Intro	Background Theory	Representation	Fundamental Theorems	Workflow	Observations	Bibliography
0000	0000000000000	000000	000	00	00	00

Automating Leibniz's Theory of Concepts

Jesse Alama Paul E. Oppenheimer Edward N. Zalta

Center for the Study of Language and Information

Stanford University

> August 2015 CADE-25 Berlin

Intro	Background Theory	Representation	Fundamental Theorems	Workflow	Observations	Bibliography
0000	0000000000000	000000	000	00	00	00

2 Background Theory

3 Representation

IntroBackground TheoryRepresentationFundamental TheoremsWorkflowObservationsBibliography•••</t

Leibniz's Technical Work in Philosophy and his Vision

- In mathematics, Leibniz (independently of Newton) developed mathematical analysis
- Leibniz also proposed the goals: Characteristica Universalis and Calculus Ratiocinator.
- In Philosophy, he developed a theory of concepts:
 - Calculus of Concepts
 - Concept Containment Theory of Truth
 - Modal Metaphysics of Complete Individual Concepts
- Goal: Represent Leibniz's theory in a way that achieves his goal: use a formal language and derive the theorems with automated reasoning tools.
- Interest: Both the Kripke and the Lewis semantics of quantified modal logic is reconstructed; each theory is preserved.

Intro	Background Theory	Representation	Fundamental Theorems	Workflow	Observations	Bibliography
0000	0000000000000	000000	000	00	00	00

Leibniz's Calculus of Concepts

- Let *x*, *y*, *z* range over concepts, taken as primitive.
- Let $x \oplus y$ ('the sum of x and y) be an operation on concepts.
- Let x ≤ y ('x is included in y') be a relation on concepts, defined as:

• $x \le y \equiv \exists z (x \oplus z = y)$

- Leibniz's axioms: idempotence, commutativity, and associativity of \oplus
- Structure: concepts are organized in a semi-lattice.
- Question: can we analyze \oplus and \leq ?

Intro	Background Theory	Representation	Fundamental Theorems	Workflow	Observations	Bibliography
0000	0000000000000	000000	000	00	00	00

Leibniz's Containment Theory of Truth

- Leibniz thought *predication* is a relation among concepts.
- To say 'Alexander is king' is to say:
 - The concept Alexander contains the concept king.
 - $c_a \geq c_K$

where 'the concept Alexander' is in some sense complete (contains all of Alexanders properties), 'the concept king' contains all the properties implies by being a king, and concept containment (\geq) is the converse of concept inclusion (\leq).

- Problem (raised by Arnauld): Hasn't Leibniz analyzed a contingent claim in terms of a necessary relation?
- Question: Can we analyze c_a , c_K , and \geq ?

Leibniz's Modal Metaphysics of Concepts

- Consider the claim 'Alexander is king but might not have been'.
- For Leibniz, the mind of God contains many concepts of Alexander: $c_{a_1}, c_{a_2}, c_{a_3}, \ldots$
- Counterparts: each c_{a_i} is a possible version of Alexander.
- Generally: for every thing in the world, the mind of God has many complete individual concepts for that thing.
- The complete individual concepts are partitioned into *compossible* concepts: each cell *could* be actualized into a possible world.
- God then ruled out those cells where people had no free will, and then actualized the one cell of compossible concepts that had the least amount of evil.
- Questions: How do we precisely analyze complete individual concepts without invoking God? Should we use Kripke semantics or Lewis's counterpart theory?

