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Model-Theoretic Semantics

Theorem proving by refutation of negation

Can be understood as attempt to construct a model

m Highly successful for classical logic (Herbrand models)
m Applied also to nonclassical logics (Kripke models)

Requires deep understanding of model theory

Proof extraction may be difficult



Proof-Theoretic Semantics

m Theorem proving by direct proof construction
m Immediately applicable to nonclassical logics

m Requires deep understanding of proof theory

m Proof is primary artifact



Applications of Nonclassical Logics in CS

m A personal and biased sampling
m Propositions as types, proofs as programs
m Intuitionistic logic and type theory [Martin-L6f'80]
m Staged computation, run-time code generation (JS4)
[Davies & Pf'96]
m Monadic encapsulation (lax logic)
[Fairtlough & Mendler'97]
m Partial evaluation (temporal logic) [Davies'96]
m Message-passing concurrency (linear logic)
[Caires & Pf'10] [Toninho'15]
m Reasoning about programs
m Dynamic logic [Pratt'74]
m Temporal logics [Pnueli’77] [Clarke & Emerson'80]
m Separation logic [O'Hearn & Pym'99] [Reynolds'02]
m Security
m Authorization logics [Garg et al.'06]
m Protocol logics [Datta et al.’03] 443



Constructing a Theorem Prover

Present a logic as a deductive system amenable to search

Iterate
m Devise an equivalent system with less nondeterminism
m Don't-know nondeterminism: reduce backtracking
m Don't-care nondeterminism: reduce redundancy

Exploit techniques for efficient implementation



m Past: How to define a logic

m Sequent calculus [Gentzen'35]
m Harmony [Dummett'76] [Martin-L6f'83]

m Present: How to reduce nondeterminism in search
m Focusing and polarization [Andreoli'92] [Laurent'99]

m Future: How to combine logics
m Adjunctions [Benton'94] [Reed'09]



Running Example: Linear Logic

Logical hypotheses as resources [Girard'87]
Exemplify techniques in a deceptively simple setting

Model-theoretic techniques not easily available

Many applications in computer science

m Planning as (linear) theorem proving [Bibel'85]

m Close cousin to separation logic [Reynolds'02]

m Quantum computation [van Tonder'03]

m Message-passing concurrency [Caires & Pf'10]
[Toninho'15]



Logic Definition: Proof-Theoretic Semantics

m Gerhard Gentzen [1935]

The introduction [rules of natural deduction]
represent, as it were, the ‘definitions’ of the
symbols concerned, and the eliminations are no
more, in the final analysis, than the
consequences of these definitions.

m In a slight departure, we use his sequent calculus
m Antecedents A ==+ | AJA (modulo exchange)
m Linear hypothetical judgment

AFA

Using antecedents in A exactly once,
we can prove that A is true



Global Harmony Requirement

m Use justifies truth (id)
m Truth justifies use (cut)
AFA A AEC

id cut
AFA A AL D, FC A

m Cut elimination: Any deduction can be transformed into
one not using the rule of cut

m |dentity elimination: Any deduction can be transformed
into one using identity id, only for atomic propositions a



Local Harmony Requirement

m Right rules for connectives define how to prove them
m Left rules for connectives define how to use them

m Example: linear implication A— B

AAFB MFA £pBEC
AFA—-B Ay Dy A—-BEC

m They must be in local harmony

m Truth justifies use (cut reduction)
m Use justifies truth (identity expansion)
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AAEB AFA ABEC
———— R ol
A-A—B Ay, Dy, A—BFC
cuta_p
AALAEC

AMHFA AAEB
cuty
AA B A, BE C
—R Z&,Z&l,ZXQ FC

cutg
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|dentity Expansion

id id
A-A A BEB B
| A—oB Al B
ida_.n

—oR
A—-oBFA—B = A-—-oBFA—B
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External Choice

m Second sample linear connective: external choice A & B

AFA AEB

R
AFAzB &

AARC ABEC

AAgBEC S AA&BLC S

m Locally, satisfies cut reduction and identity expansion

m Globally, satisfies cut and identity elimination
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Cut-Free System

m Compositional meaning explanation of A— B, A& B
m Subformula property; independence of connectives

m Basis for simple proof construction algorithm

m Complete by cut and identity elimination

id
aka °
AAEB AMFA A)BEC

— R —o0
AFA B A1, DAy, A—BFC

L

AFA AFRB

R
AFA&B &

aARC ABREC
— & —_— &
AA&BEC AABEC
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Backward Proof Construction

