for
O, the CONCLUSION, that b is not a cigarette, only follows credulously. S
is logically invalid but psychologically believable and therefore causes a con-
flict [10]: S.iy does not follow logically from the premises; however, people are
biased and search for a model, which confirms their beliefs. Therefore, the ma-
jority concluded that this syllogism holds, which complies with the least model
of weg (Padd @] gl).

In [26,27], we show an extension of this case, where the conclusion follows skep-
tically. With help of meta predicates, we specify that the first premise describes
the usual and the second premise describes the exceptional case. That is, an
inexpensive cigarette is meant to be the exception not the rule, in the context
of things that are addictive and expensive.

5 Conclusion

The weak completion semantics has shown to successfully model various human
reasoning episodes [4,5,7,18,26,27]. This paper presents yet another human rea-
soning task modeled under the weak completion semantics. As in our previous
formalizations, we follow Stenning and van Lambalgen’s two step approach. We
motivate our assumptions based on results from Psychology, where syllogisms in
human reasoning have been investigated extensively in the past decades.

As has been shown in the previous formalizations, the advantage of the weak
completion semantics over other logic programming approaches, is, that unde-
fined atoms stay unknown, instead of becoming false. The syllogistic reasoning
tasks, which have been discussed in the literature so far, have never accounted to
give the option ‘I don’t know’ to the participants. As has been discussed in [24],
participants who say that no valid conclusion follows, might have problems to ac-
tually find a conclusion easily and possibly mean that they simply do not know.
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They also point to [28], who suggest that, if a conclusion is stated as being not
valid, this could just simply mean that the reasoning process is exhausted. An
experimental study, which would allow the participants to distinguish between

‘1

don’t know’ and ‘not valid’, might possibly give us more insights about their

reasoning processes and identify where exactly the belief bias takes effect.

6
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Abstract. The paper discusses a multiple-logics proposal for cognitive modelling of
reasoning processes. It describes a staged view of human reasoning which takes inter-
pretation seriously, and provides a non-technical introduction to a logic fit for model-
ling interpretative processes — Logic Programming. It summarises some results of the

multiple-logics approach obtained with modelling psychological data, and with em-

pirical tests of a combined use of reasoning strategies by human subjects. It draws
some interim conclusions, and proposes avenues for future research.

1 Introduction

We are interested in computational models for human reasoning at the performance level.
Cognitive modelling amounts to the use of some formalism in order to provide a productive
description of cognitive phenomena. “Productive” has an explanatorily-oriented, twofold
meaning: on the one hand, the description helps a better understanding of the phenomena, and
second, it can be used to generate empirical predictions aiming to refine the theory that backs
the model. By ‘performance model’ we imply that the formalism is actually used by real human
agents in real reasoning contexts, wittingly or not. The reasoning process at the psychological
level is an instantiation of the formal model. The ‘wittingly or not” specification points to the
need to include those forms of reasoning which are merely implicit, or below-awareness. A
model of such reasoning processes involved in, e.g., understanding an utterance in one’s native
language, amounts to expressing these unwitting processes and subsequent behaviors ‘as if” they
were the result of computations expressed in a formal language.

We propose that the highest level of explanatory productivity, or information gain, can be
achieved by a multiple-logics approach to cognitive modelling. In brief, this is so because of the
complex differences between different kinds of reasoning which cannot be adequately captured
by the formal properties of a single system. A multiple-logics approach is mandated because an
all-purpose logic of human reasoning conflicts with the many things that humans may use
reasoning for [1], e.g., to prove beyond reasonable doubt that the accused is guilty of the crime,
to make the child understand the moral behind the story of the Ant and the Grasshopper. This
would remain so even if all of the many formal candidates could be reconstructed in a single
highly expressive logical system, because its use in human reasoning would be too resource-
demanding; in other words, computational efficiency is an opportunity cost of expressive
power. Performance models should at all points keep the balance.

Cognitive modelling from a multiple-logics perspective is also sanctioned by the history of
psychological research. For instance, the withdrawal of previously validly derived conclusions
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when new information is added to the premise set [6], does not afford description in terms of a
monotonic formalism such as classical logic. Everyday reasoning is most often non-monotonic.
However monotonicity can be triggered by, e.g., by task instructions that create a dispute setting
[1]. The bottom line is that different forms of reasoning, meant to achieve different goals,
should be modelled in a formalism that bears the context-dependent properties of the inferences.

The main purpose of the current paper is to review the ‘bridging potential’ of a multiple-
logics approach. The roadmap is as follows. We start in Section 2 by introducing the distinction
between two kinds of reasoning, interpretation and further reasoning from that interpretation.
We introduce the working example of a formalism, namely Logic Programming, and emphasise
its application to interpretative processes. The remainder of the paper develops the argument
based on taking interpretation seriously. Section 3 describes in detail a case of pre-linguistic
implicit reasoning and summarises the modelling work in [35]. It shows how the logical and
psychological aspects of reasoning can be integrated. Section 4 exemplifies the multiple-logics
approach by describing the use of Logic Programming and fast and frugal heuristics for better
understanding subjects’ reasoning processes; we hemphasize the consequential methodological
advantage of theoretical unification of the fields of reasoning and of judgement and decision-
making. We end with some suggestions for further development of the multiple-logics
approach, based on collaborative modelling among different systems.

2 The Proposed View of Reasoning and an Example of Formal Implemen-

tation

We are mostly concerned with everyday reasoning, i.e., the processes involved in habitual
activities such as conversations, disputes, stories, demonstrations, etc. Stenning and van
Lambalgen [32] set forth two kinds of processes: reasoning fo an interpretation of the context,
and reasoning from that interpretation.

Language processing is perhaps the clearest instantiation of the two reasoning stages. When
speakers ask their interlocutors a question, they must first process the string of words in the
context (linguistic and extra-linguistic) and produce an interpretation or model of it; in order to
achieve the default purpose of communication fast and efficiently, these computations are aimed
at the one model intended by the speakers. Because of this assumption that the right
interpretation is in terms of what “(s)he must have meant to ask”, the interpretative process is a
paradigmatic case of credulous or cooperative reasoning. But this is only the beginning of the
story. Should the first interpretation be unsatisfactory, e.g., being asked by one’s life-time
partner the question “How old are you?”, hearers might resort to compensatory mechanisms,
e.g., taking into account metaphorical meanings. Once a model is available the interlocutors can
start to compute what they believe to be the contextually appropriate answer — this is reasoning
from the interpretation. The reasoning path is not linear, e.g., additional utterances usually
require model updates or re-computations of the initial discourse model.

The focus of cooperative interpretation on constructing a minimal contextual model can be
described as the use of closed-world assumptions to frame the inferential scope [32, 34]. The
basic format is the assumption for reasoning about abnormalities (CWA), which prescribes that,
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if there is no positive information that a given event must occur, one may assume it does not
occur. These ‘given events’ are abnormalities with respect to the smooth, habitual running of a
process; for example, a metaphorical interpretation is abnormal with respect to the literal one,
and thus disregarded in minimal model construction. A conditional abnormality list is attached
to each conditional; the list should be viewed as at the back of reasoners’ minds [35]. That is,
abnormalities are reasoned about only when evidence arrives (otherwise the assumption would
be self-defeating). CWAs require construction of a minimal interpretation based only on what
that is derivable from explicitly mentioned information. This is why they ‘frame’ [25] reasoning
to manageable dimensions. Interpretation with CWAs is thus a plausible candidate to model the
reasoning of agents with limited memory and computational resources in real-time.

The CWA is captured by all three parameters of Logic Programming — LP (syntactic,
semantic, and definition of validity), a computational logic designed for automated planning
[20]; it is the formal system that we use to instantiate our proposal. We view the utilization of
such a formalism to model human inferences as a contribution to the bridge that this workshop
seeks to build. Its cognitive plausibility has been shown from a variety of perspectives: it has
been used to construct a formal semantics of tense [34], it helped understanding the formal
structure of various cognitive tasks (e.g., Wason’s task, the suppression task, the false belief
task — dealt with in [32]), which in turn led to fine-grained experimental predictions (see [2] for
areview).

Whereas an extensional formal approach deals with sets of items and with relations between
those, an intensional one deals with characteristics and constitutive properties of the items in
these classes. Relatedly, Logic Programming is an intensional formalism because its completion
semantics is not directly truth-functional. We adopt the formal description of the logic set forth
in [32, 34].

The CWA provides the notion of valid inference in LP, as truth preserving inferences in
minimal models where nothing abnormal is the case. Relatedly, the LP conditional is
represented as p & ~ab 2 g — “If p and nothing abnormal is the case, then ¢”. Closed-world
reasoning manifests itself in that, unless positive evidence (i.e., either explicit mentioning, or
facts inferable from the database with the LP syntactic rules), the negation of the abnormality
conjunct holds true. The syntactic expression of closed-world reasoning is the derivation rule of

negation-as-failure — NAF. If a fact can be represented as the consequence of falsum L, thus it

cannot be derived by backwards reasoning from program clauses, its negation is assumed true
and the fact is thereby eliminated from the derivation. When resolving the query g given a
program with clauses p & ~ab 2 q and L>ab, g reduces to p & ~ab, from which p is derived
by means of NAF. Use of negation-as-failure in derivations means that derivation checks if a
query can be made true in a minimal model of the program. A minimal model is a ‘closed
world’ in the sense that facts not forced to occur by inferences over the program clauses using
the LP syntactic rules are assumed not to occur. The system’s three-valued Kleene semantics
(procedural in nature) warrants the construction of a unique minimal model, which is the only
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interpretation of concern of the current reasoning input'. Minimal models are provided by a
semantic restriction of logic program clauses, called completion. It is obtained by introducing
disjunction between all the bodies (antecedents) with the same head (consequent) in a program,
and substituting implication with equivalence between the disjunctive body and the head.

The use of CWAs in interpretation is only the beginning of the intensional, or meaning-
directed part of reasoning. Computations of a minimal preferred interpretation have been
described at the psychological level in [32] as an interaction between the knowledge base of
long-term memory and incoming input (e.g., new discourse statements, or new observations), in
search for relevant information. Novel input may override the assumption and lead to
subsequent model extensions by inclusion of the encountered abnormalities. This is a
constitutively difficult task because at any give point, the vast majority of the long-term
memory knowledge base is irrelevant. The Kleene semantics models this phenomenon by
setting propositions to value U (undecided), which can develop to either T or F as a result of
further inferences. The extensions of minimal models are also minimal. LP reasoning is thus
inherently non-monotonic. Because of this it aligns with both the efficiency and the flexibility
of everyday reasoning.

