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Leibniz’s Technical Work in Philosophy and his Vision

In mathematics, Leibniz (independently of Newton) developed
mathematical analysis
Leibniz also proposed the goals: Characteristica Universalis and
Calculus Ratiocinator.
In Philosophy, he developed a theory of concepts:

Calculus of Concepts
Concept Containment Theory of Truth
Modal Metaphysics of Complete Individual Concepts

Goal: Represent Leibniz’s theory in a way that achieves his goal:
use a formal language and derive the theorems with automated
reasoning tools.
Interest: Both the Kripke and the Lewis semantics of quantified
modal logic is reconstructed; each theory is preserved.
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Leibniz’s Calculus of Concepts

Let x, y, z range over concepts, taken as primitive.
Let x � y (‘the sum of x and y) be an operation on concepts.
Let x � y (‘x is included in y’) be a relation on concepts, defined
as:

x � y ⌘ 9z(x � z = y)

Leibniz’s axioms: idempotence, commutativity, and associativity
of �
Structure: concepts are organized in a semi-lattice.
Question: can we analyze � and �?
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Leibniz’s Containment Theory of Truth

Leibniz thought predication is a relation among concepts.
To say ‘Alexander is king’ is to say:

The concept Alexander contains the concept king.
ca ⌫ cK

where ‘the concept Alexander’ is in some sense complete
(contains all of Alexanders properties), ‘the concept king’
contains all the properties implies by being a king, and concept
containment (⌫) is the converse of concept inclusion (�).
Problem (raised by Arnauld): Hasn’t Leibniz analyzed a
contingent claim in terms of a necessary relation?
Question: Can we analyze ca, cK , and ⌫?
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Leibniz’s Modal Metaphysics of Concepts

Consider the claim ‘Alexander is king but might not have been’.
For Leibniz, the mind of God contains many concepts of
Alexander: ca1 , ca2 , ca3 , . . .
Counterparts: each cai is a a possible version of Alexander.
Generally: for every thing in the world, the mind of God has
many complete individual concepts for that thing.
The complete individual concepts are partitioned into
compossible concepts: each cell could be actualized into a
possible world.
God then ruled out those cells where people had no free will, and
then actualized the one cell of compossible concepts that had the
least amount of evil.
Questions: How do we precisely analyze complete individual
concepts without invoking God? Should we use Kripke
semantics or Lewis’s counterpart theory?
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The Theory of Abstract Objects

Use 2�, QML, with definite descriptions (rigid) and �-terms
(relational). One primitive predicate: concreteness (E!).
Interpret in a fixed-domain semantics that validates BF
(^9↵'! 9↵^') and CBF (9↵^'! ^9↵').
Add one new mode of predication: xF (x encodes F)
Cf. usual atomic formulas Fnx1 . . . xn (x1, . . . , xn exemplify Fn)
Distinguish ordinary (O!) and abstract (A!) objects:

O!x =df ^E!x
A!x =df ¬^E!x

Axiom: Ordinary objects don’t encode properties:
O!x! ¬9FxF
Comprehension Schema: 9x(A!x & 8F(xF ⌘ '))
x = y =df ((O!x & O!y &⇤8F(Fx ⌘ Fy)) _

(A!x & A!y &⇤8F(xF ⌘ yF)))
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A Frame with Two Possible Worlds

E!x E!y

A!z

w1wα
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The Domain of Abstract Objects: A Plenitude

9!x(A!x & 8F(xF ⌘ Fy))
9!x(A!x & 8F(xF ⌘ Fy & Fz))
The Triangle:
9!x(A!x & 8F(xF ⌘ T ) F))
The Class of Gs:
9!x(A!x & 8F(xF ⌘ ⇤8y(Fy ⌘ Gy)))
The Actual World:
9!x(A!x & 8F(xF ⌘ 9p(p & F= [�y p])))
The Number of Gs:
9!x(A!x & 8F(xF ⌘ F ⇡ G))
The Null Set of ZF (‘;ZF’):
9!x(A!x & 8F(xF ⌘ ZF[�y F;ZF))),

where ‘ZF’ denotes Zermelo-Fraenkel Set Theory
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The Theory of Relations

�-conversion, [�x1 . . . xn ']y1 . . . yn ⌘ 'y1,...,yn
x1,...,xn

Second-order Comprehension: 9Fn⇤8x1 . . .8xn(Fnx1 . . . xn ⌘ ')
9F⇤8x(Fx ⌘ ') 9p⇤(p ⌘ ')

where ' has no free Fs (or ps) and no encoding subformulas.
Identity for Properties: F1=G1 =df ⇤8x(xF1 ⌘ xG1)
Identity for Propositions: p=q =df [�y p]= [�y q]
Identity for Relations: Fn=Gn ⌘df (where n > 1)