?
a—o(b&c),b—ocka—oc
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Backward Proof Construction

)
a,a—o(b&c),b—ockc

—oR
a—o(b&c),b—ocka—oc
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Backward Proof Construction

? ?
atka b&c,b—ockc

a,a— (b&c),b—ochkc

—oR
a—o(b&c),b—ocka—c
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Backward Proof Construction

?
—ol
—oR

i,
al—aI b&c,b—octkc
a,a—(b&c),b—ockc

a—o(b&c),b—ocka—oc
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Backward Proof Construction

” b,b—octc
al—ala b&c,b—ockc

&Ly

a,a— (b&c),b—ochkc

—oR
a—o(b&c),b—ocka—c
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Backward Proof Construction

?

bbb~ cl—c_oL
_ b,b—octc
al—aIda b&c,b—ocl—c&L1
a,a—(b&c),b—octc
—oR

a—o(b&c),b—ocka—oc
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Backward Proof Construction

idp
bk b ckc

" b,b—ctc
al—aI ° b&c,b—ockc

a,a—(b&c),b—octc

a—o(b&c),b—ocka—oc
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Backward Proof Construction

idp id,
bk b ckc

" b,b—ctc
al—aI ° b&c,b—ockc

a,a—(b&c),b—octc

a—o(b&c),b—ocka—oc

15/43



Forward Proof Construction

m Inverse method [Gentzen'35] [Maslov'64] [Mints'81]
m Step 1: specialize rules to subformulas of end sequent

a—o(b&c),b—ocka—oc

idp id,
bk b ckc

id,
aka

A b~y Ackry
— &L, — &L
A b&chk~ A b&chk

AiFa A b&chk7y
Ay Dy a—ob&cky

A]_l_b Az,C"’)/ ! A,al—c
Ay Do b—ockry AFa—oc

—oR
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Forward Deduction

m Step 2: Apply just these rule instances, arbitrarily
m Subformulas, left: b& ¢, a— (b&c), b—oc
m Subformulas, right: a — ¢

a F a 1=id,
b+ b 2 =idp
c F ¢ 3 =id.

17/43



Forward Deduction

m Step 2: Apply just these rule instances, arbitrarily
m Subformulas, left: b& ¢, a— (b&c), b—oc

m Subformulas, right: a — ¢

a F a 1=id,

b - b 2 =idp

c F ¢ 3 =id.
b&c + b 4 =&L;1(2)
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Forward Deduction
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Forward Deduction
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Forward Deduction
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Forward Deduction

m Step 2: Apply just these rule instances, arbitrarily
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Forward Deduction
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Forward Deduction

m Step 2: Apply just these rule instances, arbitrarily
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Forward Deduction

m Step 2: Apply just these rule instances, arbitrarily
m Subformulas, left: b& ¢, a— (b&c), b—oc
m Subformulas, right: a — ¢

a F a 1=id,
b F b 2 —id,
c F ¢ 3 =id.
bac F b 1=20,(2)
b&c F ¢ 5= &L5(3)
bb—oc F ¢ 6 =—L(2,3)
a,a—(b&c) F b 7=—l(1,4)
a,a—(b&c) F ¢ 8 = —lL(1,5)
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m Sequent calculus [Gentzen'35]

m Define connectives by right rules (how to prove) and left
rules (how to use)

m Should satisfy harmony [Dummett'76]

m Global harmony: cut and identity elimination
m Local harmony: cut reduction and identity expansion

m Per Martin-Lof [1983]

The meaning of a proposition is determined by
what it is to verify it, or what counts as a
verification of it.

