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Abstract
An arrangement of pseudocircles is a collection of simple closed curves on the sphere or in the
plane such that every pair is either disjoint or intersects in exactly two crossing points. We call
an arrangement intersecting if every pair of pseudocircles intersects twice. An arrangement is
circularizable if there is a combinatorially equivalent arrangement of circles.

Kang and Müller showed that every arrangement of at most 4 pseudocircles is circularizable.
Linhart and Ortner found an arrangement of 5 pseudocircles which is not circularizable.

We show that there are exactly four non-circularizable arrangements of 5 pseudocircles,
exactly one of them is intersecting. For n = 6, we show that there are exactly three non-
circularizable digon-free intersecting arrangements. We also have some additional examples of
non-circularizable arrangements of 6 pseudocircles.

The claims that we have all non-circularizable arrangements with the given properties are
based on a program that generated all connected arrangements of n ≤ 6 pseudocircles and all
intersecting arrangements of n ≤ 7 pseudocircles. Given the complete lists of arrangements, we
used heuristics to find circle representations. Examples where the heuristics failed had to be
examined by hand.

1 Introduction

Arrangements of pseudocircles generalize arrangements of circles in the same vein as ar-
rangements of pseudolines generalize arrangements of lines. The study of arrangements
of pseudolines was initiated 1918 with an article of Levi [10]. Since then arrangements of
pseudolines were intensively studied and the handbook article on the topic [2] lists more than
100 references. The study of arrangements of pseudocircles was initiated by Grünbaum [8].

A pseudocircle is a simple closed curve in the plane or on the sphere. An arrangement
of pseudocircles is a collection of pseudocircles with the property that the intersection of
any two of the pseudocircles is either empty or consists of two points where the curves cross.
The graph of an arrangement A of pseudocircles has the intersection points of pseudocircles
as vertices, the vertices split each of the pseudocircles into arcs, these are the edges of the
graph. Note that this graph may have multiple edges and loop edges without vertices. The
graph of an arrangement of pseudocircles comes with a plane embedding, the faces of this
embedding are the cells of the arrangement. A cell with k crossings on its boundary is a
k-cell. A 2-cell is also called a digon (some authors call it a lense), and a 3-cell is also called
a triangle. An arrangement A of pseudocircles is
simple, if no three pseudocircles of A intersect in a common point.
connected, if the graph of the arrangement is connected.
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Figure 1 The 3 arrangements of n = 3 pseudocircles: (a) Krupp, (b) NonKrupp, (c) 3-Chain.

intersecting, if any two pseudocircles of A intersect.
cylindrical, if there are two cells in A which are separated by each of the pseudocircles.
Note that every intersecting arrangement is connected. In this paper we assume that
arrangements are simple and connected.

Two arrangements A and B are isomorphic if they induce homeomorphic cell decomposi-
tions of the plane respectively the sphere. Figure 1 shows the three connected arrangements
of three pseudocircles. We call the unique digon-free intersecting arrangement of three
(pseudo)circles the Krupp1. The second intersecting arrangement of three pseudocircles is the
NonKrupp, this arrangement has digons. The non-intersecting arrangement is the 3-Chain.

Every triple of great-circles on the sphere induces a Krupp arrangement, hence, we call
an intersecting arrangement of pseudocircles an arrangement of great-pseudocircles if every
subarrangement induced by three pseudocircles is a Krupp.

Some authors think of arrangements of great-pseudocircles when they speak about
arrangements of pseudocircles, this is e.g. common practice in the theory of oriented matroids.
In fact, arrangements of great-pseudocircles serve to represent rank 3 oriented matroids.
I Definition. An arrangement of pseudocircles is circularizable if there is an isomorphic
arrangement of circles.

Circularizability of arrangements of pseudocircles has not been studied extensively.
This paragraph describes the state of the art. Edelsbrunner and Ramos [1] proved non-
circularizability of an arrangement of 6 pseudocircles with digons. Linhart and Ortner [11]
found a non-intersecting arrangement of 5 pseudocircles with digons which is non-circularizable
(Figure 2b). They also proved that every intersecting arrangement of at most 4 pseudocircles
is circularizable. Kang and Müller [9] extended the result by showing that all arrangements
with at most 4 pseudocircles are circularizable. They also proved that deciding circularizabil-
ity of connected arrangements is NP-hard. Since stretchability is ∃R-complete, their proof
actually implies ∃R-completeness of circularizability.

In our last year’s EuroCG contribution [6] we have sketched non-circularizability of two
further intersecting arrangements on 5 and 6 pseudocircles, respectively, namely N 1

5 and N∆
6

(see Figures 2a and 3a). Since then, we have extended our results and got the following.

