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Outline

« Confluence of A-calculus was hard

* Church & Rosser’s seminal paper in 1936

» Confluence of A-calculus is no longer hard

» Tait & Martin-Lof, Shanker, Pfenning, McKinna & Pollack,
and Takahashi, ...

* Dehornoy and van Oostrom’s Z theorem

» Confluence of A-calculi with permutations is still hard

» Compositional Z makes it easy



This talk

» Brief history of confluence of A-calculus

* Brief summary of Z theorem

- Compositional Z,a new proof technique,

» simpler proof of A with permutation rules



History of Confluence of A



Ap

 Terms

M,N ::=x | Ax.M | MN

Reduction rules

(A.M)N  —5  Mlx:=N]



Confluence of Ag is hard

* B is not SN (Newman’s lemma cannot be applied)

» (one-step) B does not satisfy diamond property
(Ax0xx) (Ay-y)z) — ((Ay.y)z)((Ay.y)z)((Ay.y)z)

|

z((Ay-y)z)((Ay-y)z)

zz((\y.y)z)

(Ax.xxx)z 777



History of Confluence of Ag

* Church and Rosser (1936) “Some Properties of Conversion”

* residuals of redexes

- Tait and Martin-Lof (192?)

- parallel reduction

» Takahashi (1995) “Parallel Reduction in A-Calculus”
- maximum parallel reduction

* Dehornoy and van Oostrom (2008)

« / theorem



SOME PROPERTIES OF CONVERSION*

BY
ALONZO CHURCH anp J. B. ROSSER

Churc (1936)

Our purpose is to establish the properties of conversion which are ex-
pressed in Theorems 1 and 2 below. We shall consider first conversion defined
by Church’s Rules I, IT, ITII{ and shall then extend our results to several other
kinds of-conversion.}

1. Conversion defined by Church’s Rules I, II, III. In our study of con-
version we are particularly interested in the effects of Rules II and III and
consider that applications of Rule I, though often necessary to prevent con-
fusion of free and bound variables, do not essentially change the structure of
a formula. Hence we shall omit mention of applications of Rule I whenever it
seems that no essential ambiguity will result. Thus when we speak of replac-

g A MLUNS by, S50 it shall.be ndskstood that.anx.applisations of I

THEOREM 1. If A conv B, there is a conversion from A to B in which no
expansion precedes any reduction.

5 shall méan that 1t 1S possible to go irom A to Y a single requction.
“A red B,” read “A is reducible to B,” shall mean that it is possible to go
from A to B by one or more reductions.|| “A conv-I B,” read “A conv B by

AN
L]

AN

o

A=B — A - . ..._35.c ...

R B P Y T AP Y S R R S O U A R S OB RRY PR oomaroe
as modified by S. C. Kleene, Proof by cases in formal logic, Annals of Mathematics, (2), vol. 35 (1934),
Pp. 529-544 (see p. 530). We assume familiarity with the material on pp. 349-355 of Church’s paper
and in §§1, 2, 3, S of Kleene’s paper. We shall refer to the latter paper as “Kleene.”

1 The authors are indebted to Dr. S. C. Kleene for assistance in the preparation of this paper,
in particular for the detection of an error in the first draft of it and for the suggestion of an improve-
ment in the proof of Theorem 2.

§ Note carefully the convention at the beginning of §3, Kleene, which we shall constantly use.

|| Our use of “conv” allows us to write “A conv B” even in the case that no applications of I,
11, or III are made in going from A to B and A is the same as B. But we write “A red B” only if
there is at least one reduction in the process of going from A to B by applications of I and II, and
use the notation “A conv-I-II B” if we wish to allow the possibility of no reductions.
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Church and Rosser (1936)

residuals of redexes

A

(Ax.xx)(Az.(Ay.y)z) > (Ax.xx)(Az.2)

\
)
/ Y

(Az.(Ay.y)z)(Az.(Ay.y)z) - > (Az.2)(Az.2)

\ v
/ A Y

(AY.Y)(Az.(Ay.y)z) =D > \7.7

underlined redexes are
residuals of A

Joinable

by contracting residuals



Tait and Martin-Lof

parallel reduction

M=M N=N
X = X MN = M’'N’
M= M’ M=M N= N
XM = Ax.M’ (Ax.M)N = M’[x := N’|

/\
—5 C = C —p and \ /

IM;
diamond property



Takahashi (1995)

maximum parallel reduction

X" =X
(Ax.M)* = Ax.M
(AX.M)N)* = M*[x := N*]
(MN)* = M*N (M is not abst.)
M M

Ml/ \M2 follows from \
N /

IM; M*
diamond property angle property

N




Dehornoy and van Oostrom (2008)