The Theory of Abstract Objects

- Use 2°, QML, with definite descriptions (rigid) and λ -terms (relational). One primitive predicate: concreteness (*E*!).
- Interpret in a fixed-domain semantics that validates BF $(\Diamond \exists \alpha \varphi \rightarrow \exists \alpha \Diamond \varphi)$ and CBF $(\exists \alpha \Diamond \varphi \rightarrow \Diamond \exists \alpha \varphi)$.
- Add one new mode of predication: xF (*x* encodes *F*) Cf. usual atomic formulas $F^n x_1 \dots x_n$ (x_1, \dots, x_n exemplify F^n)
- Distinguish ordinary (*O*!) and abstract (*A*!) objects:
 - $O!x =_{df} \diamondsuit E!x$
 - $A!x =_{df} \neg \diamondsuit E!x$
- Axiom: Ordinary objects don't encode properties: $O!x \rightarrow \neg \exists FxF$
- Comprehension Schema: $\exists x(A!x \& \forall F(xF \equiv \varphi))$
- $x = y =_{df} ((O!x \& O!y \& \Box \forall F(Fx \equiv Fy)) \lor (A!x \& A!y \& \Box \forall F(xF \equiv yF)))$

Intro	Background Theory	Representation	Fundamental Theorems	Workflow	Observations	Bibliography
0000	0000000000000	000000	000	00	00	00

A Frame with Two Possible Worlds

Intro	Background Theory	Representation	Fundamental Theorems	Workflow	Observations	Bibliography
0000	000000000000	000000	000	00	00	00

The Domain of Abstract Objects: A Plenitude

- $\exists !x(A!x \& \forall F(xF \equiv Fy))$
- $\exists !x(A!x \& \forall F(xF \equiv Fy \& Fz))$
- The Triangle: $\exists !x(A!x \& \forall F(xF \equiv T \Rightarrow F))$
- The Class of Gs: $\exists !x(A!x \And \forall F(xF \equiv \Box \forall y(Fy \equiv Gy)))$
- The Actual World: $\exists !x(A!x \& \forall F(xF \equiv \exists p(p \& F = [\lambda y p])))$
- The Number of Gs: $\exists !x(A!x \& \forall F(xF \equiv F \approx G))$
- The Null Set of ZF (' \emptyset_{ZF} '): $\exists !x(A!x \& \forall F(xF \equiv ZF[\lambda y F \emptyset_{ZF}))),$ where 'ZF' denotes Zermelo-Fraenkel Set Theory

The Theory of Relations

•
$$\beta$$
-conversion, $[\lambda x_1 \dots x_n \varphi] y_1 \dots y_n \equiv \varphi_{x_1,\dots,x_n}^{y_1,\dots,y_n}$

• Second-order Comprehension: $\exists F^n \Box \forall x_1 \dots \forall x_n (F^n x_1 \dots x_n \equiv \varphi)$ $\exists F \Box \forall x (Fx \equiv \varphi) \quad \exists p \Box (p \equiv \varphi)$

where φ has no free Fs (or ps) and no encoding subformulas.

- Identity for Properties: $F^1 = G^1 =_{df} \Box \forall x (xF^1 \equiv xG^1)$
- Identity for Propositions: $p = q =_{df} [\lambda y p] = [\lambda y q]$
- Identity for Relations: $F^n = G^n \equiv_{df} (\text{where } n > 1)$

$$[\forall x_1) \dots (\forall x_{n-1})([\lambda y \ F^n y x_1 \dots x_{n-1}] = [\lambda y \ G^n y x_1 \dots x_{n-1}] \& \\ [\lambda y \ F^n x_1 y x_2 \dots x_{n-1}] = [\lambda y \ G^n x_1 y x_2 \dots x_{n-1}] \& \dots \& \\ [\lambda y \ F^n x_1 \dots x_{n-1} y] = [\lambda y \ G^n x_1 \dots x_{n-1} y])$$

• Picture: To show $F^3 = G^3$, pick arbitrary a, b

Intro	Background Theory	Representation	Fundamental Theorems	Workflow	Observations	Bibliography
0000	000000000000000	000000	000	00	00	00

The Domain of Abstract Objects

Intro	Background Theory	Representation	Fundamental Theorems	Workflow	Observations	Bibliography
0000	000000000000000000000000000000000000000	000000	000	00	00	00