m Cut-free sequent calculus as basis for proof search

m Backwards, with backtracking proof search
m Forwards, based on specialized inference rules
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m Past: How to define a logic

m Sequent calculus [Gentzen'35]
m Harmony [Dummett'76] [Martin-L56f'83]

m Present: How to reduce nondeterminism in search
m Focusing and polarization [Andreoli'92] [Laurent'99]

m Future: How to combine logics
m Adjunctions [Benton'94] [Reed'09]
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Nondeterminism

m Much nondeterminism remains
m Backward search (don't-know)

m At each step: which rule do we try?
m Backtrack upon failure

m Forward search (don't-care)

m At each step: which (specialized) rule do we apply?
m Generate useless and redundant sequents
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Observations: Inversion and Focusing

m We can always decompose some connectives without
losing provability (inversion)

ida idg
A AFB AFA BI—B_OL
7—0}-\)
AFA-oB AFA—B A,A—oBI—BCUtA
AAEB

m Other connectives require a choice, but we can combine
successive choices on the same formula (focusing)

AAFD
&
AAR(B&C)FD

A BFD ACHD
&Ly &
A,A&(B&C)I—D A,A&(B&C)I—D

L22
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Negative and Positive Connectives

m Negative connectives have invertible right rule
m Involve some choice on the left

m Positive connectives have invertible left rule
m Involve some choice on the right

m Segregate in syntax to exploit inversion and focusing

Negative A~ = Al —A; |AT &A, | T|a |1A"
Positive At = A/ @A |1|Af®A]|0]at | A”

m Glimpse at other linear connectives (T, ®,1,®,0)

m Shifts 1A* and JA~ ensure every formula can be
polarized

m Minimal polarization exists
m Assign atoms arbitrary consistent polarity
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Re-engineering Deduction, Inversion Phase

m A = A for polarized focused deduction
m Inversion phase: break down negatives on right and
positives on left (confluent)

A AT BT AH-A- Al B
—R &R
AH At — B~ At A" & B~
A At R AAH C
NV A LA C
m Suspend atoms during inversion
Al-(a7) A (a") - C
Al a” A at i C

m Stable antecedents A~ == | A7 A" | A7, (a")
m Stable succedents v+ ::= AT | (a7)
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Re-engineering Deduction, Inversion Phase

m A = A for polarized focused deduction
m Inversion phase: break down negatives on right and
positives on left (confluent)

A AT BT AH-A- Al B
—R &R
AH At — B~ At A" & B~
+ AAH
A A R v m
INEEY S A LAy
m Suspend atoms during inversion
Bty o ALk
AR a A at H vy

m Stable antecedents A~ == | A7 A" | A7, (a")
m Stable succedents v ::= AT | (a7)
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Re-engineering Deduction, Transition

m Focus on positive on right or negative on left
m Only one formula may be in focus in a sequent

A - [A7] A7 ATy

A~ 1 A o A= A Iyt !
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Re-engineering Deduction, Focusing Phase

m Combine successive choices in focus
A7 H[AT] Ay [BT]HAF
AT, A5 [AT — BT AT

—o

A [AT] A7 [BT]HAF
&Lq
A" [A~&B 4T A~ [A-&B AT

ALATEYT L ATHA
A, [TAT] # A [JA7]

IR

N 'da a
[a7]H-(a7) (a*) H[a7]
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Soundness and Completeness

m Judgments now A true, [A] in focus, (A) suspended
m Collectively, the system is called focusing

m Focusing is sound

m Restricts inferences
m Depolarize and induct over derivation

m Focusing is complete. Key properties [Simmons'13]

m Cuts on A are admissible by nested induction, first on A
m Identities on A are admissible by induction on A

m Use as basis to improve both backward and forward search
[Andreoli'01] [Chaudhuri et al.’06] [McLaughlin & Pf'09]
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Example Revisited

m Choose all atoms to be negative (a=,b™,c™)
la—(b&c),{b—och Ja—c
m Step 1: Invert to stable sequents
a,la—(b&c),lb—ocH (c)

m Step 2: Construct derived rules between stable sequents
A AT
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Constructing Derived Rules

m Correspondence between formulas and rules of inference
[Andreoli'01]
m Example: Antecedent |a —o (b & ¢)