Let us relate this to the empirical sciences of human reasoning. What is most missing in the
literature is detailed consideration of a positive account of the mental processes of
interpretation, and of the interplay of the two forms of reasoning. In psychological experiments,
when subjects are presented with the premises of a syllogism, they must first make sense of the
information presented in order to be able to perform the inferences they are asked for.
Reasoning to an interpretation must be acknowledged at face value by cognitive scientists when
operationalizing theories into testable hypothesis, when deciding on the standards for response
evaluation, when interpreting the empirical data, and obviously, when setting forth
computational models for better understanding the cognitive phenomena. Despite a long period
of utter neglect?, recent work in the psychology of reasoning has started to acknowledge the role
of interpretation, e.g., [18, 29]. This is a salutary new direction which calls for development of
its consequences in modelling; consequently we argue that intensional formalisms are a
necessary (though certainly not sufficient) ingredient of models for reasoning.

3 Logic for Modelling Implicit Reasoning

1 Holldobler and Kencana Ramli [15] criticised the Kleene semantics used in [35] by reference to
modelling the suppression task [6]; these authors propose using the Lukasiewicz semantics
instead. A technical rejoinder is available in the Appendix. Here we wish to emphasize that
Byrne’s task calls for a cooperative interpretation of the experimental material. The syntactic
restrictions on LP conditionals on the other hand, e.g., non-iterability, allow completion to
succeed in providing a minimal model as a pre-fixed point in a cooperative context, where
epistemic trust is justified.

2 A notable exception here is [17].
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In a series of seminal studies with the head-touch task [12, 19], pre-linguistic infants have been
shown to engage in selective imitative learning. We first introduce the experiment. After
showing behavioral signs of being cold and wrapping a scarf around her shoulders, an adult
demonstrates to 14-month-olds an unfamiliar head touch as a new means to activate a light-box.
Half the infants see that the demonstrator’s hands are occupied holding the scarf while
executing the head action (Hands-Occupied condition — HO), the other half observe her acting
with hands visibly free after having knotted the scarf (Hands-Free condition — HF). After a one-
week delay subjects are given the chance to act upon the light-box themselves. They all attempt
to light-up the lamp; however reenactment of the observed novel means action with the head is
selective: 69% of the infants in the HF, and only 21% in the HO. More, [19] have shown that
selectivity is contingent on a communicative action demonstration. This involves that
throughout the demonstration session the experimenter behaves prosocially towards the infant,
using both verbal and non-verbal communicative-referential cues. When the action was
presented in a communicative context, the previous results were replicated. However, when the
novel action is performed aloof, without infant-directed gaze or speech, the reenactment rate is
always below chance level, and there is no significant difference between the HO and HF
conditions. Gergely and his colleagues propose that infants’ selectivity is underlain by a
normative understanding of human actions with respect to goals. That is, infants learn some
means actions but not others depending on the interpretation in terms of goals (teleological)
afforded by the observed context.

The model set forth in [35] adopts this inferential perspective from the standpoint of multi-
level teleology, i.c., a broad representation of goals that covers a whole range from physical
goals (e.g., turning on a light-box) to higher-order intentions and meta-goals (e.g., the adult’s
teaching intention, infants’ intentions to understand and to learn what is new and relevant)®. The
inferential engine is constraint logic programming (CLP). The model gives voice to infants’
interpretation of observations and to planning their own actions in the test phase. This voice is
spelled out in the language of the event calculus [32] — 14-month-olds’ observations and
relevant bits of causal knowledge are represented as event calculus program clauses, e.g.,
Initially(communication) — agent exhibits infant-directed communicative behaviour,
Terminates(contact, light-activity, tk*) — contact is the culminating point of the light-box
directed activity. Their teleological processing is called for and guided by the epistemic goals to
understand and to learn, represented as integrity constraints [21, 34]. CLP allows to express
higher-order goals as integrity constraints. These are peculiar conditional clauses which impose
local (contextual) norms on the computations; they are universally quantified (but see footnote
6). For instance, IF ?Initialy(communication) succeeds THEN ?HoldsAt(teachf , t) succeeds’

3 Multi-level teleology is based on Kowalski’s [21] distinction between achievement physical
goals, and maintenance goals.

4 txis a temporal constant.

5 Note that the semantics of the conditional in integrity constraints is an unsettled issue [21]. [36]
adopted a classical semantics.
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expresses the assignment of a pedagogical intention to the observed agent conditional on her
infant directed communicative behavior. When the antecedent is made true by the environment,
i.e., in the communicative conditions, the young reasoner must act such that the goal expressed
in the consequent becomes true. “teachf” is a parameterised fluent, i.e., a variable that must be
specialized to a constant in the course of resolution. Infants’ propensity for teleological
understanding has been represented as an unconditional integrity constraint, namely
?Happens(x,t), Initiates(x,f(x),t), gx = f(x) succeeds. It demands assigning a concrete goal to an
observed instrumental behaviour, i.e. finding a value for the Skolem function® f{x). The
requirement succeeds makes an existential claim with respect to a physical goal, i.e. there is
such a state as g, which is a function f{x) of an action x.

Contextual interpretation amounts to finding the means — ends structure. Given the program
clause Initially(communication) in the communicative condition, infants assign the adult the
pedagogical intention expressed in the consequent of the constraint; further computations must
unify parameter f with a concrete observed fluent, which is deemed to count as new and relevant
information. Infants goal assignment to the agent’s object-directed activity is done by resolving
the unconditional constraint mentioned above. A successful unification is sought by specializing
the function f{x) to a constant fluent from the narrative of events, given an evaluation of the
causal relations available in the contextual causal model. The model shows how backward
derivations from the constraint output the solution that the state light-on is the goal of contacting
the light-box with the head, which is the culminating point of the observed activity. This
represents infants’ teleological conjecture, expected to render the action context understandable.

Interpretation is then subserved by a plan simulation algorithm — infants verify the goal
conjecture by considering what they themselves would have done in order to achieve the goal
light-on. This view of inferential plan simulation, and not merely motor simulation as
traditionally construed, e.g., [26], is one of the main innovations brought about by this use of
CLP for modelling. In the HO condition the mismatch between infants’ closed-world plan
calling for default hand contact, and observation of head contact is resolved by reasoning that
the adult must use her hands for another goal, i.c., to hold the scarf in order not to be cold. The
situation is fully understandable, hence infants specialize parameter f in ?HoldsAt(teachf ,t) to
the object’s newly inferred function, light-on.

The HO simulationist explanation does not work in the HF condition — the adult’s free hands
are not required to fulfill any different goal, so why it is that she does not use them to activate
the object? Infants then integrate the adult’s previously assigned pedagogical intentions in the
explanatory attempt. Assigning a pedagogical intention to the reliable adult’s otherwise
incomprehensible head action renders it worth learning. Although touching a light box with the
head in order to light it up may not be the most efficient action for the physical goal, the model
proposes that it is considered efficient (and thereby reenacted) with respect to the adult’s

% This is needed to handle the combination of universal and existential quantification — the
existentially quantified variable within the scope of a universal quantifier is replaced with the
value of a function of the universally quantified variable.
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intention to share knowledge and the infant’s corresponding intention to learn.

In the test phase, upon re-encountering the light-box, infants plan their actions. The integrity
constraint that guides their computations is ?HoldsA#(learnf ,t), Happens(f’,t) succeeds; it
corresponds to the adult’s pedagogical intention, and it expresses a ‘learning by doing’ kind of
requirement. The outcome of interpretation, i.e., the means - ends structure of observations and
the corresponding specialization of parameter f, modulate the constraint resolution. It sets up the
physical goals that infants act upon in the test phase — either learn the new object’s function in
HO (upon specialization of f to light-on), or also learn how to activate it in HF (upon
specialization of f to contacthead). These goals are reduced to basic actions through the CLP
resolution rule of backwards reasoning, which prescribes infants’ observed behaviour. In the HF
condition thus, infants act upon two goals, learning the function and learning the means. The
former goal is reduced to default hand actions (as required by closed-world reasoning), whereas
the latter — to the novel head action. This explains infants’ performance of both hand and head
actions. Reenactment of the head action can be described as ‘behavioural abduction’, a
continuation in behavioural terms of the unsatisfactory explanatory reasoning.

The CLP model of observational imitative learning corroborates developmentalists’
argument that infants’ acquisition of practical knowledge from observation of adult agents is an
instance of instrumental rationality. It does so by providing a concrete example of pre-linguistic
reasoning to an interpretation, and of planning from the inferred means — ends structure of the
situation. A logic is thus shown to be helpful in formalizing a quasi-automatic kind of
reasoning, very different from the traditional understandings whereby playing chess, or proving
mathematical theorems are the paradigmatic cases of reasoning. More research is needed in
modelling other instances of fast and automatic reasoning processes, evidence of which is on the
rise, e.g., [8].

4 A Joint Enterprise of Logic Programming and Heuristics for Reasoning

and Decision-Making

We now show how a combined use of LP and its meta-analysis extension for counting can
provide an account of causal reasoning. Martignon et al.’s [24] replication of Cummins’s [7]
seminal results is an empirical proof that subjects’ judgments expressed in heuristic terms
predict their confidence in conditional inferences. The authors propose that the use of fast and
frugal heuristics is thus a method of reasoning to interpretations.

In the context of the ABC group, heuristics have inherited Einstein’s meaning [11]. That is,
they are fast and frugal algorithms that “make us smart” because of their simplicity and not in
spite of it [13]. In the field of judgement and decision-making they are specified as simple linear
models for combining cues in tasks like comparison, estimation or categorization. There is
extensive empirical evidence of their use, e.g., [5, 30]. Typical examples of heuristics are Take
The Best — a linear model with non-compensatory weights, Tallying — a linear model with all
weights equal to 1, or WADD - the weighted additive heuristic [27] whose weights are the cues
validities (or ‘diagnosticities’).

Martignon et al. [24] set forth an analogy between the use of heuristics for combining cues in
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decision-making, and people’s reasoning with defeaters. Consider for instance the causal
conditional “If the brake was depressed then the car slowed down”; defeaters are cases when
although the brake is depressed, the car does not slow down, e.g., the brake is broken. [9]
showed that the more defeaters people generate, the less likely they are to endorse the
conclusion of Modus Ponens. Martignon and colleagues recognized that it is precisely the
Tallying heuristic on a profile of defeaters that is used for combining them in further inferences.
This same heuristic is used for comparison decisions. In the typical comparison task analysed by
[13], subjects must decide which of two German cities has a larger population, based on cues
like “city A has a soccer team in the Bundesliga and city B does not”, etc. When cues are
abundant, subjects tend to tally them to make the comparison, and when cues are scarce, they
rely on Take The Best, i.e., use the first cue that discriminates the cities and choose the one with
the highest value [23].