(8x1) . . . (8xn�1)([�y Fnyx1 . . . xn�1]= [�y Gnyx1 . . . xn�1] &
[�y Fnx1yx2 . . . xn�1]= [�y Gnx1yx2 . . . xn�1] & . . .&
[�y Fnx1 . . . xn�1y]= [�y Gnx1 . . . xn�1y])

Picture: To show F3 = G3, pick arbitrary a, b
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The Domain of Abstract Objects

E!x E!y

w1wα

F G H

F, G F, H G, H

F, G, H
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Leibniz’s Calculus of Concepts Analyzed

Concepts analyzed as abstract objects that encode properties:
Concept(x) =df A!x

Analysis of concept summation:
x�y =df ız(Concept(z) & 8F(zF ⌘ xF _ yF))

Analysis of concept inclusion:
x � y =df 8F(xF ! yF)

The principles governing semi-lattices fall out as theorems.
cf. Zalta 2000

Jesse Alama Paul E. Oppenheimer Edward N. Zalta Automating Leibniz’s Theory of Concepts August 2015



Intro Background Theory Representation Fundamental Theorems Workflow Observations Bibliography

Leibniz’s Containment Theory of Truth Analyzed

The concept of ordinary individual u:
cu =df ıx(C!x & 8F(xF ⌘ Fu))

So the concept of Alexander is ca.
The concept of property G:

F)G =df ⇤8x(Fx! Gx)
cG =df ıx(Concept(x) & 8F(xF ⌘ G)F))

So the concept of being a king is cK .
Concept containment is the converse of concept inclusion:

x ⌫ y =df y � x
That is, x ⌫ y if and only if 8F(yF ! xF).
Analysis of ‘Alexander is king’:

The concept of Alexander contains the concept of being a king
ca ⌫ cK

ca ⌫ cK is derivable from the contingent premise Ka.
This addresses Arnauld’s objection.

Jesse Alama Paul E. Oppenheimer Edward N. Zalta Automating Leibniz’s Theory of Concepts August 2015



Intro Background Theory Representation Fundamental Theorems Workflow Observations Bibliography

World Theory (Zalta 1993; Fitelson& Zalta 2007

Situation(x) =df A!x & 8F(xF ! 9p(F = [�y p]))
x |= p =df Situation(x) & x[�y p]
World(x) =df Situation(x) & ^8p((x |= p) ⌘ p)
Kripke:⇤p ⌘ 8w(w |= p) Lewis: ^p ⌘ 9p(w |= p)

A!x w1wα

 

 

p, ~q, ... ~p, q, ...

[λy ~p], [λy q], ...[λy p], [λy ~q], ...

● ●
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A Model with 2 Ordinary Objects, 4 Properties

A!x w1wα

 

 

Pa, Ra Pa, Ra

Pb, Rb Pb, Rb

● a ● a

● b ● b

● ●

Jesse Alama Paul E. Oppenheimer Edward N. Zalta Automating Leibniz’s Theory of Concepts August 2015



Intro Background Theory Representation Fundamental Theorems Workflow Observations Bibliography

Same Model with Abstract Objects

a = ıx(A!x & 8F(xF ⌘ w↵ |= Fa)) a0 = ıx(A!x & 8F(xF ⌘ w1 |= Fa))
b = ıx(A!x & 8F(xF ⌘ w↵ |= Fb)) b

0
= ıx(A!x & 8F(xF ⌘ w1 |= Fb))

A!x
w1wα

 

 

Pa, Ra Pa, Ra

Pb, Rb Pb, Rb

aP, aR
__

bP, bR
_ _

b!P, b!R

a!P, a!R
_

_ _

_

● b ● b

● a ● a

● a ● a!

● b ● b!

_ _

_ _

●●
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Leibniz’s Modal Metaphysics Analyzed: I
cw

u =df ıx(Concept(x) & 8F(xF ⌘ w |= Fu))
RealizesAt(u, x,w) =df 8F((w |=Fu) ⌘ xF)
AppearsAt(x,w) =df 9uRealizesAt(u, x,w)
IndividualConcept(x) =df 9wAppearsAt(x,w)
` IndividualConcept(x)! 9!wAppearsAt(x,w)

A!x w1wα

 

 

●b ●b

●a ●a

w●c α
a

●cb
wα

a●cw1

1●cb
w

● ●

Jesse Alama Paul E. Oppenheimer Edward N. Zalta Automating Leibniz’s Theory of Concepts August 2015



Intro Background Theory Representation Fundamental Theorems Workflow Observations Bibliography

Leibniz’s Modal Metaphysics Analyzed: II

Compossible(c1, c2) =df 9w(Appears(c1,w) & Appears(c2,w))
` Compossibility partitions the individual concepts.
Counterparts(c, c0) =df 9u9w19w2(c =cw1

u & c0=cw2
u )

` Counterparthood partitions the individual concepts.