A" la—o(b&c)H AT "
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Constructing Derived Rules

m Correspondence between formulas and rules of inference
[Andreoli'01]
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A~ la—(b&c) ot
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Constructing Derived Rules

m Correspondence between formulas and rules of inference
[Andreoli'01]
m Example: Antecedent |a —o (b & ¢)

A™=(A;,4;) Ap [l Ay, [b&c]tv*
Ao o (ba o) F
A~ la—(b&c) ot

—o

[1-
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Constructing Derived Rules

m Correspondence between formulas and rules of inference

[Andreoli'01]
m Example: Antecedent |a —o (b & ¢)
Ay H(a)
—— 07
Al Ha

. IR
A™=(A;,4;) Ap [l Ay, [b&c]tv*
A7 [la—o(b&c)l "

A~ Ja—o(b&c)H~T

—o

[1-
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Constructing Derived Rules

m Correspondence between formulas and rules of inference

[Andreoli'01]
m Example: Antecedent |a —o (b & ¢)
Ay to(a)
AT Ha <>R A, [b) AT
AT =(A1,8;) A 4] Ay, [b&c] i7"

—o

A7 [Ja— (b&c) "
A~ Ja—o(b&c)H~T

[1-
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Constructing Derived Rules

m Correspondence between formulas and rules of inference

[Andreoli'01]
m Example: Antecedent |a —o (b & ¢)
Ay - (a) - Ay =+ 77 =(b) .
— |
Afta o 5 ’
A™=(A;,4;) Ap [l Ay, [b&c]tv*

A7 [Ja— (b&c) "
A~ Ja—o(b&c)H~T

[1-
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Constructing Derived Rules

m Correspondence between formulas and rules of inference

[Andreoli'01]
m Example: Antecedent |a —o (b & ¢)
Ay - (a) - Ay =+ 77 =(b) .
Arta As B At C
A" =(Ar,4;) Ay H[l4] Ay, [b&c]tv*

A7 [Ja— (b&c) "
A~ Ja—o(b&c)H~T

[1-

m Yields derived rule
A~ (a)
A~ la—(b&c) - (b)

[3]
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Backward Search

m Derived rules

A~ - (b)

at-(a) 1 A=, lb—oct{c) 2
A~ H A~ H
] (a) 3l ; (a) il
A~ la— (b&c)Ht (b) A~ Ja—(b&c) I (c)

m Step 3a: Backward search using only derived rules
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Backward Search

m Derived rules

A~ - (b)

at-(a) 1 A=, lb—oct{c) 2
A~ H A~ H
] (a) 3l ; (a) il
A~ la— (b&c)Ht (b) A~ Ja—(b&c) I (c)

m Step 3a: Backward search using only derived rules

?

a,la—o(b&c),lb—och (c)
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Backward Search

m Derived rules

A~ H (b)
[1] - 2]
at-(a) A=, lb—oct{c)
A~ I+ At
] (a) 3l ; (a) il
A~ la— (b&c)Ht (b) A~ Ja—(b&c) I (c)

m Step 3a: Backward search using only derived rules

a,lb—ch (a)
[4] 2]
a,la—o(b&c),|b—och (c) a,la—o(b&c),lb—cH (c)
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Backward Search

m Derived rules

A~ - (b)

at-(a) 1 A=, lb—oct{c) 2
A~ H A~ H
] (a) 3l ; (a) il
A~ la— (b&c)Ht (b) A~ Ja—(b&c) I (c)

m Step 3a: Backward search using only derived rules

failure: no rule applies
a,lb—ch (a)
[4] [2]
ala—o(b&c)lb—och (c)  ala—o(b&c)lb—och (c)
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Backward Search

m Derived rules

A~ - (b)

at-(a) 1 A=, lb—oct{c) 2
A~ H A~ H
] (a) 3l ; (a) il
A~ la— (b&c)Ht (b) A~ Ja—(b&c) I (c)

m Step 3a: Backward search using only derived rules

failure: no rule applies 5

a,lb—ocH (a) a,la—o(b&c) i (b)

[4] 2]
a,la—o(b&c),|b—och (c) a,la—o(b&c),lb—cH (c)
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Backward Search

m Derived rules

A~ H (b)
[1] - 2]
at-(a) A=, lb—oct{c)
A~ I+ At
] (a) 3l ; (a) il
A~ la— (b&c)Ht (b) A~ Ja—(b&c) I (c)

m Step 3a: Backward search using only derived rules

?
failure: no rule applies al- (a)

[3]
a,lb—octt(a) a,}a—o (b&c)Ht (b)
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Backward Search

m Derived rules

A~ - (b)

at-(a) 1 A=, lb—oct{c) 2
A~ H A~ H
] (a) 3l ; (a) il
A~ la— (b&c)Ht (b) A~ Ja—(b&c) I (c)

m Step 3a: Backward search using only derived rules
m Only two possible attempts!