So far cue ranking has been modeled in a Bayesian framework. Such ranking assumes that
for each cue, e.g., having a soccer team in the Bundesliga, its validity is given by the
probability that a city with a soccer team is larger than one without — a cue is valid when
probability is larger than 0.5. This probabilistic computation has always been seen as
cumbersome in the theory of fast and frugal heuristics [10], leading to serious doubts that
probabilities can provide realistic performance models. LP on the other hand offers a simpler
way for ranking cues. It is easy to see that a broken brake, for instance, can be represented as
an abnormality in the LP representation of the conditional as p & ~ab = g. The simpler way
for ranking cues thus amounts to counting abnormalities for the conditional “If city A has a
soccer team in the Bundesliga and city B does not, then city A is larger than city B”. Here
defeaters tallying will provide a good approximation of the conditional validity without
complex probabilistic computations. In a similar vein, [24] have showed that other heuristics,
like Best Cue [16] or WADD effectively predict subjects’ confidence in the causal strength of
the conditional. The crucial message is that LP can solve one aspect of modelling the use of
heuristics in decision-making that has been criticized by other authors, namely relying on a
Bayesian computation of cue validities [10]. This is so because LP facilitates heuristic
selection compared with previously proposed modelling frameworks [22]. Ultimately,
Martignon and colleagues [24] argue that LP may give a computational model of how the
interpretations necessary for further probabilistic reasoning are arrived at.

It is a fascinating result that precisely the same heuristics that function so well for cue
combination in judgment and decision-making are excellent for defeater combination in
conditional reasoning. Because LP can easily model an interpretation of causal conditionals
taking into account defeaters, and of the conditional expression of typical cues for decision-
making, it provides a unified framework for the fields of (causal) reasoning, and of judgment
and decision-making. This aligns with recent similar ‘unificationist’ approaches in the new
paradigm of psychology of reasoning, e.g., [4].

5 Conclusions: Wrapping-up and Further-on
Despite the fact that gaps such as the one that gives the theme of the workshop are not easy to
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see in the raw data of the psychology of reasoning lab, to begin with however, their possibility
must be acknowledged in order to allow for bridging. We started by presenting interpretation
as an intrinsic, sine qua non stage of reasoning; this acknowledgement constrains realistic
modelling endeavours to take it into account. We reviewed evidence that an approach to
modelling which does take intensionality seriously by use of an expressive yet simple (at most
linear on the name of nodes) formalism contributes to the theoretical integration of reasoning
with judgement and decision-making. We also presented a computational model of pre-
linguistic reasoning based on data from developmental psychology, and mentioned some
consequences of this result for the ongoing debate with respect to dual-process theories of
cognition.

With respect to future prospects for modelling applications of Logic Programming, we
highlight the need for hypotheses of different domains where interpretation via minimal
model construction may be adequate, and model that in terms of formalisms with minimal
model semantics. The methodological implication of the multiple-logics proposal is a
research program where modellers, given the properties of a particular formalism, hypothesise
what kind of reasoning task it might model, and collaborate with experimenters to test those
predictions; or observe properties of a reasoning task, hypothesise an appropriate
formalisation, and test its empirical generalisations. With respect to LP, for instance, we
propose that minimal model construction accurately models people’s cooperative
interpretation of conditionals uttered in a conversation setting [36]; investigations concerning
other cases of cooperative reasoning, e.g., joint planning, joint intentionality, are current work
in progress.

Throughout the paper we used LP to instantiate the multiple-logic proposal. Some other
examples of applying non-deductive logics to human reasoning are Diderik Batens’s program
of adaptive logics [3], or Fariba Sadri’s review of work on intention recognition [31]. It is
noteworthy that both are essentially multiple-logic approaches. Consequently, last and most
importantly, we wish to encourage pursuit of a multiple-system approach in research
concerned with human reasoning. Our concrete suggestion concerns research on combining a
logic that might appropriately model interpretation under computational constraints, i.e., in
realistic cases of reasoning, with other formalisms such as probability [9]. One envisaged
result is an alleviation of the problem of the priors, e.g., [28], by means of an intensional
perspective offered by logics of interpretation. Such endeavour would bridge the gap between
logical and Al systems for engineered reasoning, on the one hand, and empirical human
reasoning research.
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Appendix

In Chapter 7 of Stenning and van Lambalgen’s Human Reasoning and Cognitive
Science definite logic programs are used to represent non-monotonic reasoning with
conditionals. The main technical tool is the interpretation of conditionals via the imme-
diate consequence operator: the semantics is procedural, not declarative. This is because
in a cooperative setting the truth of a conditional is not an issue, only what can be in-
ferred from the conditional. This has consequences for what is meant by ‘model of a
program’. One may interpret the ‘—’ in program clauses truth-functionally, and say
that M =3 ¢ — ¢ (where M is a 3-valued model) if the truth value of ¢ — ¢ equals
1. Truth-functionality is not appropriate, since it would license nested occurrences of
‘—’, whereas nesting is not allowed by the syntax of logic programs, and hardly ever
occur in natural language. Furthermore in this setting conditionals are never false, but
apparent counterexamples are absorbed as ‘abnormalities’. It follows that the expres-
sion ‘model of a program P’ cannot be given its literal meaning; its different sense is
outlined below.

Let us start with the simpler case of positive programs. Recall that a positive logic
program has clauses of the form p; A ... A p, — ¢, where the p;, ¢ are proposition
letters and the antecedent (also called the body of the clause) may be empty. Models of
a positive logic program P are given by the fixed points of a monotone operator:

Definition 1. The operator Tp associated to a positive logic program P transforms a
valuation M (viewed as a function M : L — {0,1}, where L is the set of propo-
sition letters) into a model Tp(M) according to the following stipulations: if v is a
proposition letter,

1. Tp(M)(v) = 1 if there exists a set of proposition letters C, true on M, such that
NC —-veP
2. Tp(M)(v) = 0 otherwise.

Definition 2. An ordering C on (two-valued) models is given by: M C N if all propo-
sition letters true in M are true in N.

Lemma 1. If P is a positive logic program, Tp is monotone in the sense that M C N
implies Tp(M) C Tp(N).

Now consider the completion comp(P).
Definition 3. Let M be a valuation. M is a model of P if M |= comp(P).

Again it is easy to see that program clauses are not interpreted as truth functional impli-
cations, but rather as closure conditions on a model. This idea is best expressed using
the operator T'p.

Lemma 2. Suppose M |= comp(P). Then Tp(M) C M.

PROOF. Application of T’p results in changing the truth value of atoms for which there
is no immediate ground in the program P from 1 to 0. O
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Definition 4. A model M such that Tp(M) C M is called a pre-fixpoint of Tp. It is
fixpoint if Tp(M) = M.

Let us next investigate the relation between completion, pre-fixpoints and fixpoints.

Lemma 3. (Knaster-Tarski) A monotone operator defined on a directed complete par-
tial order with bottom element (dcpo) has a least fixed point.

In the simple situation considered (no negation), a model of the completion is a fix-
point of Tp and conversely, but this will no longer be true once negation is taken into
account. Models of the completion comp(P) figure mostly when studying semantic con-
sequences of the program P, therefore the following theorem provides all one needs:

Theorem 1. Let P be a positive program, then there exists a fixpoint Tp(M) = M
such that for every positive formula' F:

comp(P) = F < M EF.

PROOF. < Choose a model K = comp(P). The set of models {B | B < K} is a dcpo,
hence T'p has a least fixed point M C I here. Indeed, if 0 denotes the bottom element
of the dcpo, then 0 C K implies T»(0) C Tp(K) C K, whence it follows that the least
fixpoint of T'p is a submodel of any K |= comp(P). By hypothesis M |= F. Since F
is positive and M C K, K |= F, whence comp(P) = F.

= Since M is the least fixpoint of Tp, M |= comp(P), whence M = F. O

Definition 5. A model K = comp(P) is called minimal if there is no N' which is a
proper submodel of K (i.e. makes fewer atoms true).

Lemma 4. The least fixpoint of Tp is the unique minimal model of comp(P).

PROOF. Let M be the least fixpoint of Tp (which is obviously minimal). Let K |

comp(P) be another minimal model. Then since the bottom element 0 C K and hence

Tp(0) C Tp(K) C K, it follows that M C K, which by minimality implies M C K.
0

A ‘minimal model of the program P’ actually refers to the minimal model of the
completion of P. Again, the difference is that to specify a model for P, one would need
a declarative semantics for the arrow of logic programming, whereas no such thing is
required in defining a model for the completion of P.

The needed logic programs must allow negation in the body of a clause, since the
natural language conditional ‘p implies ¢’ is represented by the clause p A —ab —
q. As observed above, extending the definition of the operator T with the classical
definition of negation would destroy its monotonicity, necessary for the incremental
approach to the least fixpoint. The pursued solution is to replace the classical two-
valued logic by Kleene’s strong three-valued logic, for which see figure 2.2. in Chapter
2. The equivalence < is defined by assigning 1 to ¢ > 9 if p,1) have the same truth
value (in {u,0,1}), and O otherwise.

We show how to construct models for definite programs, as fixed points of a three-
valued consequence operator 73. We will drop the superscript when there is no danger
of confusing it with its two-valued relative defined above.

! A formula containing only V, A.
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Definition 6. A three-valued model is an assignment of the truth values u,0, 1 to the
set of proposition letters. If the assignment does not use the value u, the model is called
two-valued. If M, N are models, the relation M < N means that the truth value of
a proposition letter p in M is less than or equal to the truth value of p in N in the
canonical ordering on u,0, 1.

Lemma 5. Let F' a formula not containing <, with connectives interpreted using strong
Kleene 3-valued logic; in particular — is defined using — and V. Let M < N, then
truthp (F) < truthy (F).

Definition 7. Let P be a program.

a. The operator Tp applied to formulas constructed using only —, N\ and V is deter-
mined by the strong Kleene truth tables.
b. Given a three-valued model M, Tp(M) is the model determined by
(a) Tp(M)(q) = 1 iff there is a clause ¢ — q such that M |= ¢
(b) Tp(M)(q) = O iff there is a clause ¢ — q in P and for all such clauses,
M —p
(¢) Tp(M)(q) = u otherwise

The preceding definition ensures that unrestricted negation as failure applies only to
proposition letters ¢ which occur in a formula | — ¢; other proposition letters about
which there is no information at all may remain undecided. This will be useful later,
when the operation of negation as failure is applied restrictively to ab only. Once a
literal has been assigned value 0 or 1 by 73, it retains that value at all stages of the
construction; if it has been assigned value u, that value may mutate into 0 or 1 at a later
stage.