I Theorem 1.1. The four equivalence classes of arrangements N 1
5 , N 2

5 , N 3
5 , and N 4

5 (shown
in Figure 2) are the only non-circularizable ones among the 984 equivalence classes of
connected arrangements of n = 5 pseudocircles.

I Theorem 1.2. The three equivalence classes of arrangements N∆
6 , N 2

6 , and N 3
6 (shown

in Figure 3) are the only non-circularizable ones among the 2131 equivalence classes of
digon-free intersecting arrangements of n = 6 pseudocircles.

1 This name refers to the logo of the Krupp AG, a German steel company. Krupp was the largest
company in Europe at the beginning of the 20th century. There is also a disease with the German name
Pseudo-Krupp, we have no corresponding arrangement.
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Figure 2 The four non-circularizable arrangements on n = 5 pseudocircles. (a) N 1
5 . (b) N 2

5 .
(c) N 3

5 . (d) N 4
5 .

(a) (b) (c)

Figure 3 The three non-circularizable digon-free intersecting arrangements for n = 6. (a) N ∆
6 .

(b) N 2
6 . (c) N 3

6 .

Full proofs of Theorems 1.1 and 1.2 can be found in the full version [4], where we also
prove non-circularizability of some further interesting arrangements on n = 6 pseudocircles
and provide some further results for certain classes of arrangements. The non-circularizability
proofs use various techniques, most depend on incidence theorems, others use arguments
involving metric properties of arrangements of planes, or angles in planar figures.

Our results strongly depend on the generation of the complete lists of connected arrange-
ments of n ≤ 6 pseudocircles and of intersecting arrangements of n ≤ 7 pseudocircles. The
respective numbers are shown in Table 1. The encoded lists of arrangements up to n = 6
are available on our webpage [3]. We remark that the list of intersecting arrangements was
already mentioned in our at last year’s EuroCG contribution [6]. Computational issues are
deferred until Section 5. There we describe the algorithmic ideas behind the computation of
the lists.

Particularly interesting is the arrangement N∆
6 (Figure 3a). This is the unique intersecting

digon-free arrangement of 6 pseudocircles which attains the minimum 8 for the number of
triangles. From our computer search we know that N∆

6 occurs as a subarrangement of every

n 4 5 6 n 4 5 6 7

connected 21 984 609 423 intersecting 8 278 145 058 447 905 202
+digon-free 3 30 4 509 +digon-free 2 14 2 131 3 012 972
con.+cylindrical 20 900 530 530 int.+cylindrical 278 144 395 435 367 033
+digon-free 30 4 477 +digon-free 2 131 3 012 906

great-p.c.s 1 4 11

Table 1 Number of combinatorially different arrangements of n pseudocircles.
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digon-free arrangement for n = 7, 8, 9 with p3 < 2n− 4 triangles, hence, also neither of those
arrangements is circularizable. Therefore, it seems plausible that for every arrangement of n

circles p3 ≥ 2n− 4. This is the Weak Grünbaum Conjecture. [5, 6]
For the non-circularizability of N∆

6 we have two proofs. Due to didactical reasons, we
exchanged “first” and “second” in the full version against the actual chronological order.

Our first proof is based on an incidence theorem in 3-space and was already sketched in
our last year’s EuroCG contribution [6].

Here we sketch our new second proof, which is based on a sweeping argument in 3-D
(see Subsection 4). With a similar idea we also show the following theorem, which has some
nice corollaries, e.g., it yields a very direct and easy proof that deciding circularizability is
∃R-complete (see Section 3).

I Theorem 1.3 (The Great-Circle Theorem). An arrangement of great-pseudocircles is circu-
larizable (i.e., has a circle representation) if and only if it has a great-circle representation.

2 Preliminaries

Stereographic projections map circles to circles (if we consider a line to be a circle containing
the point at infinity), therefore, circularizability on the sphere and in the plane is the same
concept. Arrangements of circles can be mapped to isomorphic arrangements of circles via
Möbius transformations.

Let C be an arrangement of circles represented on the sphere. Each circle of C spans a
plane in 3-space, hence, we obtain an arrangement E(C) of planes in R3. In fact, a fixed sphere
S conveys a bijection between (not necessarily connected) circle arrangements on S and
arrangements of planes with the property that each plane of the arrangement intersects S.

Consider two circles C1, C2 of a circle arrangement C on S and the corresponding planes
E1, E2 of E(C). The intersection of E1 and E2 is either empty (i.e., E1 and E2 are parallel)
or a line `. The line ` intersects S if and only if C1 and C2 intersect, in fact, `∩S = C1 ∩C2.

With three pairwise intersecting circles C1, C2, C3 we obtain three planes E1, E2, E3
intersecting in a vertex v of E(C). It is notable that v is in the interior of the ball bounded
by S if and only if the three circles form a Krupp in C.