[1]
failure: no rule applies al- (a)

[3]
a,lb—octt(a) a,}a— (b&c)Ht (b)

[4] 2]
a,la—o(b&c),|b—och (c) a,la—o(b&c),lb—cH (c)
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Forward Search

m Recall derived rules: use only these!

A~ I (b)
[1] - 2]
al-(a) A~ b—oct{c)
A H(a A~ H-(a
; (a) 8 ; (a) il
A~,la—(b&c)H (b) A~ la—(b&c)H (c)

m Step 3b: Focused inverse method [McLaughlin & Pf'09]
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Forward Search

m Recall derived rules: use only these!

A~ I (b)
[1] - 2]
al-(a) A~ b—oct{c)
A H(a A~ H-(a
; (a) 8 ; (a) il
A~,la—(b&c)H (b) A~ la—(b&c)H (c)

m Step 3b: Focused inverse method [McLaughlin & Pf'09]

a + (a) 1=1[1]
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Forward Search

m Recall derived rules: use only these!

A~ I (b)
[1] - 2]
al-(a) A~ b—oct{c)
A H(a A~ H-(a
; (a) 8 ; (a) il
A~,la—(b&c)H (b) A~ la—(b&c)H (c)

m Step 3b: Focused inverse method [McLaughlin & Pf'09]

a + (a) 1=1[1]
a,Ja— (b&c) H (b)y 2=][3](1)
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Forward Search

m Recall derived rules: use only these!

A~ I (b)

2
al-(a) g A~ b—oct{c) 2l
A H(a A~ H-(a
; (a) 8 ; (a) il
A~,la—(b&c)H (b) A~ la—(b&c)H (c)

m Step 3b: Focused inverse method [McLaughlin & Pf'09]
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Forward Search

m Recall derived rules: use only these!

A~ I (b)
[1] - 2]
al-(a) A~ b—oct{c)
A H(a A~ H-(a
; (a) 8 ; (a) il
A~,la—(b&c)H (b) A~ la—(b&c)H (c)

m Step 3b: Focused inverse method [McLaughlin & Pf'09]

m Only one unused sequent!

= (o) 1=11]
a,ia—o(b&c = (b) 2=1[3](1)
a,la—(b&c) K (c) 3=1[4](1)
a,la—o(b&c),lb—oc t (c) 4=[2](2)
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Summary: Present

m Polarize the logic into negative and positive propositions

m Negatives are invertible on the right
m Positives are invertible on the left

m Focused deduction

m Decompose all invertible connectives
m Focus on one noninvertible one
m Continue to focus until invertibles are uncovered

m Sound and complete, key is cut elimination for polarized
focused logic [Simmons'13]

m Use for big-step inferences (backwards and forwards)
m Drastically reduces search space

m So far, focusing applies for many interesting logics (linear,
intuitionistic, classical) [Liang & Miller'09]
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m Past: How to define a logic

m Sequent calculus [Gentzen'35]
m Harmony [Dummett'76] [Martin-L56f'83]

m Present: How to reduce nondeterminism in search

m Focusing and polarization [Andreoli'92] [Laurent’99]
m Future: How to combine logics

m Adjunctions [Benton'94] [Reed'09]
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Example: Recovering Intuitionistic Logic

m A— B ~!A— B [Girard'87]
m !A internalizes categorical judgment - A

m !A satisfies weakening and contraction

m Alternative: combine intuitionistic and linear logic via an
adjunction [Benton'94]

m Two functors F and G, F left adjoint to G
m Syntax as modal operators G A and F X
m Decompose !A~ F (G A)

m Generalized to multi-modal logics [Reed'09]
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Adjoint Logic

m Two-level system [Benton'94]