Lemma 6. If P is a definite logic program, Tp is monotone in the sense that M < N
implies Tp(M) < Tp(N).

Lemma 7. Let P be a definite program.

1. The operator TP3 has a least fixpoint, obtained by starting from the model M
in which all proposition letters have the value u. By abuse of language, the least
fixpoint of 7}3’ will be called the minimal model of P.

2. There exists a fixpoint T3 (M) = M such that for every formula F not containing
>

comp(P) = F <= M [= F;

for M we may take the least fixpoint of T5.

PROOF OF (2). The argument is similar to that in the proof of theorem 1.

< Choose a model K with K = comp(P). We have T3 (K) < K:

(i) suppose 7 is assigned 1 by T'3(K), then there exists a program clause § — r in P
such that K assigns 1 to . Since K = comp(P), in particular X = r <+ Def(r), and
since § — Def (r), it follows that r is true on k.

(ii) suppose 7 is assigned 0 by T3 (/C), then there exists a program clause § — 7 in P
and for all such clauses, K assigns 0 to their bodies. It follows that Def (r) is assigned
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0 by /C, hence the same holds for r.

(iii) if r has value u in T3 (KC), this means neither (i) nor (ii) applies and there exists no

program clause § — r in P with 6 either O or 1. It follows that § must have value w,

hence r as well.

Note that we may have T3(K) < K, for instance in case P = {¢ — r} and K

comp(P), K makes r, q false, then T3 (K) makes ¢ undecided.

The set of models {B | B < K} is a dcpo, hence T3 has a least fixpoint M C K

here. Indeed, if 0 denotes the bottom element of the dcpo, then 0 < K implies T}’; 0) <

T3(K) < K, whence it follows that the least fixpoint of T3 is a submodel of any K

such that K = comp(P). By hypothesis M |= F. Since F' is monotone and M < I,

K = F, whence comp(P) = F.

= Since M is the least fixpoint of T3, M |= comp(P), whence M = F. O
One step in the proof deserves special mention

Lemma 8. For any model K with K |= comp(P) one has T3 (K) < K. In other words,
a model of the completion is a pre-fixpoint of the consequence operator.

A final remark regarding Lemma 4(3) in Chapter 7 of Human Reasoning and Cog-
nitive Science is that it inadvertently stated that every model for the completion is a
fixpoint. This doesn’t affect the cognitive applications however, which are couched in
terms of least fixpoints; and as we have seen entailment is determined by the least fix-
point.
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Abstract. There is increasing interest in the field of automated com-
monsense reasoning to find real world benchmarks to challenge and to
further develop reasoning systems. One interesting example is the Tri-
angle Choice of Plausible Alternatives (Triangle-COPA), which is a set
of problems presented in first-order logic. The setting of these problems
stems from the famous Heider-Simmel film used in early experiments in
social psychology. This paper illustrates with two logical approaches—
abductive logic programming and deonitc logic—how these problems can
be solved. Furthermore, we propose an idea of how to use background
knowledge to support the reasoning process.

1 Introduction

In his influential 1958 paper, entitled “Programs with Common Sense” [14],
John McCarthy set in motion his research agenda for Artificial Intelligence. He
proposed the use of logic and deduction to overcome the difficult challenges of
commonsense reasoning. His own pursuits led him later introduce the logic of cir-
cumscription [15], to handle the non-monotonic nature of human inference. In the
intervening decades, numerous other approaches have been proposed by different
researchers, e.g. based on probability theory or on argumentation frameworks.
Progress on varied approaches was recently demonstrated, in dramatic fashion,
in the success of IBM’s Watson system in the Jeopardy challenge [3]. Subse-
quently, there has been considerable effort to investigate the varied techniques
of the Watson system as a new programming paradigm, cognitive computing, and
apply these techniques to diverse research and commercial problems, including
eHealth, cancer research, and even supporting culinary chefs.

Although the Jeopardy challenge served to demonstrate the potential of new
technologies, it does not provide the most appropriate benchmark problems for
testing and evaluating individual research methods and approaches. Watson’s
success required a large engineering team, integrating technologies across many
different fields of computer science. Logic-based approaches to commonsense
reasoning may increasingly play a role in future cognitive programming applica-
tions, but the Jeopardy challenge is too ambitious as a tool for benchmarking

* Work supported by DFG FU 263/15-1 ‘Ratiolog,” and by the U.S. Office of Naval
Research, grant N00014-13-1-0286.
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Fig. 1: One frame of the film used by Heider and Simmel in their study.

progress in this area. Over the years, logic-based approaches have been slow to
move beyond the ubiquitous Tweety and Emu example problems to demonstrate
their usefulness, although specialized benchmarking suites are increasingly being
used in sub-disciplines of automated reasoning, e.g. in first-order theorem prov-
ing, answer set programming, and SAT solving. Recently, new sets of benchmark
problems have been proposed for commonsense reasoning, such as the Winograd
Schema Challenge [12] and the Choice Of Plausible Alternatives challenge [21].
Both of these challenges, however, require substantial capabilities for handling
natural language (English), which complicates their use by researchers hoping
to focus specifically on logic-based reasoning approaches.

The Triangle-COPA challenge! [13] provides a suite of one hundred logic-
based commonsense reasoning problems, and was developed specifically for the
purpose of advancing new logical reasoning approaches. Based on an influential
psychology experiment from the 1940’s, Triangle-COPA serves as a useful tool
for studying the differences between human and logical reasoning. In the sections
that follow, we describe the Triangle-COPA challenge problems and demonstrate
that they can be solved using very different approaches to automated logical
reasoning—first using a probabilistic form of logical abduction, and second using
deontic logic—and discuss the challenges of authoring or acquiring the necessary
background knowledge.

2 The Triangle-COPA Benchmarks

In an early and influential study of human social perception, psychologists Fritz
Heider and Marianne Simmel [7] presented subjects with a short animated film
depicting the movements of two triangles and a circle in and around a box with
a hinged opening (Figure 1). Asked what they saw in the film, subjects each re-
sponded with similar narratives that anthropomorphized the moving shapes as
intentional characters with beliefs, goals, and emotions. The simplicity of the film

! Available at https://github.com/asgordon/TriangleCOPA/
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was in sharp contrast with the richness of the subjects’ narratives, highlighting
the role of knowledge and personal experience in the process of interpretation.
Heider [6] later argued that the interpretation of intentional behavior was driven
by commonsense theories of psychology and sociology, and was the basis of hu-
man social interaction.

How could we build a software system that was capable of interpreting the
Heider-Simmel film in the same manner as the study’s subjects? Researchers
in artificial intelligence and cognitive science have sought to construct such a
system. Thibadeau [23] takes a symbolic approach, representing the coordinates
of each object in each frame of original film, which are matched to defined action
schemas, such as opening the door or going outside the box. Pautler et al. [18]
follows a related approach, beginning with object trajectory information from
an animated recreation of the Heider-Simmel film. An incremental chart parsing
algorithm with a hand-authored action grammar is then applied to recognize
character actions as well as their intentions.

These earlier attempts highlight several problems for the use of the original
Heider-Simmel film as a challenge problem by automated reasoning researchers.
First, any system must overcome the difficult challenge of recognizing actions
in the visual scenes, e.g. by first extracting quantitative trajectory information
from the image data. Contemporary gesture recognition methods may be suitable
for this task, using models trained on copious amounts of annotated examples.
However, the effort involved in apply these techniques shifts research attention
away from the central automated reasoning task of interpretation. Second, the
original Heider-Simmel film provides a compelling input as a challenge problem,
but the correct output is unspecified. Precisely because the input is “open to in-
terpretation” is it difficult to compare the relative performance of two competing
approaches, or even of the same approach as it develops over time.

The Triangle Choice of Plausible Alternatives (Triangle-COPA) set of one
hundred challenge problems is a recent attempt to overcome these two problems
with the original Heider-Simmel movie [13]. Each of the one hundred questions in
this problem set describes, in English and in first order logic, a short sequence of
events involving the characters of the original Heider-Simmel film: two triangles
and a circle moving around a box with a hinged opening. This description ends
with a question that requires the interpretation of the action sequence, and pro-
vides a choice of two possible answers, also in both English and logical form. The
task is to select which of the two options would be selected by a human, where
the correctness of the choice has been validated by teams of human volunteers.
Three examples of Triangle-COPA questions are as follows:

44: The triangle opened the door, stepped outside and started to shake. Why
did the triangle start to shake?
(and (exit’ E1 LT) (shake’ E2 LT) (seq El E2))
a. The triangle is upset.
(unhappy’ e3 LT)
b. The triangle is cold.
(cold’ e4 LT)
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58: A circle and a triangle are in the house and are arguing. The circle punches
the triangle. The triangle runs out of the house. Why does the triangle leave
the house?

(and (argueWith’ E1 C LT) (inside’ E2 C) (inside’ E3 LT)
(hit’ E4 C LT) (exit’ E5 LT) (seq El1 E4 E5))

a. The triangle leaves the house because it wants the circle to come fight it
outside.
(and (attack’ e6 C LT) (goal’ e7 e6 LT))

b. The triangle leaves the house because it is afraid of being further assaulted
by the circle.
(and (attack’ e8 C LT) (fearThat’ e9 LT e8))

83: A small triangle and big triangle are next to each other. A circle runs by
and pushes the small triangle. The big triangle chases the circle. Why does
the big triangle chase the circle?

(and (approach’ E1 C LT) (push’ E2 C LT) (chase’ E3 BT C)
(seq E1 E2 E3))
a. The big triangle is angry that the circle pushed the small triangle, so it tries
to catch the circle.
(angryAt’ e4 BT C)
b. The big triangle and circle are friends. The big triangle wants to say hello
to the circle.
(and (friend’ e5 BT C) (goal’ e6 e7 BT)
(greet’ e7 BT C))

As a benchmark set of challenge problems for automated reasoning systems,
Triangle-COPA has a number of attractive characteristics. By providing first-
order logic representations as inputs and outputs, Triangle-COPA focuses the
efforts of competitors specifically on the central interpretation problem. At the
same time, it places no constraints on the particular reasoning methods that are
actually used to select the correct answer, affording comparisons between systems
that use radically different knowledge resources and reasoning algorithms. The
relational vocabulary of Triangle-COPA literals are fixed [13], but the semantics
of these predicates are not tied to any one ontology or theory. The correct answers
of Triangle-COPA are randomly sorted, so the quality of any given system can be
gauged between that of random guessing (50%) and human performance (near
100%).

Thus far, only Maslan et al. [13] has demonstrated an approach to solving
Triangle-COPA problems. Using five axioms and an implementation of weighted
abduction [10], the authors demonstrated that the least-cost proof of the ob-
servables in Question 83 (above) entailed answer “a”, that the big triangle (BT)
was angry at the circle (C).