3 Arrangements of (pseudo) great-circles

Central projections map between arrangements of great-circles on a sphere S and arrangements
of lines on a plane. Changes of the plane preserve the isomorphism class of the projective
arrangement of lines.

An Euclidean arrangement of n pseudolines can be represented by x-monotone pseudolines,
a special representation of this kind is the wiring diagram, see e.g [2]. An x-monotone
representation can be glued with a horizontally mirrored copy of itself to form an arrangement
of n pseudocircles, see Figure 4. The resulting arrangement is intersecting and has no
NonKrupp subarrangement, i.e., it is a great-pseudocircle arrangement.

Indeed the above construction yields a bijection between projective arrangements of n

pseudolines in the plane and arrangements of n great-pseudocircles.
Projective arrangements of pseudolines are also known as projective abstract order

types or oriented matroids. Their number is known for n ≤ 11, hence the numbers of
great-pseudocircle arrangements given in Table 1 are not new. For more information see [4].
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Figure 4 Obtaining an arrangement of pseudocircles from an Euclidean arrangement A of
pseudolines. Arrangement A and its mirrored copy are shown in red and blue, respectively.

Let C be an arrangement of great-pseudocircles and let A be the corresponding projective
arrangement of pseudolines. Central projections show that, if A is realizable with straight
lines, then C is realizable with great-circles, and conversely.

In fact, it is enough that C is circularizable to conclude that C is realizable with great-circles
and A is realizable with straight lines.

Proof of Theorem 1.3. Consider an arrangement of circles C on the unit sphere S that
realizes an arrangement of great-pseudocircles. Let E(C) be the arrangement of planes
spanned by the circles of C. Since C realizes an arrangement of great-pseudocircles, every
triple of circles forms a Krupp, hence, the point of intersection of any three planes of E(C) is
in the interior of S.

Imagine the radius of the sphere growing with the time t, to be precise, let S1 = S and
St = t · S. Since all the intersection points of the arrangement E(C) are in the interior of S1,
the circle arrangement obtained by intersecting E(C) with the growing sphere remains the
same (isomorphic). Also every circle of the arrangement is moving towards a great-circle
while the sphere is growing. When t is large enough it is possible to push all circles a small
amount to make them great-circles without changing the arrangement. J

I Corollary 3.1. Every non-stretchable arrangement of pseudolines has a corresponding
non-circularizable arrangement of pseudocircles.

In particular, the hardness of stretchability directly carries over to hardness of circulariz-
ability. Moreover, since there are infinite families of minimal non-stretchable arrangements
of pseudolines [7], the same is true for pseudocircles.

It is known that Mnëv’s Universality Theorem [12] has strong implications for pseudoline
arrangements and stretchability. This together with results from Suvorov [13] directly
translates to:

I Corollary 3.2. The problem of deciding circularizability is ∃R-complete. Moreover, there
exist circularizable arrangements of pseudocircles with a disconnected realization space.

4 Non-circularizability of N∆
6

Our second proof of non-circularizability of N∆
6 is an immediate consequence of the following

theorem, which resembles the proof of the Great-Circle Theorem (Theorem 1.3).

I Theorem 4.1. Let A be a connected digon-free arrangement of pseudocircles with the
property that every triple of pseudocircles, which forms a triangles in A, is NonKrupp. Then
A is not circularizable.

Proof (second proof of non-circularizability of N∆
6 ). The arrangement N∆

6 is intersecting,
digon-free, and each of the eight triangles of N∆

6 is a NonKrupp, hence, Theorem 4.1 implies
that N∆

6 is not circularizable. J

EuroCG’18
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5 Computational Part

To produce the database of all intersecting arrangements of up to n = 7 pseudocircles, we
used the dual graphs and a procedure, which generates the duals of all possible extensions
by one additional pseudocircle of a given arrangement, starting with the unique arrangement
of two intersecting pseudocircles [4, 5]. Another way to obtain the database for a fixed value
of n, is to perform a recursive search in the flip graph using the triangle flip operation.

For connected arrangement the dual graph might contain multiple edges. To avoid
problems with non-unique embeddings, we modeled connected arrangements with their
primal-dual-graphs where vertices, segments, and faces of the arrangement are represented
by a vertex in the graph and two vertices share an edge if the corresponding entities are
incident and one of them corresponds to an edge. To generate the database of all connected
arrangements for n ≤ 6, we used the fact that the flip graph is connected when triangle flips
and digon flips are used. The enumeration was done by a recursive search on the flip graph.

Having generated the database of arrangements of pseudocircles, we were then interested
in identifying the circularizable and the non-circularizable ones. To find circle representations
we used computer assistance. Examples where our programs failed to find realizations had
to be examined by hand. For more information, we refer to the full version [4].
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