Leibniz's Calculus of Concepts Analyzed

- Concepts analyzed as abstract objects that encode properties:
 - $Concept(x) =_{df} A!x$
- Analysis of concept summation:
 - $x \oplus y =_{df} \iota z(Concept(z) \& \forall F(zF \equiv xF \lor yF))$
- Analysis of concept inclusion:

• $x \le y =_{df} \forall F(xF \to yF)$

- The principles governing semi-lattices fall out as theorems.
- cf. Zalta 2000

Leibniz's Containment Theory of Truth Analyzed

- The concept of ordinary individual *u*:
 - $c_u =_{df} \iota x(C!x \& \forall F(xF \equiv Fu))$

So the concept of Alexander is c_a .

- The concept of property G:
 - $F \Rightarrow G =_{df} \Box \forall x (Fx \rightarrow Gx)$
 - $c_G =_{df} \iota x(Concept(x) \& \forall F(xF \equiv G \Rightarrow F))$

So the concept of *being a king* is c_K .

• *Concept containment* is the converse of *concept inclusion*:

• $x \ge y =_{df} y \le x$

That is, $x \ge y$ if and only if $\forall F(yF \rightarrow xF)$.

- Analysis of 'Alexander is king':
 - The concept of Alexander contains the concept of being a king
 - $c_a \geq c_K$

 $c_a \geq c_K$ is derivable from the contingent premise *Ka*.

This addresses Arnauld's objection.

World Theory (Zalta 1993; Fitelson & Zalta 2007

$$\begin{aligned} Situation(x) &=_{df} A!x \& \forall F(xF \to \exists p(F = [\lambda y p])) \\ x \vDash p &=_{df} Situation(x) \& x[\lambda y p] \\ World(x) &=_{df} Situation(x) \& \Diamond \forall p((x \vDash p) \equiv p) \\ \text{Kripke:} \Box p \equiv \forall w(w \vDash p) & \text{Lewis:} \Diamond p \equiv \exists p(w \vDash p) \end{aligned}$$

Intro	Background Theory	Representation	Fundamental Theorems	Workflow	Observations	Bibliography
0000	00000000000000	000000	000	00	00	00

A Model with 2 Ordinary Objects, 4 Properties

Same Model with Abstract Objects

 $\overline{a} = \iota x(A!x \& \forall F(xF \equiv w_{\alpha} \models Fa)) \qquad \overline{a}' = \iota x(A!x \& \forall F(xF \equiv w_{1} \models Fa))$ $\overline{b} = \iota x(A!x \& \forall F(xF \equiv w_{\alpha} \models Fb)) \qquad \overline{b}' = \iota x(A!x \& \forall F(xF \equiv w_{1} \models Fb))$

Leibniz's Modal Metaphysics Analyzed: I

 $c_{u}^{w} =_{df} ux(Concept(x) \& \forall F(xF \equiv w \models Fu))$ $RealizesAt(u, x, w) =_{df} \forall F((w \models Fu) \equiv xF)$ $AppearsAt(x, w) =_{df} \exists uRealizesAt(u, x, w)$ $IndividualConcept(x) =_{df} \exists wAppearsAt(x, w)$ $\vdash IndividualConcept(x) \rightarrow \exists !wAppearsAt(x, w)$

Leibniz's Modal Metaphysics Analyzed: II

Compossible(c_1, c_2) =_{df} $\exists w(Appears(c_1, w) \& Appears(c_2, w))$ \vdash Compossibility partitions the individual concepts. Counterparts(c, c') =_{df} $\exists u \exists w_1 \exists w_2 (c = c_u^{w_1} \& c' = c_u^{w_2})$ \vdash Counterparthood partitions the individual concepts.