In the following two sections, we show two alternative approaches to solving
the scenario described in Question 83. Our aim is to demonstrate that this bench-
mark set of questions can serve as a grounds for comparison of different logical
formalisms, algorithms, and knowledge bases, and help the larger automated
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reasoning community make progress on the difficult challenges of automated
commonsense reasoning.

3 Probabilistic Abductive Reasoning

Triangle-COPA problems can be viewed as a choice between two alternative in-
terpretations of a sequence of observable actions. Hobbs et al. [8] describes how
interpretation of natural language can be cast as a problem of logical abduc-
tion, and solved using automated abductive reasoning technologies. Abduction,
as distinct from logical deduction or induction, is a form of logical reasoning
that identifies a hypothesis that, if it were true, would logically entail the given
input. In classical logic, abduction is not a sound inference mechanism; asserting
the truth of an antecedent given an observable consequent is a logical fallacy,
“affirming the consequent.” Still, automated abductive reasoning is a natural
fit for many commonsense reasoning problems in artificial intelligence, including
the interpretation problems in Triangle-COPA.

Automated abductive reasoning requires two mechanisms: a means of gener-
ating sets of hypotheses that entail the input, and a scoring function for preferen-
tial ordering these hypotheses. Hobbs et al. [8] described “Weighted Abduction,”
where hypotheses are generated by backchaining from the given input using the
implicature form of knowledge base axioms, unifying literals across different an-
tecedents wherever possible. The process generates an and-or proof graph similar
to that created when searching for first-order proofs by backchaining, but where
every solution in the and-or graph identifies a set of assumptions that, if true,
would logically entail the given observables. Weighted Abduction orders these
hypotheses by computing the combined cost of all assumed literals (those without
justification), through a mechanism of propagating initial costs to antecedents
during backchaining. Maslan et al. [13] demonstrated how Weighted Abduction
can be used to solve Triangle-COPA problems by searching for the least-cost set
of assumptions that entailed the literals in one of the two alternatives.

Several researchers have pursued probabilistic reformulations of Weighted
Abduction, eschewing the use of ad-hoc weights for probabilities that might
be learned from empirical data. Ovchinnikova et al. [17] and Blythe et al. [2]
describe two recent probabilistic reformulations, each casting the and-or proof
graph as a Bayesian network whose posterior probabilities can be calculated
using belief propagation algorithms for graphical models. These efforts help to
position abductive reasoning among current approaches to uncertain inference,
and to take advantage of recent advances and tools for reasoning with Markov
Logic Networks [20]. However, a simpler formulation of probabilistic abduction
may be more appropriate when the task is only to rank possible hypotheses.

As in other probabilistic reasoning tasks, the calculation of the joint probabil-
ity of a set of events is trivially easy if we assume that they are all conditionally
independent: the joint probability of the conjunction is the product of their prior
probabilities. If we know the prior probabilities of all assumed literals in an ab-
ductive proof (those without justification), then the naive estimate of their joint
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probability is simply their product [19]. This calculation can be applied to any
solution in an and-or graph created by backchaining from the given input, giving
us a convenient means of ranking hypotheses.

This approach allows us to use standard first-order logic and familiar tech-
nologies of lifted backchaining instead of belief propagation in graphical models.
However, by using logical inference (rather than uncertain inference) we require
that the consequent of an implication is always true when the antecedent holds,
i.e. the probability of the consequent given the antecedent is always one. Hobbs et
al. [8], building on McCarthy’s [15] formulation of circumscription, describes how
defeasible first-order axioms can be authored by the inclusion of a special etcetera
literal (etc) as a conjunct in the antecedent. These literals are constructed with
a unique predicate name that appears nowhere else in the knowledge base, and
therefore can only be assumed (via abduction), never proved. The arguments of
this predicate are all of the other variables that appear in the axiom, restricting
its unification with other etcetera literals of the same predication that may be
assumed in the proof.

The probabilities of etcetera literals can be quantified if we interpret them
as being an unspecified conjunction of all of the unknown factors of the world
that must also be true for the antecedent to imply the consequent. Etcetera
literals are true in exactly the cases where the remaining antecedent literals and
the consequent are all true. As such, their prior probabilities are equal to the
conditional probability of the consequent given the remaining conjuncts in the
antecedent.

Using etcetera literals, we can author defeasible versions of the five axioms
used by Maslan et al. [13] to correctly solve Triangle-COPA Question 83, above.
Here the prior probabilities of the etcetera literals are encoded directly in the
literal as its first argument, appearing a numerical constant.

— Push: Maybe you are attacking
(implies (and (attack. el x y)

(goal_ e2 el x)
(etcl push 0.9 el e2 x y))

(push_ e3 x y))

— Approach: Maybe you want to attack
(implies (and (goal_ el e2 x)

(attack- e2 x y)
(etcl_approach 0.9 el e2 x y))

(approach_ e4 x y))
— AngryAt: Maybe they attacked someone you like
(implies (and (attack- el y z)

(like_ e2 x z)
(etcl_angryAt 0.9 el e2 x y 2))
(angryAt_ e x y))

52



— Attack: Maybe you are angry at them
(implies (and (angryAt_ el x y)

(etcl_attack 0.9 el x y))
(attack_ e x y))

— Chase: Maybe you want to attack
(implies (and (attack. el x y)

(goal_ e2 el x)
(etcl_chase 0.9 el e2 x y))
(chase_ €3 x y))

Etcetera literals also afford a means of encoding the prior probabilities of
other literals directly in the knowledge base. Below we provide eight additional
axioms, one for each predicate used in either the Triangle-COPA question or in
the axioms above, where an etcetera literal is the antecedent of each predicate
form. By adding these axioms to the knowledge base, we can conduct our search
for unique sets of assumptions by backtracking on all axioms to construct an and-
or graph that terminates with etcetera literals. The probability of any solution
in this and-or graph (assuming conditional independence) is simply the product
of the priors of each etcetera literal.

(implies (etcO_push 0.01 e x y) (push_ e x y))
(implies (etcO_approach 0.01 e x y) (approach_ e x y))
(implies (etcO_angryAt 0.01 e x y) (angryAt_ e x y))
(implies (etcO_attack 0.01 e x y) (attack_ e x y))
(implies (etcO_chase 0.01 e x y) (chase_ e x y))
(implies (etcO_goal 0.9 e x y) (goal_ e x y))

(implies (etcO_like 0.9 e x y) (like_ e x y))

(implies (etcO_seq3 1.0 x y z) (seq x y 2))

Figure 2 shows a visual representation of the most probable proof (Pr =
0.0043) of the given observables of Triangle-COPA Question 83, found amongst
a set of 6038 possible proofs found by backchaining on the axioms listed above.
The approach happens because the circle (C) had the goal to attack the little
triangle (LT). The push happens for this same reason, and these explanations
are unified. The chase happens because the big triangle (BT) had the goal to
attack the circle, because it was angry at the circle, because the circle’s attack
on someone that the big triangle likes. The attacks are unified, and we infer that
the big triangle likes the little triangle. Left unexplained are why the circle had
the goal of attacking the little triangle, why the big triangle likes the circle, why
attacking was the goal chosen by the big triangle, and why these eventualities
happened in this sequence. The correct alternative appears in the most-probable
proof, namely that the big triangle is angry at the circle.
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Fig. 2: The most-probable proof of Triangle-COPA Question 83.

4 Standard Deontic Logic

Now we consider a different approach, namely deontic logic, to tackle the Triangle-
COPA benchmarks. This approach appears to be promising, since in [4] it was
demonstrated that deontic logic is very well-suited for modelling different kinds
of human reasoning. There are interesting examples from cognitive psychology,
e.g. the Wason-selection task, or the suppression task, which can be formalized
in a way that they are accessible for automated reasoning systems. We are using
the tableau prover Hyper [1], a first order refutational theorem prover, which is
able to decide standard deontic logic as well.

Standard deontic logic (SDL) is obtained from the well-known modal logic
K by adding the seriality axiom D:

D: OP—=9OP

In this logic, the (J-operator is interpreted as “it is obligatory that” and the
O as “it is permitted that”. The {-operator can be defined by the following
equivalence:

OP =-0-P

The additional axiom D: OOP — QP in SDL states that if a formula has to
hold in all reachable worlds, then there exists such a world. With the deontic
reading of [J and ¢ this means: Whenever the formula P ought to be, then there
exists a world where it holds. In consequence, there is always a world, which is
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ideal in the sense that all the norms formulated by the ‘ought to be’-operator
hold.

SDL can be used in a natural way to describe knowledge about norms or
licenses. The use of conditionals for expressing rules which should be considered
as norms seems likely, but holds some subtle difficulties. If we want to express
that if P then @) is a norm, an obvious solution would be to use

OP — Q)
which reads it is obligatory that @ holds if P holds. An alternative would be
P —0Q

meaning if P holds, it is obligatory that @ holds. In [24] there is a careful dis-
cussion which of these two possibilities should be used for conditional norms.
The first one has severe disadvantages. The most obvious disadvantage is that
P together with O(P — Q) does not imply Q. This is why we prefer the latter
method, where the (-operator is in the conclusion of the conditional. For a more
detailed discussion of such aspects we refer to [5].

For the examples in Triangle-COPA we argue that one can understand norms
as expectation—many emotions in everyday life can be explained with unmet
expectations. The husband not bringing flowers on the wedding anniversary and
the friend arriving delayed to a date are only two examples, where unmet expec-
tations cause negative feelings. On the other hand, expectations met can cause
positive feelings. The husband helping with the dishes causes the wife to be con-
tent. We consider the scenario described in Question 83 from Triangle-COPA
corresponding to the following set of facts:

approach(el, c,lt). (1)
push(e2, ¢, lt). (2)
chase(e3, bt, c). (3)
seq(el, e2,e3). (4)
The last fact states that the eventualities el, e2 and e3 constitute a sequence of
events.

The question we are asking is “How does the little triangle feel?”. The two
alternatives provided are as follows:

a. The little triangle feels relieved:
relief (e4,1lt, e3)

b. The little triangle is angry at the big triangle:
angryAt(ed, lt, bt)

The notion of fulfilled expectations can be helpful to answer this question.
The big triangle observes the circle attacking the little triangle. The little triangle
expects the big triangle to defend it. The big triangle chases the circle away from
the little triangle which corresponds to defending it. The little triangle is relieved
that the big triangle hurried to its defense.