Z theorem

If we find a mapping (-)” s.t.
M > N

¥
M* o = N*

then the reduction system is confluent



Dehornoy

Ml = M2
Y V

-om (2008)

Y Y
>> I\/|>2|< ........ >> I\/|>3l< >>



A Brief Summary of Z



How niceis Z? | »

M* s N*

- Z can be proved by induction on one-step reduction

- Z does not require parallel reductions

- Z is easy to apply to reduction systems on quotient sets

» Z property modulo [Accattoli&Kesner 2012]
Confluence of A divided by an equality of associativity

+ Z enables us to extend confluence proofs

» Compositional Z [N&Fujita 2015]
(in the latter part of this talk)



Z property modulo

« —:reduction on A induces a reduction on A/=

M—><N iff M~.-—.~N

 [Accattoli&Kesner2012]

— = is confluent if
there exists (- )" well-defined on A/= such that

M >_N

s
M™ oo NF



Z property modulo

« —:reduction on A induces a reduction on A/=

 [Accattoli&Kesner2012]

M—><N iff M~.-—.~N

weaker variant of Z

— =~ is confluent if
there exists (-)" well-definkd on A/= such that




Z property modulo

« —:reduction on A induces a reduction on A/=

 [Accattoli&Kesner2012]

M—><N iff M~.-—.~N

weaker variant of Z

— =~ is confluent if
there exists (-)" well-definkd on A/= such that

<
2
=
\
=
2
=



Is Z universal?

* Question: For any confluent system,
is there a mapping satisfying Z?

+ Two extreme (and trivial) answers:

* YES, if weakly normalizable
« take M* as the normal form of M
* NGO, in general

* there is some counterexamples



Confluent, but not Z

- D n

If 0"=n,
since 0 = n+l,
n+t| —" nis required by the Z property

Therefore, there is no mapping satisfying Z



Confluent, finitely branching,
but not Z

If 0°=n (z1),

Therefore, there is no mapping satisfying Z

1 > 1
since -(n+1) — 0,
T// l (-(n+1))" =" n is required
5 but (-(n+1))" = n+1 since -(n+1) = n+|



A-Calculi and Z



Confluence of A by Z

* Dehornoy and van Oostrom (2008) Ag, Agn

* Accattoli & Kesner (2012) A divided by associativity

» Z property modulo
* Komori, Matsuda, & Yamakawa (2013) Ag, Agn
* N & Nagai (2014) Ap

N & Fuita (2015) A A <

» Compositional Z



Confluence of Ag by Z

»  The maximum paraIIeI reduction is Z

(Ax.M)*
(Ax-M)N)*
( N)*

X
AX.

M* [x = N*]
M*N (M is not abst.)

+ Key lemmas

M —* M* (1)
M*[x := N*] =" (M[x := NJ])* (ii)



Confluence of Ag by Z

* Proof of the base case

(Ax.M)N > M|[x := N]
| i)
Voo Y

M*[x := N*] - (iij>> (M[x := N|)*

+ Key lemmas

M —* M* (1)
M*[x := N*] =" (M[x := NJ])* (ii)



Permutative conversion

» for natural deduction with v and 3 [Prawitz 1965]

- exchanges order of elimination rules

- for normal proofs to have good properties
such as the subformula property

- makes confluence proofs much harder

[Ando 2003]



Exchanging E-Rules

. P : Q: ' Q2 |

TFA; VA, TLA;]FB—=C T Ak _>C(E) ' R

B —C v FFB(E)
[+ C -
1T
- Qu . R - Q2 : R
. P rA;FB—>C T+B . rA,FB—>C TH+B .
F-A; VA, A FC (E-) F,All—C(E) (E-)
V

[ C



Exchangi

(case P with x| = Q) | x2—Q2)R
I

;P Q1 Q2
r-A; VA, T'ALFB—>C T,AAFB—=C . ' R
[FB—C (V)FFB(E)
r-C -
\n
1T
| §Q1 R §Q2 R
P TLAIFB—C I'I—B(E) Ay FB—C I'I—B(E)
[ A VA, AL FC ~ AL FC . -
[FC 2 '