Jesse Alama Paul E. Oppenheimer Edward N. Zalta

Leibniz's Modal Metaphysics Analyzed: III

Theorem 40a:

 $(Fu \& \Diamond \neg Fu) \rightarrow [c_u \ge c_F \&$

 $\exists c(Counterparts(c, c_u) \& c \not\geq c_F \& \exists w(w \neq w_\alpha \& Appears(c, w)))]$

Jesse Alama Paul E. Oppenheimer Edward N. Zalta

Representing Second-Order Syntax

- 4 Sorts for the language:
 object(X), property(F), proposition(P), point(D)
- Distinguished point: d; Distinguished property: e
- Fx becomes $ex1_wrt(F,X,d)$ and subject to:
 - (! [F,X,D] : (ex1_wrt(F,X,D) =>
 - (property(F) & object(X) & point(D)))).
- $\Box Fx$ becomes:
 - (! [D] : (point(D) => ex1_wrt(F,X,D)))
- $O!x =_{df} \diamond E!x$ becomes:
 - (! [X,D] : ((object(X) & point(D)) => (ex1_wrt(o,X,D) <=>
 - (? [D2] : (point(D2) & ex1_wrt(e,X,D2)))))).
- $A!x =_{df} \neg \diamondsuit E!x$ becomes:
 - (! [X,D] : ((object(X) & point(D)) => (ex1_wrt(a,X,D) <=>
 - ~(? [D2] : (point(D2) & ex1_wrt(e,X,D2)))))).

Intro	Background Theory	Representation	Fundamental Theorems	Workflow	Observations	Bibliography
0000	0000000000000	00000	000	00	00	00

Representing the Second Mode of Predication

- *xF* becomes enc_wrt(X,F,D)
- Sorting principle:

fof(sort_enc_wrt,type, (! [X,F,D] : (enc_wrt(X,F,D) => (object(X) & property(F) & point(D))))).

Intro	Background Theory	Representation	Fundamental Theorems	Workflow	Observations	Bibliography
0000	0000000000000	00000	000	00	00	00

Representing Identity Claims: I

- Analogous definition of identity for abstract objects, but they encode the same properties at all points.

Intro	Background Theory	Representation	Fundamental Theorems	Workflow	Observations	Bibliography
0000	000000000000	000000	000	00	00	00

Representing Identity Claims: II

• General Identity:

fof(object_equal_wrt,definition,

(! [X,Y,D] : ((object(X) & object(Y) & point(D)) =>

(object_equal_wrt(X,Y,D) <=>

(o_equal_wrt(X,Y,D) | a_equal_wrt(X,Y,D))))).

• Tie defined identity into system identity:

fof(object_equal_wrt_implies_identity,theorem,
 (! [X,Y] : ((object(X) & object(Y)) =>
 (? [D] : (point(D) & object_equal_wrt(X,Y,D)) =>
 X = Y)))).

Intro	Background Theory	Representation	Fundamental Theorems	Workflow	Observations	Bibliography
0000	0000000000000	000000	000	00	00	00

Representing Definite Descriptions

- $c_u =_{df} \iota x(C!x \& \forall F(xF \equiv Fu))$
- fof(concept_of_individual_wrt,definition, (! [X,U,D] : ((object(X) & object(U) & point(D)) => (concept_of_individual_wrt(X,U,D) <=> (ex1_wrt(c,X,D) & ex1_wrt(o,U,D) & (! [F] : (property(F) => (enc_wrt(X,F,D) <=> ex1_wrt(F,U,D)))))))))))
- Define: is_the_concept_of_individual_wrt(X,U,D)
- $c_G =_{df} \iota x(Concept(x) \& \forall F(xF \equiv G \Rightarrow F))$
- Define: is_the_concept_of_wrt(Y,F,D)

Intro	Background Theory	Representation	Fundamental Theorems	Workflow	Observations	Bibliography
0000	0000000000000	00000	000	00	00	00

Representing λ **-Expressions**

- Vacuously bound variable: $[\lambda z p]$
- Instance of λ -Conversion: $\Box([\lambda z p]x \equiv p),$
- This becomes: fof(existence_vac,axiom, (! [P] : (proposition(P) =>
 - (? [Q] : (property(Q) & is_being_such_that(Q,P))))).

fof(truth_wrt_vac,axiom, (! [P,Q] : ((proposition(P) & property(Q)) => (is_being_such_that(Q,P) => (! [D,X] : ((point(D) & object(X)) => (ex1_wrt(Q,X,D) <=> true_wrt(P,D))))))).