We need some background knowledge in this example:
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— Pushing someone means attacking someone:
push(E, X,Y) — attack(E, X,Y). (5)
— Chasing an attacker means defending the person under attack:
attack(E, X,Y) A chase(E', Z,X) A after(E,E") — defend(E’, Z,Y). (6)

Where after is a transitive predicate, stating that one eventuality occurs after
another. after(el, e2) means that event e2 occurs after el.

It is possible to model expectations with the help of deontic logic. Normative
statements are used to model expected behavior. In our example, we use deontic
logic to model the fact that one should defend someone who is attacked by
someone else. This set of deontic formulae is the set of ground instances of the
following formula:

attack(E, Z,X) — Odefend(E,Y,X)V Z =Y. (7)

Formula (7) is not a SDL formula. However, we use it as an abbreviation for its
set of ground instances. The ground instance interesting for our example is:

attack(e2, ¢, lt) — Odefend(e2, bt,lt) V ¢ = bt. (8)

With the help of formula (8), it is possible to derive that the big triangle ought
to defend the little triangle in event e2.

Formula 8 states that in the ideal world following eventuality e2, the big tri-
angle defends the little triangle. Another possibility to express this, would be to
use the eventuality, which is part of every atom. We could state defend(e9, bt, lt)
for some new eventuality €9 and add some information stating that eventuality
€9 is the ideal successor of e2. For this it would be necessary to introduce a new
relation, connecting eventualities with its ideal successor. Since this is rather
cumbersome, we use standard deontic logic instead.

Ground instances of the following formula can be used to deduce that some-
one is relieved if someone ought to be defended by someone and is actually
defended:

(Odefend(E, X, Y)Adefend(E', X, Y)Aafter(E, E"))) — ( /\ relief (E",Y,E"))
after (87,5
A ground instance interesting for our example is:
(Odefend(e2, bt, It) A defend(e3, bt,It) A after(e2,e3) —
(relief (e4,1t, e3) A relief (5,1t,€3)) (9)
We want to use a theorem prover in order solve example 83 together with the

above introduced question. To accomplish this, the following formulae are com-
bined to one set of formulae S:
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— Formulae (1) - (4) describing the scenario,

— the background knowledge given (5) and (6),

— some additional formulae formalizing the after predicate,

— the deontic logic formulae (8) and (9) stating the information about expec-
tations and

— some formulae stating that bt, It and ¢ are pairwise different.

We use Hyper to solve example 83 with the question introduced above. It is
possible to deduce that the little triangle is relieved in e4 by transforming this
reasoning task into a satisfiability test. Hyper constructs a closed hyper tableau
for S U {—relief (e4,1t,e3)} which implies that relief (e4, It, e3) is entailed by S.

Referring to the question “How does the little triangle feel?” formulated
before, we can use the derived relief (e4, It, e3) to show that the second alternative
given is the correct one.

Of course, it is not desirable to formalize all rules manually. Rules like (9) can
be generated automatically by formalizing a metarule stating that: whenever x
and y are friends and y is obliged to do something for z and actually does it, x
is relieved. This metarule can then be instantiated by the respective obligation.

5 Integration of Background Knowledge

In the previous section we used standard deontic logic to tackle one of the exam-
ples from Triangle-COPA. In addition to the formulae for normative statements,
we used formulae (5) and (6) stating some essential background knowledge. In
order to solve all Triangle-COPA benchmarks, an extensive background knowl-
edge on psychology is essential. It is labor intensive and error-prone to state the
whole background knowledge manually. Therefore it is desirable to use existing
knowledge bases. There are several detailed ontologies like Yago [22], Cyc [11],
and Sumo [16], stating knowledge about common sense. The very size of these
ontologies however forbids to use these ontologies entirely. For example Yago
contains more than 10 million entities (like persons, organizations, cities, etc.)
and contains more than 120 million facts about these entities. ResearchCyc con-
tains more than 500,000 concepts, forming an ontology in the domain of human
consensus reality. Nearly 5,000,000 assertions (facts and rules) using more than
26,000 relations interrelate, constrain, and, in effect, (partially) define the con-
cepts. And even the smallest version of Cyc, OpenCyc, still contains more than
3 million formulae.

Therefore it is necessary to extract relevant parts from these ontologies. How-
ever brute-force extraction by selecting for example all assertions from OpenCyc
containing the word “attack” results in a set of 13,184 assertions. The vast ma-
jority of these assertions contains irrelevant information. For example assertions
about the movie “Mars attacks” are selected. These irrelevant assertions poten-
tially thwart the reasoning process, making it worthwhile to invest some effort
into carefully selecting assertions suitable as background knowledge. Partition-
ing techniques used to handle large theories with theorem provers like the SInE
(Sumo Inference Engine) [9] metaprover could be helpful to address this problem.
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6 Discussion

Benchmark problems have helped to spur new ideas and compare technologies
across many areas of computer science and beyond. For researchers interested
in logical approaches to automated reasoning, as in other fields, the most useful
benchmarks will be those that focus specifically on the core research challenge,
but are not prejudice for or against any one technical approach. In this paper
we have argued that the Triangle-COPA set of challenge problems is a useful
tool for exploring the relationship between human and logical reasoning. We de-
scribed two different logical approaches for solving Triangle-COPA questions, a
probabilistic form of logical abduction and deontic logic. In so doing, we demon-
strate that the questions are agnostic to the particular logic framework that is
used to solve them. By tackling the same questions with different approaches,
we gain new insights into both the similarities and differences afforded by differ-
ent techniques. We encourage other research groups in our community to apply
their unique approaches to the same questions, to consider the similarities and
differences among approaches that go beyond the shallow characteristics of var-
ious logical notation, and to focus their efforts on overcoming the enormous
challenges of humanlike commonsense reasoning.
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Interactive Theorem Proving — Modelling the
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Abstract. Proving complex problems requires user interaction during
proof construction. A major prerequisite for user interaction is that the
user is able to understand the proof state in order to guide the prover in
finding a proof.

Previous evaluations using focus groups for two interactive theorem provers
have shown that there exists a gap between the user’s model of the proof
and the actual proof performed by the provers’ strategies.

In this paper, we sketch a process model of the interactive proof process
that helps to analyze this gap. Additionally, we give insight into the
results of a usability test of the interactive verification System KeY,
which provides evidence that this model is consistent with the actual
proof process.

1 Introduction

Motivation. The degree of automation of interactive theorem provers (ITPs)
has increased to a point where complex theorems over large formalisations for
real-world problems can be proven effectively. But even with a high degree of
automation, user interaction is still required on different levels. On a global level,
users have to find the right formalisation and have to decompose the proof task
by finding useful lemmas. On a local level, when automatic proof search for a
lemma fails, they have to either direct proof search or understand why no proof
can be constructed and fix the lemma or the underlying formalisation. As the
degree of automation increases, the number of interactions decreases. But the
remaining interactions get more and more complex as I'TPs are applied to more
and more complex problems.

We report on work in progress using the method of usability testing for
several goals: (a) to gain insight into the interactive proof process using an
ITP, (b) insight into problems in the interactive proof process and (c) insights
for possible improvements. We carried out an experiment performing usability
testing of the interactive verification system KeY [7]. In this paper we will briefly
introduce a model of the interactive proof process, introduce our experiment and
briefly give insights into the first results of the experiment, which relate to the

* The work presented here is part of the project Usability of Software Verification
Systems within the BMBF-funded programme Software Campus.
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proof process. In earlier work [6] we identified a gap between the user’s model of
the proof process and the actual proof process in the system. For illustrating the
gap we developed a first informal model of the interactive proof process which
we will extend in this paper.

In Section 2 we present related work of usability evaluations of interactive
theorem provers and attempts to find a suitable model of the proof process. A
first abstract model of the proof process follows in Section 3 and the gap between
the user’s and the prover’s state is described in Section 4. The experiment and
insights into the results are given in Section 5; and Section 6 concludes our work
and shows future work.

2 Related Work

The usability of interactive theorem provers has been evaluated using various
evaluation methods. Related work is concerned with usability evaluations of
interactive theorem provers based on models defined prior to the evaluations.
In addition, related work is also concerned with the derivation of models of the
interactive proof process from evaluation results.

Merriam and Harrison [13] have evaluated interfaces of three theorem provers:
CADiZ, IMPS and PVS. In this work they have identified four key activities in
the interactive proof process where the user needs support from the proof system:
planning, reuse, reflection and articulation. The three theorem provers have been
examined with respect to these activities. Based on these results, gaps in user
support of the theorem provers have been identified as well as points in the
systems’ interfaces where the user can make errors that cost him or her a lot of
time to recover from.

Merriam [14] developed two approaches for the description of user activities
in the proof process. He formalized a generic formal model of the proof using Z
as formal language. This model is used to enable to gain insight into which kind
of information is necessary for the user to conduct a proof effectively. Merriam
assumes in this model that the user forms an opinion during the proof process
about the provability of a proof goal using heuristics. He remarks that to model
this assumption, a suitable cognitive model of the user is necessary. Interactions
the user performs in the system are outside this model and are modelled in a
second model of Merriam on the basis of Newman’s Action cycle. Both models
together were used to evaluate the PVS proof system.

Norbert Voelker [15] published a discussion paper on requirements and design
issues of user interfaces for provers. He presented difficulties in the design of user
interfaces of theorem provers developed in academia. In addition, a requirement
analysis based on the scenarios using the scenario method has been carried out
and resulted in a high-level description of the interaction with the proof system.

Aitken and Melham evaluated the interactive proof systems Isabelle and HOL
using recordings of user interactions with the systems in collaboration with HCI
experts. During the proof process the users were asked to think aloud and after-
wards the users were interviewed. The authors goal was to study the activities
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performed by users of interactive provers during the proof process to obtain an
interaction model of the users. They propose to use typical user errors as usabil-
ity metric and they compared provers w.r.t. these errors [3,4,2]. Also, suggestions
for improvements of the systems have been made by the authors based on the
evaluation results, including improved search mechanisms and improved access
to certain proof relevant components.

The systems Isabelle and HOL have been evaluated by Aitken [1] using
records of interactions. A semi-formal interaction model was extracted from the
results, by identifying the actions that were performed during proof construc-
tion. Of the fifteen actions that have been identified, some relate to mental work
of the users and some were direct actions in the system. All actions were mod-
elled as activity diagram and it was distinguished between actions on the logical
level and actions on the interaction level. In this work the relation between the
problem class, the proof plan and the implementation is depicted.

In the work of Goguen [9] three user roles that can be represented by one
single user have been identified: the prover, the reader and the specifier. Each
of these roles has different requirements for the interactive proof system and
some of the requirements can be conflicting. The authors claim that users of
theorem provers need precise feedback on the failure of a proof attempt at the
(sub)goal level. Further they argue that an unstructured proof tree is not easy
to use as the users need to orient themselves in the proof tree. They present a
proof approach where users should form the high-level proof plan and leave the
“low-level computations” to the automatic prover. They implement their user
interface for the proof assistance tool Kumo.