A!x w1wα

 

 

●b ●b

●a ●a

●c

●c

wα
a

b
wα

w●ca
1

●cb
1w

● ●
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Leibniz’s Modal Metaphysics Analyzed: III

Theorem 40a:
(Fu & ^¬Fu)! [cu ⌫ cF &
9c(Counterparts(c, cu) & c ✏ cF & 9w(w,w↵ & Appears(c,w)))]

A!x w1wα

 

 

● a ● a
●cwαa ●ca

w1

Ka ~Ka

wα
a  c cK⪰ w1a  c cK⪰/

● ●
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Representing Second-Order Syntax

4 Sorts for the language:
object(X), property(F), proposition(P), point(D)
Distinguished point: d; Distinguished property: e
Fx becomes ex1_wrt(F,X,d) and subject to:
(! [F,X,D] : (ex1_wrt(F,X,D) =>

(property(F) & object(X) & point(D))))).
⇤Fx becomes:
(! [D] : (point(D) => ex1_wrt(F,X,D)))

O!x =df ^E!x becomes:
(! [X,D] : ((object(X) & point(D)) => (ex1_wrt(o,X,D) <=>

(? [D2] : (point(D2) & ex1_wrt(e,X,D2))))))).

A!x =df ¬^E!x becomes:
(! [X,D] : ((object(X) & point(D)) => (ex1_wrt(a,X,D) <=>

~(? [D2] : (point(D2) & ex1_wrt(e,X,D2))))))).
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Representing the Second Mode of Predication

xF becomes enc_wrt(X,F,D)
Sorting principle:

fof(sort_enc_wrt,type,

(! [X,F,D] : (enc_wrt(X,F,D) =>

(object(X) & property(F) & point(D))))).
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Representing Identity Claims: I

Identity for ordinary objects:
fof(o_equal_wrt,definition,

(! [X,Y,D] : ((object(X) & object(Y) & point(D)) =>

(o_equal_wrt(X,Y,D) <=>

(ex1_wrt(o,X,D) & ex1_wrt(o,Y,D) &

(! [D2] : (point(D2) => (! [F] : (property(F) =>

(ex1_wrt(F,X,D2) <=> ex1_wrt(F,Y,D2))))))))))).

Analogous definition of identity for abstract objects, but they
encode the same properties at all points.
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Representing Identity Claims: II

General Identity:
fof(object_equal_wrt,definition,

(! [X,Y,D] : ((object(X) & object(Y) & point(D)) =>

(object_equal_wrt(X,Y,D) <=>

(o_equal_wrt(X,Y,D) | a_equal_wrt(X,Y,D)))))).

Tie defined identity into system identity:
fof(object_equal_wrt_implies_identity,theorem,

(! [X,Y] : ((object(X) & object(Y)) =>

(? [D] : (point(D) & object_equal_wrt(X,Y,D)) =>

X = Y)))).
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Representing Definite Descriptions

cu =df ıx(C!x & 8F(xF ⌘ Fu))
fof(concept_of_individual_wrt,definition,

(! [X,U,D] : ((object(X) & object(U) & point(D)) =>

(concept_of_individual_wrt(X,U,D) <=>

(ex1_wrt(c,X,D) & ex1_wrt(o,U,D) &

(! [F] : (property(F) =>

(enc_wrt(X,F,D) <=> ex1_wrt(F,U,D))))))))).

Define: is_the_concept_of_individual_wrt(X,U,D)
cG =df ıx(Concept(x) & 8F(xF ⌘ G)F))
Define: is_the_concept_of_wrt(Y,F,D)
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Representing �-Expressions

Vacuously bound variable: [�z p]
Instance of �-Conversion: ⇤([�z p]x ⌘ p),
This becomes:
fof(existence_vac,axiom,

(! [P] : (proposition(P) =>

(? [Q] : (property(Q) & is_being_such_that(Q,P)))))).

fof(truth_wrt_vac,axiom,

(! [P,Q] : ((proposition(P) & property(Q)) =>

(is_being_such_that(Q,P) =>

(! [D,X] : ((point(D) & object(X)) =>

(ex1_wrt(Q,X,D) <=> true_wrt(P,D)))))))).
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Fundamental Theorem