P[x1.QIR, x2.Q2R]



>\BT|'

» Terms and eliminators
M,N = x | A.M | 1M | oM | Me
e := M | [x1.Nq1,x5.N>]
* Reduction rules
(AxM)N =5  M[x:= N]
(tiM)[x1.N1,x2.N2]  —3  Ni[x; := M|
M[x1.N1,x2.Nole  —  M[x1.Nye, x2.Noe]

left associative L ;
(M[Xl.N|,X2.N2])e permuta Ive conversion

uniform representation

of elimination for — and v




Agm, for simplicity

 Terms and eliminators

M,N = x| Ax.M | t:M | Me
e ;=M | [x.N]

« Reduction rules

(AXM)N  —5 M[x:=N
(tM)X.N]  —5 Nx:=M
M{x.NJe —, MI[x.Ne|




Where are difficulties?

* Parallel reduction for TT-reduction

» Maximum complete development for

the combination of B- and TT-reductions



Parallel reduction for T1?

x[y.yllz.z][w.w]

<N
@MY[Z-ZH w.w] these steps must be xly.yl|z-z|w.w]]
considered as )
one-step parallel red.

x[y.y[z.Z] [W-_Y_V__H

X|y.y|z.z|w.w]]] least join point




Generalizing parallel reduction

* As one-step parallel reduction,
we have to admit all of the following

x[y.y]|z.z|[w.w]

— |

x|y.y|z.z]||lw.w] x|y.y]|z.z|w.w]] X|y.y|z.z|w.w]]]

- [Ando 2003] defines the parallel reduction
by means of the notion of segment trees

* We can avoid it by Z theorem



Z for 117 A

x[y.yl|z.z]|w.w]

yy z.z|w.wl]

we have to do TT
completely

RBEIIE oo




Complete permutation

(M[x.N])@Qe = M|x.NQe]
M@Q@e = Me (otherwise)

Example

x|y.y|z.z|w.w]||@Qv = x|y.y|z.z|w.wv]]|



Z for BT1?

« A nalve definition

(Ax.M)* = Ax.M
(M)* = |M”
(AX.M)N)* = M*[x := N*]
(M)N])* = N*[x := M
(Me)* = M*@e” (otherwise)




Z for BT1?

« A nalve definition

(Ax.M)* = Ax.M
(M)* = |M”
(AX.M)N)* = M*[x := N*]
(M)N])* = N*[x := M
(Me)* = M*@e” (otherwise)




(Ax.M)* = Ax.M*
permutation is done (tM)* = (M*
for the result of (Ox.M)N)* = M*[x := N*]
((tM)[x.N])* = N*[x := M*]
» Monotonicity fails (Me)” = M7@e” _ (otherwise)

(t(xly-y])[z-zl)v == (e(x]y-y]))[z-zw]
)

((e(x]y-y]))[z-z]w)] ((e(x]y.y]))[z.zw])"
= ((txly-y])) [z z])"Qw = (zw)"[z ;= Xly.y]
= (x[y.y])Qw = x[y.y|w
= X|y.yW| =

- [Ando 2003] avoids it by the notion of residuals



Z for BT1?

* Define a mapping as a composition of

+ MP = complete permutation

»+ MB = complete development for (only) B

- We want to adapt Z theorem

to the compositional function MFB



Compositional Z



Z and weak Z
M

(-) is Z for — iff

éN

(-)"is weakly Z for = by — iff



Theorem [N&Fuijita201 5]

. Let—b:—blu—bz

If mappings (-)' and (-)? satisfying following,

° . | —)
(+)"is Z for = Compositional Z

+ if M = N, then M2 =" N2
» M! =" M2 holds for any M

* (-)'%is weakly Z for =, by —

then the composition (-)'? is Z for —



Compositional Z

Z for | weak Z for 2
1 2
M > N M > N
§
ML s N
Y 4
M2 s N1Z M2 s N1Z




Compositional Z
If M = N implies M! = N!