Intro	Background Theory	Representation	Fundamental Theorems	Workflow	Observations	Bibliography
0000	0000000000000	000000	● ○ ○	00	00	00

Fundamental Theorem

Theorem 40a (Zalta 2000): $(Fu \& \Diamond \neg Fu) \rightarrow [c_u \ge c_F \&$ $\exists c(Counterparts(c, c_u) \& c \not\ge c_F \& \exists w(w \ne w_\alpha \& Appears(c, w)))]$

Intro	Background Theory	Representation	Fundamental Theorems	Workflow	Observations	Bibliography
0000	00000000000000	000000	000	00	00	00

Representation of the Fundamental Theorem

```
fof(theorem_40a, conjecture,
(! [U,F] : ((object(U) \& property(F)) =>
((ex1_wrt(o,U,d) & ex1_wrt(F,U,d) &
 (? [D] : (point(D) & ~ex1_wrt(F,U,D))) =>
 (? [X,Y] : (object(X) & object(Y) &
 ex1_wrt(c,X,d) \& ex1_wrt(c,Y,d) \&
 is_the_concept_of_individual_wrt(X,U,d) &
 is_the_concept_of_wrt(Y,F,d) & contains_wrt(X,Y,d) &
  (? [Z] : (object(Z) & ex1_wrt(c,Z,d) &
  counterparts_wrt(Z,X,d) & ~contains_wrt(Z,Y,d) &
   (? [A,W] : (object(A) & object(W) &
   is_the_actual_world_wrt(A,d) & world_wrt(W,d) &
    \simequal_wrt(W,A,d) & appears_in_wrt(Z,W,d)))))))))))))
```

Intro	Background Theory	Representation	Fundamental Theorems	Workflow	Observations	Bibliography
0000	00000000000000	000000	00•	00	00	00

A Dual Fundamental Theorem

Theorem 40b [24]: $(\neg Fu \& \Diamond Fu) \rightarrow [c_u \not\geq c_F \&$ $\exists c(Counterparts(c, c_u) \& c \geq c_F \& \exists w(w \neq w_\alpha \& Appears(c, w)))]$

Website with results

- http://mally.stanford.edu/cm/concepts/
- http://mally.stanford.edu/cm/concepts/
 main-theorems.html

How We Proved the Theorems

- To prove a conjecture with (deeply) defined terms, we kept adding, as premises, the definitions of, and axioms governing, the defined terms.
- We tried to avoid *hapax legomena*, i.e., terms that occur only once in the file, though often this is not the cause of the failure to discover a proof.
- Demo: symbol-summary theorem40a.p
- Often the proofs were discovered after throwing in everything but the kitchen sink. Then we faced the problem of pruning.
- Jesse Alama's tipi tools: https://github.com/jessealama/tipi http://arxiv.org/abs/1204.0901
- Demo: tipi minimize theorem29.orig.p

Intro	Background Theory	Representation	Fundamental Theorems	Workflow	Observations	Bibliography
0000	0000000000000	000000	000	$\circ \bullet$	00	00

Dependencies

- Theorems can be graphed in terms of dependencies
- A change to the representation of one formula in one theorem has to be correspondingly made in all theorems that use the formula.
- Moreover, all those theorems containing the representation have to be rechecked for provability.
- Thus, any change to a prior axiom, definition, or theorem, requires checking all the theorems that depended on that changed formula. This is a variation on version control.
- Our solution:
 - each problem file for a theorem is annotated with the axioms, definitions, sorts, theorems, and lemmas that are used in its derivation.
 - create and maintain a makefile to generate a master file
 - regenerate problems from this master file
 - http://mally.stanford.edu/cm/concepts/leibniz.html