Theorem 40a (Zalta 2000):
(Fu & ^¬Fu)! [cu ⌫ cF &
9c(Counterparts(c, cu) & c ✏ cF & 9w(w,w↵ & Appears(c,w)))]

Jesse Alama Paul E. Oppenheimer Edward N. Zalta Automating Leibniz’s Theory of Concepts August 2015



Intro Background Theory Representation Fundamental Theorems Workflow Observations Bibliography

Representation of the Fundamental Theorem

fof(theorem_40a,conjecture,

(! [U,F] : ((object(U) & property(F)) =>

((ex1_wrt(o,U,d) & ex1_wrt(F,U,d) &

(? [D] : (point(D) & ~ex1_wrt(F,U,D)))) =>

(? [X,Y] : (object(X) & object(Y) &

ex1_wrt(c,X,d) & ex1_wrt(c,Y,d) &

is_the_concept_of_individual_wrt(X,U,d) &

is_the_concept_of_wrt(Y,F,d) & contains_wrt(X,Y,d) &

(? [Z] : (object(Z) & ex1_wrt(c,Z,d) &

counterparts_wrt(Z,X,d) & ~contains_wrt(Z,Y,d) &

(? [A,W] : (object(A) & object(W) &

is_the_actual_world_wrt(A,d) & world_wrt(W,d) &

~equal_wrt(W,A,d) & appears_in_wrt(Z,W,d))))))))))).
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A Dual Fundamental Theorem

Theorem 40b [24]:
(¬Fu & ^Fu)! [cu ✏ cF &
9c(Counterparts(c, cu) & c ⌫ cF & 9w(w,w↵ & Appears(c,w)))]

Website with results
http://mally.stanford.edu/cm/concepts/

http://mally.stanford.edu/cm/concepts/

main-theorems.html
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How We Proved the Theorems

To prove a conjecture with (deeply) defined terms, we kept
adding, as premises, the definitions of, and axioms governing,
the defined terms.
We tried to avoid hapax legomena, i.e., terms that occur only
once in the file, though often this is not the cause of the failure to
discover a proof.
Demo: symbol-summary theorem40a.p
Often the proofs were discovered after throwing in everything
but the kitchen sink. Then we faced the problem of pruning.
Jesse Alama’s tipi tools:
https://github.com/jessealama/tipi

http://arxiv.org/abs/1204.0901

Demo: tipi minimize theorem29.orig.p
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Dependencies

Theorems can be graphed in terms of dependencies
A change to the representation of one formula in one theorem has
to be correspondingly made in all theorems that use the formula.
Moreover, all those theorems containing the representation have
to be rechecked for provability.
Thus, any change to a prior axiom, definition, or theorem,
requires checking all the theorems that depended on that changed
formula. This is a variation on version control.
Our solution:

each problem file for a theorem is annotated with the axioms,
definitions, sorts, theorems, and lemmas that are used in its
derivation.
create and maintain a makefile to generate a master file
regenerate problems from this master file
http://mally.stanford.edu/cm/concepts/leibniz.html
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Representation Issues

Eliminate Restricted Variables from Definitions:
(! [X1,...,Xn]: ((sort1(X1) & ... & sortn(Xn)) =>

(Definiendum(X1,...,Xn) <=> ...X1...Xn...))).

Formulate and prove only non-modal versions of theorems,
unless the modal version is required for a proof elsewhere.
In object theory, not every theorem is a necessary truth: we
assume, and allow reasoning with, contingent premises, e.g., the
Russell principle governing rigid definite descriptions. So the
Rule of Necessitation can’t be applied to arbitrary theorems.
Example (Theorem 38): Fu ⌘ cu ⌫ cK

Formulate instances of comprehension as they are needed:
instances of object comprehension as needed
instances of �-Conversion as needed
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A Customized Theorem Prover for Object Theory?

Long term goal: a customized theorem prover that recognizes
classical object-theoretic syntax
This would recognize which formulas have encoding
subformulas: these are allowed in �-expressions, on pain of
paradox.
Reasoning with contingent premises: recognize any
dependencies on contingent axioms and theorems.
But see Oppenheimer and Zalta 2011; object theory:

contains formulas that neither are terms themselves nor can be
converted to terms by �-abstraction, and therefore,
involves reasoning that seems to be capturable only in the logic of
relational rather than functional type theory.

Whether that causes a problem in adapting and customizing
current automated reasoning technologies remains to be seen.
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