1 2

M S\ M S\
M1 N1

i ¥
M12 N12 M12 ________ . N12




Corollary [N&Fujita2015]

» If the following hold,

+ if M = N, then M =N/
+ M =" M! holds for any M

+ M! =" M!2 holds for any M

* (+)'"?is weakly Z for =, by —

then the composition ( -)'? satisfies Z for —



Confluence of B1T
by compositional Z

XP = X XB = X
(Ax.M)P = Ax.MP (Ax.M)B = Ax.M"
(M)F = MP (M)B = | MP
(Me)” = MP@e”  (Ax.M)N)® = MB[x := NP
((tM)[x.N])® = NB[x := M"
(Me)® = MBe®  (otherwise)

The mappings (- )" and (- )B satisfies the conditions
of the compositional Z for = and —¢




Extension to Al
» AM-calculus [Parigot 1992]

» corresponds to classical natural deduction

» A-calculus extended with control operators

* [Ando 2003] proved confluence of Al
with permutative conversion

- compositional Z gives simpler proof



AU

 Terms and eliminators

M,N ::=x | Ax.M [ (M | Me | pae.M | |a|M

e :=M | [x.N]
* Reduction rules

(Ax.M)N
(¢M)[x.N]
M[x.N|e
(pae.M)e

—p
—p
—rr
g




AU and classical logic

double negation elimination

[ A,a:-AFM: L

[ | AF pa.M: A

[ A,a:—AFM:A
[ A,a:—-AF [a]M:




LI-reduction

(na.M)e —,
(pov. - [afP---)e =y,

P:A —

pa.M|[a]

//LO{....I:CV]Pe...

|l

P.A—>B N:A

just a variant of
permutation
P L PN : B
TR a]PN : L
M: L ; E
waM:A—B N:A Mlla]O := |a|Ue] : L
(pa.M)N : B pa Mo = |a]le] : B




AU and control operators

(pa. - [a]P--)e =, po.---[a]Pe---

a]P- Ny ---Np  —*  pa.---[a](PNg---Np) -+




AU and control operators

E=[]Ni...Nn

(call-by-name) evaluation context [
= continuation

[a]P-- )Ny - Ny =% pan---[a](PNp---Ny) - -

Elua.---|a]P---] —7 pa. - - - [a]E[P] - - -

M captures continuations
(cf. call/cc)




7 for TT and ' ) M//* |

s> N
/W.[Q]X)[y.y][z.d\\
(Ma.[a]x[y.Y])[z.z] (ua.[q]x)[y.y[z.z]]
(RSRYIER)) << | completely B A,

SRy oxston point



Complete permutation

the definition is
_ a little complicated
(M[x.N])@Qe = M|[x.NQe

(pa.M)@e = pa.M||a]0 := |a|[JQe]
M@e = Me (otherwise)

Example

(pa.x|aly|z.z])@Qv = pa.x|al(y|z.z]) Qv

= pa.X|aly|z.zv]



Confluence of BT
by compositional Z

(Ax.M)P = Ax.MP (Ax.M)B = Ax.MPB
(MF = MP (tM)B = MB
(poe.MF = pa.MP (poe.M)B = poe.M®
([a]M)P = [a]MP ([a]M)® = [o] M
(Me)® = MP@e®  ((AM)N)® = MB[x := N®,
((tM)[x.N])® = NB[x := M®]
(Me)® = MPe®  (otherwise)

The mappings (- )" and (-)B satisfies the conditions
of the compositional Z for =y and —¢




Applications of compositional Z

A with permutative conversion T and P
AM with permutative conversion  TTH and
extensional A n and B

A with explicit subst. x and

subst. propagation

Compositional Z enables us to prove confluence
by dividing reduction system into two parts




Conclusion



Summary

* Dehornoy and van Oostrom’s Z theorem is

useful for A-calculi

» Confluence of A with permutative conversions
becomes much simpler with compositional Z

+ Compositional Z suggests (quasi-)modular proofs
of confluence



“Simpler” proofs!?

- Easier to check?

- Easier to apply other calculi?

* Shorter formal proof? ...depending on logical system

« Easier to formalize!? ...l believe so, but we should check it

“I feel that the new proofs (...) are
more beautiful than those we started with,
and this is my actual motivation.”

— [Pollack 1995]



A Classical Japanese Poem

/

composed by Sutoku-In (5R{&F5) in 12th cent.

http://www.tamagawa.ac.jp/library/img/h1_077.jpg
7z B A giced s 5m/o
bNTHRIC EITLH EZFRES confluence makes

us happy!

(direct translation)

A stream of the river separates into two streams
dfter hitting the rock,

but it will become one stream again

(that is,)

although if | love someone but we cannot be together in this life,
| can be together with her in the next life

Japanese-English Bilingual Corpus of Wikipedia's Kyoto Articles
(National Institute of Information and Communications Technology)