Representation Issues

- Eliminate Restricted Variables from Definitions:

 (! [X1,...,Xn]: ((sort1(X1) & ... & sortn(Xn)) =>
 (Definiendum(X1,...,Xn) <=> ...X1...Xn...))).
- Formulate and prove only non-modal versions of theorems, unless the modal version is required for a proof elsewhere.
- In object theory, not every theorem is a necessary truth: we assume, and allow reasoning with, contingent premises, e.g., the Russell principle governing rigid definite descriptions. So the Rule of Necessitation can't be applied to arbitrary theorems.
- Example (Theorem 38): $Fu \equiv c_u \geq c_K$
- Formulate instances of comprehension as they are needed:
 - instances of object comprehension as needed
 - instances of β -Conversion as needed

A Customized Theorem Prover for Object Theory?

- Long term goal: a customized theorem prover that recognizes classical object-theoretic syntax
- This would recognize which formulas have encoding subformulas: these are allowed in λ-expressions, on pain of paradox.
- Reasoning with contingent premises: recognize any dependencies on contingent axioms and theorems.
- But see Oppenheimer and Zalta 2011; object theory:
 - contains formulas that neither are terms themselves nor can be converted to terms by λ -abstraction, and therefore,
 - involves reasoning that seems to be capturable only in the logic of relational rather than functional type theory.
- Whether that causes a problem in adapting and customizing current automated reasoning technologies remains to be seen.

Bibliography: Primary Literature

- Leibniz, Gottfried Wilhelm:
 - C *Opuscules et fragments inédits de Leibniz*, L. Couturat (ed.), Paris, 1903.
 - CA *Correspondence with Arnauld*, translated by H. T. Mason, Manchester: Manchester University Press, 1967.
 - G Die philosophischen Schriften von Gottfried Wilhelm Leibniz, Volumes i – vii, C. I. Gerhardt (ed.), Berlin, 1875–90.
 - GI Generales Inquisitiones de Analysi Notionum et Veritatum, F. Schupp (ed.), Hamburg, 1982.
 - LP *Logical Papers*, G. H. R. Parkinson (ed. and trans.), Oxford: Clarendon, 1966.
 - PW Philosophical Writings, G. H. R. Parkinson (ed.), M. Morris and G. Parkinson (trans.), London: Dent & Sons, 1973.
 - T *Theodicy*, translated by E. Huggard, New Haven: Yale University Press, 1952.

Bibliography: Secondary Literature

- Fitelson, B., and E. Zalta, 2007, 'Steps Toward a Computational Metaphysics', *Journal of Philosophical Logic*, 36(2): 227–247.
- Kripke, S., 1963, 'Semantical Considerations on Modal Logic', *Acta Philosophica Fennica*, 16: 83–94.
- Lewis, D., 1968, 'Counterpart Theory and Quantified Modal Logic', *Journal of Philosophy*, 68: 113–126.
- Linsky, B., and E. Zalta, 1994, 'In Defense of the Simplest Quantified Modal Logic', *Philosophical Perspectives*, 8: 431–458.
- Oppenheimer, P. and E. Zalta, 2011, 'Relations versus Functions at the Foundations of Logic: Type-theoretic considerations', *Journal of Logic and Computation*, 21: 351–374.
- Zalta, E., 2000, 'A (Leibnizian) Theory of Concepts', *Philosophiegeschichte und logische Analyse/Logical Analysis and History of Philosophy*, 3: 137–183.
- Zalta, E., 1993, 'Twenty-Five Basic Theorems in Situation and World Theory', *Journal of Philosophical Logic*, 22: 385–428.