Similar to our findings in previous work, Archer and Heitmeyer [5] also re-
alized the gap between the prover’s and the user’s model of the proof and have
developed the TAME interface on top of the prover PVS to reduce the distance
between manual proofs and proofs by automation. TAME is able to prove prop-
erties of timed automata using so called human-style reasoning. Proof steps in
TAME are intended to be close to the large proof steps performed in manual
proofs. The authors have developed strategies on top of the PVS strategies that
correspond more to proof steps performed by humans. The goal is to provide
evidence and comprehension of proofs for domain but not proof experts.

3 A Model of the System Consisting of User and Prover

In order to be able to describe the interactive proof process and to describe what
influences the gap between the user and the prover states, a precise model of
the proof process has to be developed. Our idea is to have an interactive proof
system that consists of two main components that exchange information during
the proof process: the user U and the prover P. We model both components
as simple transition systems with three different transition functions: one that
decides the next action for the user (fypec) resp. the next proof step for the
prover (fppec), one that computes the next state of the user (fycy) resp. prover
(fpcn) according to the action/proof step and one function that computes the
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next state of the user according to the prover’s current state (finsp) resp. the
next state of the prover according to the action of the user (firigger).

Definition 1 (The Prover). We model the prover as a transition system

Prover = (P7 PS7ftn'ggervfPDecafPChaPOaPT) s

where

P is a set of prover states

— PS is a set of actions which we call proof steps

— firigger : P X A — P is a transition function

— fpeon : P x PS — P is a transition function

— fPpec : P — PS is a choice function

— po € P is the initial state

— Pr C P is the set of terminating states

— Pproos C Pr is the set of terminating states in which a proof has been found

Definition 2 (The User). We model the user as a transition system

User = (Uv A7 finspv fUDem fUCh7 uo, UT) ;

where

— U is a set of user states

— A= (Aproc UApman) is a set of actions, being the union of the proof manip-
ulating and the process-oriented actions

— stopProcess € Aproc is the action to stop the proof process

— finsp : U x P = U is a transition function

— fuen : U x A — U is a transition function

— fupec : U — A is a choice function

— ug € U is the initial state

— Ur C U is the set of terminating states

Definitions 1 and 2 depend on each other, as Definition 2 uses a component
of Definition 1 (namely P) and vice versa (namely A). Both definitions could be
combined to one system definition, but for simplicity we have two definitions,
one for each component.

A prover’s state P includes a partial proof (tree). We assume that the user
states U at least consist of a mental model of the provers’ state. We do not
characterize this model in full detail, as we believe it is different for every user
and depends on the experience with the system and mathematical background
knowledge. Determining this model in full detail goes beyond the scope of our
work.

In our model we focus on the interaction between the user and the prover. We
further assume that the user’s model of the prover’s state is more abstract than
the actual prover’s state. We believe the user has a proof plan, that is formed
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when developing the proof obligation. We consider that plan to be encoded in
the user’s state. Furthermore, we assume that the user has an idea about the
effect of performing actions on the prover’s state. This knowledge is included in
the function fycy, as the user calculates a successor state from the current state
and the action that the user performs in the system. As the successor state of
the user also includes an abstraction of the prover’s state, the user updates this
model according to the expectations of the effect of performing the action.

Actions of the user can be of two kinds: proof manipulating (Aaen) (e.g.,
applying a single proof rule or invoking a specific automatic strategy in the
prover) and process-oriented actions (Appoc) (e.g., inspecting the prover’s state
further or stop the proof process (stopProcess)).

A proof step in the prover is an application of a calculus rule onto the current
proof state.

Terminating states in the prover’s model can be of two kinds: either a state
in which a proof is found, i.e., tproor € Pr or states in which the automatic
strategies stops, i.e., p; € Pr. These terminating states mark the beginning of
the user interacting with the prover.

Interaction between both, the user and the prover, involves an information
exchange. This exchange happens through the functions fi.gger (user to prover)
and finsp (prover to user). The function f,s, involves the user inspecting the
proof state of the prover (which can be either p, € Pr in case the automatic
strategies stop or the initial state py in case the proof process is at the beginning)
and updating the user’s model by changing the state. This update may involve
changing the proof plan by concretizing proof states in the plan or changing the
mental model of the proof state by refining states.

The function fi.gger represents the state change in the prover when a user
action involves input to the prover and corresponds to the user invoking an
action. This action is then accepted by the prover and translated by the prover
into the strategy that should be used. The strategy of the prover is responsible
for choosing the next proof step that should be applied to the prover’s state.
‘We model this by a state change performed using the prover’s decision function
(f PDec ) .

The user also has such a decision function, which we call fype.. This function
decides which action the user will perform next, depending on the user’s state.

In our model of the user the functions fi,sp and fypec follow each other. After
the user has made his or her decision, the corresponding action is performed and
function firigger is applied in case the user decides to invoke the prover’s strate-
gies. Function fppec follows firigger and then a sequence of function applications
of fpcn apply until a terminating state is reached.

In the following, we will define the interaction between the user and the
prover in the interactive proof system.

Definition 3 (The Interactive Proof Process in an Interactive Proof
System).

We model the interactive proof system consisting of a user U and prover P
as a transition system. The state space S of the interactive proof system is the
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set of triples
S = U x P x {automode, interactive, inspected, decided, fail, success} .

The initial state is so = (uo, po,interactive), where py and uy are the initial
states of the user U resp. the prover P.

For all states s € S, the successor state s’ of s is defined as follows, where
a = fupec(u):

(a) if s = (u,p,interactive) then s = (finsp(u,p), p, inspected)

(b) ifs = (u,p,inspected) then s' = (u, p, decided)
(¢) ifs= (u,p,decided) and
a = stopProcess then s’ = (fucen(u, a), p, userStop)
(d) ifs = (u,p,decided) and
a € Aman then s" = (fucn(u,a), firigger (D, @), auto)

(e) ifs= (u,p,decided) and
a € Aproc \ {stopProcess} then s’ = (finsp(u, p), p, inspected)
(f) ifs = (u,p,auto) and

p ¢ Pr then 8" = (u, fpcn (D, fPDec(D)), auto)
(g) ifs= (u,p,auto) and

p € Pr then s’ = (u, p, interactive)
(h) ifs = (u,p, userStop) and

p ¢ PProof then s' = (u,p,fail)
(i) if s = (u,p, userStop) and

P € Pproof then s = (u, p, success)

For states of the form s = (u,p,success) and s = (u,p, fail), the successor
state s’ is undefined. They do not have a successor state.

In the following, we will give a brief description of the Definition 3. In addition
we have depicted the interactive proof process in Figure 1.

(a) If the system is in the state interactive, the user inspects the proof state
and updates the own state using the information gained from the inspec-
tion finsp(u,p) (e.g., at the beginning of the proof process after the user has
formulated the proof obligation and the system has translated it into the
prover’s representation, i.e., s = (ug, po, interactive) or after the prover has
reached a terminating state, i.e., s = (ug, po, interactive))

(b) If the system is in the state inspected, the user makes a decision about the
next action in the process according to the updated own model of the proof
state. The action is decided by the internal choice function fype.(u), (e.g.,
when the user has inspected the formula in the proof obligation and now
determines what to do next in the proof process)
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(c) If the system is in the state decided and the user has chosen the process-
oriented action stopProcess, the user has decided to stop the proof process
(e.g., when the user discovers a mistake in the specification or the program)

(d) If the system is in the state decided, and the user has chosen a proof manip-
ulating action the user interacts with the prover (e.g., the user has inspected
the formula in the proof obligation and encounters that a quantifier instan-
tiation has to be performed or the induction rule has to be applied). The
function firigger translates the user’s actions into the prover’s strategies.

e e system is in the state decided, and the user has chosen a process-
If th tem is in the state decided, and th has ch
oriented action (except stopProcess) the user inspects the proof state further
(e.g., the user wants to inspect the proof tree in more detail).

(f) If the system is in the state auto, the prover applies a proof step according
to the provers internal choice function resp. strategies until the automatic
strategies can not apply more rules and therefore a terminating state is
reached (e.g., the user has invoked the automatic strategies of the prover
and the prover applies consecutive proof rules. Each rule application corre-
sponds to one state transition.)

(g) If the system is in the state auto and the prover has reached a terminating
state after proof step application, the user now can interact with the prover
(e.g., the prover’s strategies cannot apply proof rules anymore and presents
the remaining proof obligation to the user)

(h) + (i) If the system is in the state userStop, the user decides whether the
proof process was successful respec. failed (e.g., the user has either found a
proof or discovered a mistake in the formalization and decides to terminate
the proof process)

We model that while the prover’s strategies apply proof steps (so state tran-
sitions in the prover’s model according to fpcy are made), the user can not
interact with the prover until it reaches a terminating state p;.

In our model the user’s state also consists of a proof plan that the user formed
when formulating the proof obligation. The (partial) proof plan of the user is a
sequence of abstract proof states, denoted by abs(P), related to each other by
actions. These actions can be identical to the actions defined in the user’s model
and abstractions of the proof steps of the prover. We assume that this proof
plan of the user consists of abstract proof states — they may either be identical
to some prover states, possibly with intermediate prover states in between the
abstract states of the user’s proof plan. Some abstract states in the plan may
also correspond to a sequence of prover states and, which are summarized as one
abstract state.

The user might not always have a clear proof plan, e.g., at the beginning of
the proof process. In this case, the user may consider several actions that he or
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/
u' =

finsp(u,p)
start —

(b) a = fUDec(u)

firwp (’L:p)

(d)
a € Apman —
"= fuen(u,a)
p = firigger (p7 a)

i Pr —
P ¢/ i decided

o=
feen(p; frpec(p))

a := stopProcess —
/
u = fUChr(’uﬂ CL)

Fig. 1. Model of the interactive proof process ((a)-(i) are references to Definition 3)

she deems worthwhile to pursue, and for each of these actions he or she likely
only has a rough idea of the resulting proof state. Of course, in certain situations,
this set of possible actions to continue a proof is empty, as the user is unable to
come up with a proof plan.

4 The Gap in the Proof Process

In former evaluations we have already identified a gap between the user’s abstract
states of the proof process and the concrete state of the prover. Based on this
gap we have identified three major challenges an interactive theorem prover has



to meet in order to be more usable: (a) keeping the gap small, (b) bridging the
gap and (c) allowing for effective interactions [6].