Unrestricted AU = AU — AU ’ AU N BU ’ au | GAL
Linear A|_ L= A|_ —OAL ’ AL & BL | aL | FAU

m Represent 1A, ~ F G AL
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m Two-level system [Benton'94]
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m Represent 1A, ~ F G AL

m Observation: TA" and |A™ of polarized linear logic also
combine two separate language levels!
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Adjoint Logic

m Two-level system [Benton'94]

Unrestricted AU = AU — AU ’ AU N BU ’ au | GAL
Linear A|_ L= AL —OAL ’ AL & BL | aL | FAU

m Represent 1A, ~ F G AL

m Observation: TA" and |A™ of polarized linear logic also
combine two separate language levels!

m Observation: They follow the same rule structure!
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Polarized Adjoint Logic

m Unify the two concepts [Pf & Griffith'15]
m Every proposition has a polarity (*, ~) and mode (U, L)

Modes m,k == U|L where U>L
Neg. A, = AL—B.[AL&B, a, [TWA; (m>k)
Pos. Af = AFe@Bf|AleBl]|al|llA, (m>k)

m Define FAy = [ Ay, GAL =1 AL
m SolA~F(GA) ~ [ 1YAL
m Define A* — BT ~ A — B]
m Define A* A BT ~ Al ® B
m Define A~AB™ ~ Aj & B
m Earlier modalities 1A = 11 A;, JA = |t A,
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Polarized Adjoint Sequent Calculus

m Mixed antecedents W =< | W A,
m Mixed-level judgment W - A,

m Independence and inclusion

m V > k means m > k for every A, in W
m VW A, presupposes ¥ > k
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Polarized Adjoint Logic, Inversion Phase

v, A* - B Vi-AD Wi B
—oR &R
Vi At — B V- As & B
Vi A VA= -,
—* 4R —m L
V- A W LMAS Iy,
Vi (a,) v, (ap)

- " ()F
VHa Y oat i,
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Polarized Adjoint Logic, Transition

v AR

V- i AF 2
Vo IACTHE AT VAR [AGT T
VU A KAt [ U e o
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Polarized Adjoint Logic, Focusing Phase

m U V' admits contraction for Ay in W and V'’
Vi >m Vi [AR] L (Bl T

VLo [AL — Bl -y
Vo [AL I A Vo, [Bl T ,
&Ly 2
VoL [AL & Bl A" VoL [AL & Bl A"
k>r \Il_,A;rH—’y;F V=>m V- KA,
" +L IR
Vo [IRA V- LA
v>Uu v>U
id; id}

W, (] - (a7) W (ah) - [a]
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Polarized Adjoint Logic

m Different from Andreoli's system

m Polarized (unfocused) adjoint logic satisfies structural cut
and identity elimination [Pf & Griffith'15]

m Conjectures:

m Polarized focused adjoint logic satisfies structural cut
and identity elimination

m Polarized focused adjoint logic is sound and complete

m Polarized focused adjoint logic is conservative over
focused intuitionistic and focused intuitionistic linear
logic for proof construction
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Further Conjectures

m Adjunction and polarization are generally compatible
m Adjunctions provide a flexible way to combine logics

m Conservative over both levels

m Preserves both search spaces under focusing

m Affine logics are compatible [Pf & Griffith'15]

m Extends to preorders of logics, under some conditions

[Nigam & Miller'09] [Reed’09]

m Combining logics conservatively is important

m Embeddings lose structure
m Nonconservative combinations are difficult
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Summary: Future

m Study adjunctions as a flexible way to combine logics
conservatively

m Examples: intuitionistic, affine, linear, modal logics
m Compatibility with focusing

m Preserving search spaces
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Conclusion

m Proof theory is a critical tool in automated deduction

m Especially in nonclassical logics
m Which have many applications in computer science

Complements model-theoretic techniques

Past: How to define a logic

m Sequent calculus and harmony
m Present: How to reduce nondeterminism in search
m Focusing and polarization

Future: How to combine logics
m Adjunctions (?)
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