Here, we will now give a more precise description of the gap between the users
abstract states and the provers states using a proof system with an explicit proof
object, a proof tree as proof state and a sequent calculus as underlying proof
calculus as an example. The following two problems can occur in such a system:

Provers Strategies applied too many Proof Rules To determine which next action
to apply (modelled by the function fype.) the user has to inspect the proof state
and update the own state according to the information gained by inspecting the
prover’s state (finsp)-

In this situation a gap between the users model of the proof state and the
prover’s state can occur when the automatic strategies applied too many proof
steps or the proof steps were too “complicated”. The user has to inspect the
provers state and update the own model according to the information gained in
the inspection. However, for this update the user has to find a correspondence
for the current prover’s state p; in the own model too. As described above, p;
is a terminating state after the application of several proof steps decided by the
strategy. If the user often iterates between the states decided and inspected, this
may be a sign of a gap caused by the prover’s strategies. Here the user needs a
lot of time to find a correspondence between the own model of the prover’s state
and the current prover’s state.

User Expectations Not Met. Another possibility for a gap is that the user per-
formed the proof according to the proof plan he or she has made before the
proof process and at a terminating prover’s state p; the prover’s state does not
correspond to the expectations of the user (it does not correspond to the state
in the user’s plan). The user has to inspect the prover’s state further in order to
determine whether he or she has made a mistake in the proof plan or the proof
steps in the proof plan have been to abstract and have to be concretized by the
inspection process.

If the user only has a partial proof plan, a gap can occur during the proof
process when the difference between the prover’s current state and the last state
in the user’s proof plan is large and the user is not able to relate the states to
each other anymore. In this case the user has to inspect the proof state in order
to retrace the proof steps the prover’s strategies have applied and update the
own state according to the gathered information.

The user has expectations about the effect of his or her actions on the proof
state. If such an expectation is not met by the prover’s strategies, a gap may
occur as well. The user now has to try to understand what the effect of the
performed action was by closely inspecting the proof state.

To summarize, we assume that the gap occurs at the point in the proof
process where the prover reaches a terminating state p; and the user applies
function finsp in order to apply function fype.. A hint that a gap has occurred
can be, when the user needs a lot of time for the inspection process. In this case
the loop between the states inspected and decided is traversed several times.
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5 Insights into the Usability Test of the KeY system

To gain insights into the interactive proof process and to find evidence that
our model is consistent with the proof process we conducted a usability test.
Based on earlier results of two focus group discussions we conducted a formative,
explorative usability test for the KeY system as the target of evaluation. Usability
tests are structured interviews guided by a moderator following a script, which
consists of all tasks and questions in the order they should be posed. While the
participants perform the tasks, they should use the “thinking-aloud” technique.
In addition their actions on the screen are recorded. The recorded data is then
transcribed and anonymized. Later on, a qualitative content analysis [12,11,10]
is performed to evaluate the test results.

In the following, we will first briefly describe the target of evaluation, give
details about the usability test sessions and give insights into first observations
and first analysis results.

The Target of Evaluation: KeY. The KeY system is an interactive verification
system for programs written in Java and specified using the Java Modeling Lan-
guage (JML). As such it is mostly used for the verification of Java programs
w.r.t. a formal specification (usually a functional specification but also, e.g.,
information-flow properties). KeY has an explicit proof object, i.e., all interme-
diate proof states can be inspected by the user. The underlying calculus is a
sequent calculus for Java Dynamic Logic [8]. Its user interface represents proofs
as a tree. The nodes of the tree are intermediate proof goals (i.e., sequents).
Each node is annotated with the rule that was applied to some formula in its
direct parent node that lead to the current node.

The Participants. Nine KeY users took part in our usability tests, either inter-
mediate or expert users. We excluded novice users, as our hypothesis was that
advanced users perform more complex or larger proofs than novice users and
therefore suffer more from efficiency problems in the proof process.

The Usability Test. Our goal of performing the usability test was (a) to gain
insight into the proof process using the KeY system and (b) to determine whether
a new mechanism, prototypically introduced into KeY, helps the user in bridging
the gap between the concrete proof state and the model of the proof. We also
wanted to gain information about further room for improvement of the target
of evaluation. We planned a session time of approximately 70 minutes.

We structured the usability test into different phases': introduction, warm-
up, task and cool-down phase. In the introduction-phase the users were inter-
viewed by the moderator about their experiences using the KeY system. The
warm-up phase started with an interview about the proof process of the partic-
ipants using the KeY system. Then the participants were asked to specify and

! The testing script can be found at http://formal.iti.kit.edu/~grebing/SWC/ in
German.
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verify a Java method within the time frame of 10-15 minutes. We did not restrict
the usage of system features in the warm-up phase. Our intention for this phase
was to get insight into how the user uses the system to find a proof.

Based on earlier focus group discussions we prototypically implemented a
mechanism to support the display of the history of a formula in the KeY system:
It allowed the user to select a formula in the open goal and retrieve the path
from the open goal to the original proof obligation in which the formula was
affected by rule applications, in the following also called history of a formula.
This mechanism should help to bridge the gap between the user’s model of the
proof and the current proof, as the user is able to trace back the history of a
selected formula and see the changes during the proof process.

For the task phase we developed tasks that should help to evaluate the mech-
anism. We divided this phase into two parts with two different tasks each, one
with and one without the new mechanism. One of the two different task types
involved showing the user a partial proof for a proof obligation in first-order
logic, obfuscating the predicate and function symbol names. The second task
type involved a partial proof for the correctness of a method contract of a Java
method.

For both types of tasks and both parts of the task phase the questions were
identical: the user should describe the proof situation, they should name the
history of two formulas of the open goal and name the next step to continue
the proof process. At the end of the task phase the users were asked about their
expectations about parent formulas of a given formula and proof.

In the cool-down phase participants were interviewed again about the new
mechanism and generally about room for improvement in the system.

Insights into the results of the Usability Test. As the analysis is still work in
progress we only give insights into the results of the warm-up phase and not a
full analysis?.

Almost all testing sessions have taken longer than we planned beforehand.
Solving a task or answering the interview questions took longer than anticipated,
as we didn’t want to interrupt the participants.

In the warm-up phase we wanted to see how the participants use the KeY
system to solve the task in order to gain insights into the proof process. Before
the task, we wanted to know detailed information about the expectations of the
users in a certain proof situation and about the proof process in general.

The interview questions have been:

1. Please imagine you are sitting in front of the KeY system and the
automatic strategies stop with a lot of open goals/proof branches and
quite a large sequent formula. What could have happened? What
could have been reasons that KeY opened a lot of proof branches
and was not able to close them? (In addition a screenshot of a proof
with open goals in the KeY system has been used as stimulus)

2 The sessions have been conducted in German, as it was the native language of the
users. We translate the tasks and answers to the best of our knowledge.
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2. How do you solve the problem of determining what has happened
and what the next steps are?

3. Which possibilities do you have for that? Please arrange them in the
order relatively to each other how often you use the possibilities.

4. Are there other alternatives in this situation, or are you missing a
mechanism which is better suitable than the ones implemented in
the system?

5. If you could wish for a functionality that could support you in proving
using the KeY system, which one would it be?

The practical task for the users in the warm-up consisted of proving a method
that removes the k-th element of a given array and returns the rest of the array,
given the following task description:

Please verify that the method fulfills its contract. Please conduct the
proof like you are used to do it. Please complete or add something to the
specification or the program if necessary. Please think-aloud what you
are searching for and please explain before you click why you would like
to click on that element on the screen.

The first specification of the method which we provided did not formalize the
requirements we described to the user but was already a partial contract.

Our Intentions for the Tasks and Questions. Our intention behind these ques-
tions and tasks in the warm-up phase was to gain insight into how users use the
KeY system to conduct a proof. In the practical task we intentionally did not
show the method and its specification from the beginning on. We wanted to see
which user directly proceeds to use the system to find out whether the method
meets its specification and which user requests for the specification from the
beginning on. In the first case, if the user found a proof, and if task time was
not too far advanced, we asked the user whether the specification is an adequate
rendition of the requirements.

First Results of the Usability Test. In the following, we will briefly mention
those observations from the warm-up phase that contribute to our model. Our
observation was that the users try to abstract from the concrete proof tree to
gain an overview over the proof by using a feature of the KeY system that
hides all intermediate proof states after using the automatic strategy. Almost
all participants either used this feature in the practical tasks or mentioned the
usage of this feature for proof inspection in the answer to the second question.
This relates to the user’s having or trying to build an abstract model of the
prover’s state.

When determining whether a proof is closeable, some users first tried the
provers strategies again, as they assume the amount of user defined proof steps
is not sufficiently high, before inspecting the proof tree in detail. In this case,
we assume the users to have an expectation about the prover’s strategies.
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There were also users who noted that they would prune the proof tree when
the strategies “went too far”. They would prune the tree at a proof node from
which they know its meaning, e.g., after finishing the symbolic execution and
would then “apply rules in a controlled way.” Here we have a hint for the gap,
when the strategies of the prover apply too many rules and open too many goals
without closing them again, the user goes back to a state from which he has a
model.

At least one participant noted that he or she always switches from local to
global proving, i.e. the participant first has an idea on the global, more abstract
level how a proof should be performed, and during the proof process, when the
automatic strategies are not able to close all goals he or she switches to inspecting
the proof in detail on the local level and therefore inspecting the sequent in the
proof node more closely. When a proof branch is closed, the user switches back
to the global level and tries to close the next open goals. This indicates that the
user has different abstraction layers of the proof.

6 Discussion and Future Work

We have presented a model of the components involved in an interactive proof
process and briefly described a usability test of the KeY system to gain insights
into the interactive proof process and to find evidence that the proposed model
is consistent with the actual proof process. We described the point in the proof
process where a gap between the user’s model and the prover’s actual proof
state can occur using our model. We are aware that it is not possible to find
evidence for all parts of the model, as some parts, such as how the precise user
state can be characterized cannot be assessed by the “thinking-aloud” technique.
Participants do not always verbalize everything they are thinking.

Our model does not yet include how users form a proof plan. This is a research
field of its own and it remains for future work to include results of this research
field into our model. We did not consider different user types and their special
requirements on the prover yet, but we are confident that it is possible to include
this in our model as well. The model of the proof process has to be enhanced, as
it does not capture yet that the user and the prover are parallelized. It is not yet
captured that the user can make decisions while the prover searches for a proof,
as well as the user is able to interrupt the proof process. The role of the user
interface is not yet captured by the model. We assume it can be modelled as a
filter function for the prover’s state p, which only shows parts of the prover’s
state to the user and the user only inspects this filtered state in the function
f insp-

As the evaluation of the usability tests is work in progress a full analysis and
evaluation of the results is ongoing work.
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